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TENSAI – Practical and Responsible Observability for DataQuality-aware
Large-scale Analytics∗

HONG-LINH TRUONG†, Department of Computer Science, Aalto University, Finland

NGUYEN NGOC NHU TRANG‡, Daienso Lab, Vietnam

Given a large-scale mobile network with a variety of equipment and radio access networks technologies for an approximate 20
million subscribers, there are many types of data that can be used for big data analytics and machine learning (ML) tasks for network
operations, monitoring, and optimization. However, a variety of data is measured, collected, and propagated through numerous
complex data and software systems. Thus, people, software components, and data-driven operations for big data and ML pipelines
face great challenges in dealing with data quality impacts. Data quality related problems occur and are propagated through complex
operations involving different types of data, people, software components, and analytics that cannot be solved purely through data
quality engineering. This paper discusses our TENSAI framework, as practical and responsible observability for ensuring data quality
in such a mobile network. TENSAI focuses on methods of communications, strategy specifications, and data quality engineering for
diverse types of data and analytics among different types of operations. TENSAI presents techniques for capturing and communicating
causes/effects about data quality problems clear to all relevant stakeholders, developing data quality-aware adaptation strategies
for actions on data that can be integrated into analytics processes, and engineering the data quality awareness in software and data
pipelines. Thus, TENSAI supports full visibility of data quality problems and impacts among related systems to empower the utilization
and adaptation of data analytics for different types of operations. We will illustrate our TENSAI with several real-world data types,
pipelines, and cases based on our mobile network.

Additional Key Words and Phrases: data analysis, machine learning, data quality, telecommunication networks

1 INTRODUCTION

We are working on various big data and machine learning (ML) pipelines for diverse types of operations in a large-scale
mobile network. Our mobile network consists of a variety of radio access networks (called "V-RAN" in this paper), which
include 2G, 3G, 4G, and 5G (denoted as "2-5G") radio access networks from different hardware and software vendors
(such as Nokia, Ericsson and Huawei) in Vietnam. There exist many (legacy) complex systems to capture different
types of data. From these systems, different types of batch and realtime analytics, including ML-based predictions, are
being developed for customer service issue resolution, traffic prediction, subscriber’s quality of experience, site alarm
anomaly detection, equipment’s predictive maintenance, to name just a few. Such analytics must obtain various types
of data for different big data analytics and ML pipelines carried out through a set of complex software. They involve
different types of data extraction and (pre-)processing functions to provide data for analytics. Thus, they must support
quality data delivery through complex pipelines. However, such systems, analytics and their complex software are
strongly affected by the operations of the V-RAN hardware and infrastructures managed by network system operators.
Generally, we can see three main types of operations involved in data-driven monitoring and optimization of V-RAN: (i)
the operations of V-RAN infrastructure’s runtime monitoring, deployment and maintenance – called V-RAN operations,
(ii) the operations of data engineering of software/data components and pipelines – called data engineering operations,
and (iii) the operations of suitable data analytics and ML algorithms/services – called analytics operations.
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†Correspondence email: linh.truong@aalto.fi
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The above-mentioned three types of operations are carried out across systems of data and software components
with different teams of network, software, data and ML engineers and scientists. Data quality problems are propagated
through complex software pipelines (data engineering operations) to analytics/ML (analytics operations) may be caused
by changes in V-RAN infrastructures (V-RAN operations). Thus, to solve the problems, we must have a holistic view on
how data is collected, preprocessed, and moved through complex pipelines into the final batch and realtime analytics
for decision making. Currently, network system operators, software engineers, and data scientists/engineers do not
have a whole picture of data quality impacts and possible actions related to their operations. Their interactions and
communications centered around data-driven operations are asynchronous, spanning in different times and spaces. They
may realize data problems too late or they are not aware of the problems, which cost them effort and slowdown their
operations. Thus, it is of paramount importance to establish a framework for enabling a holistic view and synchronizing
the data quality problems and impacts on different types of operations.

To date, the major works in data quality assurance in big data analytics for such a large-scale network are either
for a specific type of data or a specific data pipeline, without a traceability and communication of sources of data
quality problems and impacts. Furthermore, the discussion in these works is focused on the data itself, but not on other
important aspects in terms of communications, strategies, software engineering, and involved teams centered around
how to act appropriately in data pipelines and data products. In many cases, existing solutions are just focused on
detecting and reporting data quality for data observability [28] or on solving data quality at a certain point in the data
pipeline and within ML algorithms [7, 11, 17, 37]. These works are important, however, they are not enough as the
problem of data quality impacts cannot be solved by and in algorithms alone in a complex network like V-RAN, of which
operations require intensive domain knowledge associated with operations and business contexts. In typical data science
processes, different roles just concentrate on the data passing through data collection, processing, and training [35]
without understanding changes in the systems generating the data (hardware, software, and subscriber infrastructures).
In large-scale systems, data quality problems must be examined with root causes from these infrastructures. Furthermore,
reactions to data quality problems are strongly based on operation and business and geographical contexts. Hence
providing data quality measurements alone is not enough. In order to understand what problems might occur, we
must capture, communicate and provide detailed possible sources of problems and implement addons to support the
operators and developer.

In this paper we contribute TENSAI (pracTical and rEsponsible eNd-to-end obServability for dAta qualIty) as a frame-
work. We present TENSAI as a set of methods and services for identifying key data quality problems, communicating
the problems, defining strategies, and engineering solutions to tackle the problems. TENSAI suggests solving the data
quality problems from three perspectives: (i) making and communicating cause/effect information clear to all relevant
stakeholders, (ii) developing contractual strategies for actions in cases of data problems that can be integrated into the
software development/operations processes, and (iii) engineering the data quality awareness in data pipelines. TENSAI
is devised to ensure that solving data quality impacts follows the continuous involvement of multiple stakeholders
across different pipelines and at different times. For managing V-RAN, TENSAI also provides methods to help improve
disparate management in choosing and executing data analytics for operations by enhancing communications and
insights for operators to use valuable data analytics. To date, data quality and impacts in V-RAN has not been effectively
governed (monitoring and controlling) to enable adaptation and change management on the system due to the lack of
coherent communication, strategies, and engineering. TENSAI helps to remove difficulties in handling situations arising
in operations and to ensure accuracy and reliability for ML tasks, allowing data quality to be checked regularly and
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throughout data-driven operations. This paper also contributes several real use cases to illustrate TENSAI’s usefulness
in an industrial setting.

The rest of this paper is organized as follows: Section 2 presents relevant data. Section 3 presents key elements of
our TENSAI method. Section 4 presents main cases. Further related work is discussed in Section 5. We conclude the
paper and outline our future work in Section 6.

2 DATA, PIPELINES AND ANALYTICS CASES

2.1 Data Types

Data types/-
data sources

Data format Atomic Level Measurement
type

Example of data
quality problems/-
consequences

Customer
feedback from
subscribers and
call centers

time series records,
including both struc-
tured data and free
text inputted by hu-
mans

single feedback from a
single subscriber

geographical lo-
cation, serving
cell/site, complaints,
cause, datetime

data currency when
handling customer
feedback, inaccurate
data due to text
processing

Network mea-
surements
(NMs) from
Operations
Support Sys-
tems (OSS)

time series records,
each capturing a set
of measurements

cell, site and zone (dis-
trict, province and user-
defined zone)

availability, acces-
sibility, mobility,
throughput, latency,
traffic (voice, data),
utilization (trans-
mission, radio)

missing data due
to recording and
data capture, incor-
rect data due to a
software update,
changed counters,
or infrastructure
changes

Alarms from
Alert Manage-
ment

time series records,
text-based machine
generated logs, and
annotations by oper-
ators

equipment, power and
battery system, quality
of service, communica-
tions

severity, fault id,
hardware unit name

incorrect or missing
data due to text pro-
cessing, change of the
data details

Incidents from
humans/opera-
tor or incident
monitoring

time series records,
structured data or
free text inputted by
humans

cell, site, Base Station
Controller (BSC), Ra-
dio Network Controller
(RNC) and zone (dis-
trict, province and user-
defined zone)

severity, affected
network measure-
ments/services,
cause

incorrect data due
to text processing
or missing data
due to non-pattern
text records, name
identity change

Table 1. Types of data and their possible data quality problems. The data is from a V-RAN of 2-5G radio access networks with
equipment and devices from different vendors.

Table 1 shows the four major types of data that we consider in our V-RAN. Customer feedback captures data related
to subscribers and their feedback about the usage of the mobile network. Network measurements capture hundreds of
different types of counters and many high-level network performance and traffic indicators. Alarm data captures many
infrastructures and hardware alarms as well as high-level operational alarms. Incident data captures key incidents in
V-RAN operations. In each type of data, we have many different details, due to the existing of different technologies in
radio access networks (2-5G), equipment, software vendors, and network subscribers.
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For the purpose of analytics and due to the deployment technologies, these types of data are stored using different
technologies and extracted/integrated into different data lakes (structured and semi structured data) for analytics using
current technologies (e.g., file/object storage with Minio1 and data lakes with Apache Hudi2). These types of data can
be used to create different data resources used for different analytics purposes. Conceptually, each data resource can be
represented as a dataset, under a limited size or in a continuous stream. Dataset can contain only selected elements of
a type or a mixed set of elements from different types in Table 1. Often a dataset is read-only or processed with the
insertion of new data. Therefore, any quality of data detected might happen in the data analytics and the detection of
data problems might not be used to correct the (historical) data in the data lakes/storage. Although we discuss with
data in V-RAN, similar situations may be found in other complex infrastructures and systems where one must operate
multiple systems with diverse technologies to serve a large number of consumers.

2.2 Complex Software Systems and Data Pipelines

Fig. 1. A set of systems for different data pipelines. Similar colored components are in the same system for monitoring and collecting
data, while the rest is related data analytics/ML ones. Originally the source of data is from approximately 70000 sites/cells across four
mobile network technologies (2G, 3G, 4G, and 5G) and millions of subscribers. Along the pipelines, data quality problems may occur
in different components and propagated cross systems. Apart from machine errors, human operators and subscribers can introduce
many data problems.

Our V-RAN has different, complex software systems based on that various types of data and analytics/ML pipelines are
processed and executed. Data quality problems and corresponding actions must be identified, analyzed and understood
along these pipelines. Figure 1 provides a high-level view of software systems and selected, important pipelines for data
mentioned in Table 1. Due to the complexity of these software and business sensitive deployment information, we only
provide a high-level view of original sources of data and four groups of systems:

• Regional, site, and cell monitoring (Regional/Site/Cell Monitoring) captures various types of measurements
across the whole infrastructure. They are one of the original sources of data for analytics. Such measurements
enter into a complex OSS (OSS:Monitoring) and eventually to databases/storage (NetworkMeasurement:DB) for
analytics. OSS monitoring and corresponding databases establish the first system – the Network Measurement
(NM) system.

1https://min.io/
2https://hudi.apache.org/
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• Alarm monitoring (Alarm:Monitoring), which is based on OSS data, will provide alarm data stored into alarm
database (Alarm:DB). Together they establish the second system – the Alarm system.

• Incident monitoring (Incident:Monitoring) is based on network measurement and network operators (human
operators, NetworkOperator). Incident data is stored into a database (Incident:DB). All together they introduce
another original source of data and the third system – the Incident system.

• Subscriber (Subscriber) and call center (CallCenter) gather customer feedback which are stored into a
database (CustomerFeedback:DB). Together they introduce another original source of data and the fourth
system – the CustomerFeedback system.

In our work, these systems are available based on different software and compute infrastructure technologies.
Operating and monitoring V-RAN infrastructures Region/Site/Cell monitoring and
OSS:Monitoring is within the V-RAN operations, data components and pipelines are under data engineering operations,
and analytics is under analytics operations. We focus on pipelines extracting and analyzing data from these systems
for various tasks (realtime analytics, ML, etc). Such pipelines arewithin and across components like ChangeDataCapture,
DataExtraction, BatchAnalytics, RealtimeAnalytics and MachineLearning3. These components are complex
and built atop various state-of-the-art software like Apache Spark, Apache Flink, Apache Kafka, Apache Hudi, Ten-
sorFlow, and data science programming toolkits. Subscriber, NetworkOperator, CallCenter are components
with human inputs. Thus, they produce a higher rate of quality problems. Realtime analytics, batch analytics and
ML inferences are relied on various types of Analytics Reference Data, which capture domain-specific thresholds,
patterns, and profiling data based on operations and business contexts. Results from analytics and ML are also extracted
and studied for improving Analytics Reference Data.

2.3 Operation Use Cases

With the types of data in Table 1 in our large-scale data analytics in Figure 1, there are many different operation areas,
which require different data resources, analytics, and specific V-RAN, data engineering and analytics operations. Table
2 shows key operation areas. There are a large number of analytics and ML methods that can be used for analyzing
data to support operations in these areas. Such analytics and ML methods have different capabilities in terms of service
performance (fast or slow), analytics accuracy (quality of results and ML models), and abilities to work with problematic
data (missing data).

In utilizing these analytics for such operations, different analytics techniques, including ML, must be used in the
right way for suitable datasets under appropriate data quality conditions. In addition to data sources for analytics/ML,
business strategies, service/customer stratification and priorities, and geographic service zoning (e.g., dense urban,
urban, and rural region) are also important aspects in domain analysis/ML for operators to make decisions. Therefore,
the couplings among data, operation and business contexts, and algorithms are key information for us to develop
suitable actions given detected data quality problems.

3 TENSAI FRAMEWORK

To capture cause/effect of data quality problems for complex systems shown in Figure 1, all relevant stakeholders (such
as, network system operators, data quality manager, and data scientist) must be connected and must communicate and
synchronize their view on data flows among software components and data products (including raw/preprocessing data
3Although BatchAnalytics and RealtimeAnalytics can use and implement ML methods, in this work we have MachineLearning as a building block
to indicate specifically analytics utilizing ML methods. MachineLearning can be carried out in batch or realtime modes.
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Operation areas Description Data Analytics
Response & Recov-
ery Plan

Optimizing response and recov-
ery tasks in cases of natural dis-
asters or blackouts (or similar sit-
uations)

Alarm, Network Measurement,
Incident, Analytics Reference
Data (Network coverage), Oper-
ator resources and their context
(location and tasks)

Clustering, AI/ML
planning

Traffic Understand-
ing

Assessing and determining
causes related to uploading/-
downloading traffic

Subscriber, Network Measure-
ment, Analytics Reference Data
(Cell/Site group profiles)

Forecasting, anom-
aly detection, classi-
fication, pattern sim-
ilarity search and
discovery

Feedback Serving Automating feedback answering
workflows for networks and net-
works information access for cus-
tomer services

Alarm, Incident, Network Mea-
surement, Customer feedback,
Analytics reference data (Cel-
l/Site/Zone profile), Training data
(integrated data)

Real time and batch
analytics, classifica-
tion

TWAMP Transmis-
sion Effect

Evaluating customer feedback re-
lated to TWAMP (Two-Way Ac-
tive Measurement Protocol) and
the quality of transmission

Alarm, Network Measurement
Key Performance Indicator (KPI),
latency, packet loss, customer
feedback

Classification,
causal inference

Site performance &
Customer feedback

Evaluating site performance ef-
fects on customer feedback

Performance indicators from Net-
work Measurement (e.g., Key
Quality Indicator (KQI), Physi-
cal Resource Block utilization,
KPI, packet loss, congestion rate),
Alarm, customer feedback

Classification, pre-
diction, anomaly de-
tection

Electricity usage &
Operation cost

Analyzing causes for electricity
usage and evaluating costs and
anomaly operation costs of Cel-
l/Site

Power profiles, electricity con-
sumption, electricity bill Corre-
lated data among various sources

Anomaly detection,
forecasting, classifi-
cation

Network Usage
& Performance
Forecasting

Forecasting data usage and trans-
mission loads

Historical usage data, subscriber,
Network measurement,

Forecasting, anom-
aly detection, clus-
tering

What-if Blackout/E-
mergency Situation
Simulation

Assessing impact of blackout to
network infrastructure and evalu-
ating possible blackout of the net-
work

Network Measurement, Incident,
Power/Electricity data, Analytics
reference data (Equipment, cell
and site profiles)

Forecasting, causal
inference, recom-
mendations

Customer Churn
Analytics

Analyzing causes for customer re-
tention and forecasting data us-
age

Subscriber, Customer feedback,
Network Measurement, Incident

Forecasting, classifi-
cation

Table 2. Examples of operation areas, data and analytics

and analytics results). Such connections and communications, via observability techniques and enabling observability
services, will provide a global picture of changes, data quality impacts, etc., in an end-to-end manner that will be
implemented via a set of services and processes. From their view on a pipeline, they can see data quality changes/problems
propagation through the pipeline. Based on that, suitable actions can be performed. The approach supports three
aspects: communication, contractual data quality, and quality-aware engineering, all together.
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Fig. 2. TENSAI activities, components, and interactions: System Components represent services/platforms with V-RAN whereas Data
Processing Functions/Components illustrate functionality used to collect, extract, ingest and process data that can be separated
or embedded within System Components.

Figure 2 outlines the TENSAI framework centered around the following key points:

• The identification of roles in different types of operations must be clear and these roles must communicate
w.r.t. data quality problems and impacts in a proactive and/or reactive manner. Three categories of roles are
System Operator – working on system/infrastructure change and deployment, Data Quality Manager –
overseeing the data quality governance processes and appropriate strategies, and Data Scientist/Engineer

– working on data analytics algorithms including ML and data pipelines. These roles spread across different
divisions and work across software and data systems in V-RAN, but they are linked via dependencies of data and
corresponding analytics in V-RAN. Note that a person can play the role of System Operator when changing
configurations/parameters in V-RAN, and the same person can also act as Data Quality Manager to report
change impacts for analytics. A role can be carried out by an individual or a team.

• Changes of V-RAN systems and infrastructures, during V-RAN operations affecting the quality of data used
by other operations must be updated into Data Quality Impact Change (e.g., which types of systems have
been changed). Data quality impact changes, see Figure 3, must be taken for the development of Strategy
Specifications, e.g., by Data Quality Manager, in collaboration with Data Engineer/Scientist, to deal
with the impact changes, e.g. in data engineering/analytics operations. Strategies are based on data quality
metrics but defined for specific business and operations contexts, reflecting via constraints on quality and
possible actions. All related Data Processing Component must be linked to strategy specifications. This link
can be reflected via software implementation or documents to make sure that analytics and people work on the
pipeline know the strategy specifications, e.g., during analytics operations. Furthermore, any Analytics

Reference Data used for Data Processing Componentsmust be updated if the quality impact change affects
the reference data. Especially, the reference data is used to support data engineering operations and analytics

operations, such as group conditions, anomaly detection thresholds for specific service type and service area,
and site capacity due to various hardware configurations.
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• Some strategy specifications must be implemented into Data Quality Assurancewhich will be integrated into
suitable data and software components for automating data quality control and data quality-aware processing.
Data Quality Detection Tools must be provided to automatically capture and report possible changes and
data quality problems.

Fig. 3. Data quality impact change: two main types of information are impacted data (data fields and data resources) and impacted
analytics (batch, realtime and ML analytics in existing data components and tools)

Essentially, TENSAI deals with (i) change management w.r.t. data quality impact and its association with analytics/oper-
ations for different contexts, (ii) automatic data quality detection and strategy specifications for actions based on data
quality, and (iii) software components for data quality aware processing. These aspects happen in a cross-operation,
cross-team and cross-system manner that require novel ways to communicate, coordinate and manage actions based on
data quality observability for appropriate business and operation contexts:
Cause/effect identification and communication: One of the first cross issues is to capture and manage system changes
impacting data quality. For example, V-RAN system configurations and upgrades often lead to changes in network
measurements. Given the changes, an evaluation can be executed to produce initial assessment of changes that
Data Quality Manager can revise and update into Data Quality Impact Change. System operators carrying out
configuration changes (for network operation or service optimization purposes) will not know all possible impacts on
data quality because the operators do not have a big picture of possible data usage in many different data pipelines and
potential impacts. Therefore, capturing change impact requires the communication between System Operator and
Data Quality Manager. In some cases, Data Quality Manager will evaluate the change and update the impact alone.
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Fig. 4. TENSAI communication messages

Furthermore, Data Quality Manager may not be aware of changes or does not see all potential impacts. Therefore,
Data Quality Manager might receive feedback from automatic Data Quality Detection Tools, which monitor
data flows and update information about impacts. Such detection tools are needed for large-scale systems and we can
have different ways to implement and integrate them into the systems, such as explained in [46]. In advanced situations,
different ML techniques and human-in-the-loop can be combined to build an advanced detection tool of changes [2, 18].

Communications among teams and operations will be done via change notifications based on information stored in
Data Quality Impact Change and Data Quality Strategy Specifications. In terms of capturing and documenting
data quality impact changes and strategies, we rely also on existing Data Registry – which manages metadata about
data resources and Feature Store – which manages data (features) used for training ML models4. These components
are very common nowadays for managing big data resources and supporting ML pipeline engineering. They provide
metadata about existing data resources, data schemas and features/data fields used for ML that we can link to the impact
changes and strategies. The Data Quality Manager and Data Scientist/Engineer can work with these components

4https://www.featurestore.org/
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to retrieve related data resources given a data field change. Naturally, we could configure the propagation of these
changes through change management services for complex team operations (such as, PagerDuty5 or Opsgenie6). In this
case, changes can be propagated through communication services like Slack and Microsoft Teams7. Then a workflow
can pickup to reconfigure the assurance component. Figure 4 presents TENSAI communication messages.
Strategies for specifying data quality contracts: Strategy specifications for data quality impact will govern possible ac-
tions given the assessment of data quality. In TENSAI, such strategy specifications can be turned into contracts that
either (i) we can implement the contracts into software components for data processing or (ii) the stakeholders involved
in relevant operations associated with the data will have an understanding and responsibility to follow the specifications.
In the first case, the contractual terms can leverage those in data contracts used for data exchange among different
parties [26, 45]. The core technical matter is that such contracts express data quality metrics, constraints and possible
consequences to guide other data processing and analytics tasks. However, contracts cannot be specified using a single
specification due to the diversity of data and possible actions. To develop them, we leverage key data quality metrics
[3, 25, 36, 42] and metadata terms from existing Data Registry and Feature Store, such as Linkedin DataHub8,
Google Data Catalog9, and Apache Atlas10 and from data and service contracts, such as QoA4ML [47] for detailed,
individual specifications and focus on managing them, using a model shown in Figure 5.
Quality-aware data pipeline engineering: Based on constraints in strategy specifications for data quality impact, Data
Scientist/Engineer, who operates and/or develops a data pipeline or an analytics, must incorporate suitable Data
Quality Assurance into the pipeline/analytics. Essentially, Data Quality Assurance in our framework represents
and abstracts various different, concrete techniques, implemented in suitable software components, to evaluate data
quality according to the strategy and to control related tasks as a consequence of the data quality evaluation. This
means to utilize different tools and libraries, such as Python-deeque11 and Great Expectation12, and mechanisms, such
as [46], to evaluate data quality and provide the quality assessment results to suitable components. Due to the diversity
of data and pipelines, suitable methods must be implemented based on the type of data and the pipeline handling
the data. There will be no single way, as in V-RAN (and similar to many large-scale systems) we have used different
technologies for data engineering and analytics, such as streaming analytics with Apache Spark and Apache Flink, batch
analytics with Apache Airflow, Apache Spark and Pandas, and ML with Tensorflows, Apache Spark, and scikit-learn.
New components may be needed when a new strategy specification or problem emerges. One aspect is to reconfigure
Data Quality Assurance if possible. This happens when some changes do not lead to the engineering and deployment
of a new type Data Quality Assurance and it would be enough for a reconfiguration (e.g., format of data field or
completeness of new data fields).

Figure 6 summarizes TENSAI technical features (the upper part). They all can be used for various use cases, such as
the above-mentioned areas and use cases (the middle part) carried out by different operations in V-RAN (the lower
part). In this work, we apply TENSAI for V-RAN but TENSAI is a generic framework. The key goals that TENSAI helps
to achieve are:

5https://www.pagerduty.com/
6https://www.atlassian.com/software/opsgenie
7https://slack.com/ & https://www.microsoft.com/en/microsoft-teams
8https://github.com/datahub-project/datahub
9https://cloud.google.com/data-catalog/docs/concepts/resource-project
10https://atlas.apache.org/
11https://github.com/awslabs/python-deequ
12https://greatexpectations.io/
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Fig. 5. Strategy specifications: mainly a strategy has (i) constraints of metrics for data resources and data components, and (ii)accepted
solutions about possible actions, such as executing an analytics or delegating a problem to another operation.

• Manage and build quality-aware data pipelines that create andmaintain expected data quality from the beginning
of the cross-system.

• Implement suitable approaches/tools to capture changes from V-RAN operations along the cross-system, where
are the main sources of data quality issues, reducing time and cost for operations in tracing root causes.

• Document quality impact and implement data constraints and data quality traceability for data pipelines.
• Provide an effective communication solution between teams (V-RAN operations, data quality managers, and

data analysts/engineering) to react to data quality issues.

In the next section, we contribute several real-world cases supported by TENSAI.
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Fig. 6. TENSAI technical features for supporting expected goals/use cases carried out in different V-RAN operations

4 SOLVING PRACTICAL PROBLEMSWITH TENSAI

In this section, we will present a few key data quality problems across various components in our V-RAN (mentioned
in Table 2 and Figure 1). Three problems, (i) entity changes, (ii) currency of data and its structure, and (iii) missing data,
will be discussed. Specific cases and examples, related to V-RAN operations and analytics areas mentioned in Table
2, within these problems will be elaborated. For each problem, we will discuss how we apply TENSAI for solving the
problem from three perspectives:

• Cause/effect identification and communication: capture changes and communicate problems,
• Strategies for specifying data quality contracts: define constraints on quality, and
• Quality-aware data pipeline engineering: possible engineering solutions for data and analytics pipelines.

The cases and examples will be discussed with our real data, code and designs13.

4.1 Entity changes

4.1.1 Problem description. Due to a continuous deployment of cells/sites (or replacement) in the infrastructure of
V-RAN, existing entities will be modified and new entities will be introduced (within V-RAN operations). This happens
often with mobile sites/cells as the core entities in the V-RAN infrastructure. Therefore, changing the identity of an
entity, such as changing the name and the location (physical GPS or logical tracking area code/location area code address)
13Due to the business sensitiveness of the data, code and designs, we will anonymize certain parts of data, provide simplified code and abstracted designs.
Also some concrete parameters in use cases are not the real values V-RAN business and operations.
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of sites/cells, is a common task. Another change is to deploy new sites/cells to improve network coverage and capacity
(the evolution of the V-RAN infrastructure). Such changes lead to entity identity change in measurements collected
by Region/Site/Cell Monitoring (see Figure 1). These changes are common tasks from the network management
viewpoint, carried out by System Operator, but they have a strong consequence on data engineering and analytics,
including Realtime Analytics, BatchAnalytics and MachineLearning, due to the lack of communication among
stakeholders and of efficient management of the observability of data quality change through a complex chain of
software components and data/ML pipelines. The problems of data drift, concept drift and schema drift can happen due
to such changes. But the detection may not be seen immediately, e.g., in case of BatchAnalytics and MachineLearning.
If not undetected, for example, in terms of new sites/cells, analytics may perceive a data completeness problem (at
the time of analytics some data is seen as missing). However, actually it is not a data completeness problem. Instead,
new data comes because of new entities. Furthermore, this issue has a strong impact on the type of analytics chosen
and parameters for the choosing analytics, especially for algorithms for change point detection and prediction. The
key reason is the drift in data, according to the domain knowledge. For example, in V-RAN, when new sites/cells are
introduced into a zone, the new sites/cells will start taking the load in the zone and they interact with other existing
sites/cells, such as via handover processes. Therefore, analytics related to network measurements and subscriber usages
will be different, unlike the analytics for a stable mobile network zone.

Fig. 7. Example of a cause-effect graph due to the change of identity for mobile cells as entities in our V-RAN

4.1.2 Dealing with data quality impact using TENSAI.

Cause/effect identification and communication: The effect of change on data quality impact can be captured clearly by
the role of Data Quality Manager for main types of data. This must be done and enforced to provide insights for
relevant stakeholders. Figure 7 shows the effect propagation of name identity changing, as one important observed
insight for communicating possible data problems in V-RAN. This effect is expressed in terms of a cause-effect graph
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with detailed information about possible data fields and data resources to be impacted. Then we use the graph to
communicate to different stakeholders and product owners of data analytics.

In terms of management of changes, once we apply an identity change of an entity, subsequent network measurement,
alarm, and incident data associated with the entity will be with the new identity. The change management system will
capture different information, such as start time, changing entity, trend, and change patterns. Captured information
about changes is documented as records and stored into a centralized place in TENSAI framework. Following TENSAI,
the source of V-RAN system change is linked to the data quality impact change record stored in (Data Quality Impact

Change). The list of affected analytics will be associated with types of data resources linked to data quality impact
change records. Thus, any analytics developer and owner will be aware of potential effects due to the change. For
example, Listing 1 is the original change configuration for system components w.r.t. cell/site change, whereas Listing
2 provides a record for data quality impact change. Note that the documentation process might not be fulfilled in
practice. Therefore, the above-mentioned way may not be suitable for certain types of local or automatic changes. When
the problem is unknown to System Operator, the change information cannot be documented by humans (operators,
managers) into the change management system. Therefore, we also detect changes by using external data evaluation
tools for change point detection and anomaly detection [16, 34, 41]. Captured information by these tools will be updated
into Data Quality Impact Change and a human-in-the-loop approach is used to inform operators, managers, or
scientist/engineers about the situation.

1 {

2 "ChangeRequest_Number": "CR_RAN_LTE_20220512_090924.208",

3 "ArtifactLink":"URI ...",

4 "CR_Name": "Change_cell_name",

5 "Status": "Waiting",

6 "SDATE": "12/05/2022 09:09",

7 "EDATE": "25/05/2022 09:09",

8 "EXECUTED_DATE":,

9 "RISK": "NO",

10 "Service_affected": "NO",

11 "Province": "***"

12 }

Listing 1. An example of a change record for renaming a CELL. Note that *** is used to mask sensitive data

1 {

2 "systemChangeReqRef": "CR_RAN_LTE_20220512_090924.208",

3 "recordTime": "2022-06-27T22:13:46.955781",

4 "impactedData": [

5 {

6 "dataFieldNames": [

7 "CELL","ALARM_INFO"

8 ],

9 "dataResourceNames": [

14



10 "Alarm","NetworkMeasurement"

11 ]

12 }

13 ],

14 "impactedAnalytics": [

15 {

16 "dataResourceNames": [

17 "Alarm","NetworkMeasurement"

18 ],

19 "dataComponents": [

20 "DataExtraction","Clustering"

21 ]

22 }

23 ]

24 }

Listing 2. An example of data quality impact change record

Strategies for specifying data quality contracts: To avoid a false signal that we have incomplete data for certain types of
entities (e.g., the number of sites is different among different months) when utilizing a dataset, we must check if (i) the
data of new entities has no effect on the analytics (e.g., when performing site traffic prediction) and (ii) the data of new
entities has effect on the analytics (e.g., when performing a clustering for a network zone). We develop the two types of
strategies that data engineering operations and analytics operations must consider: (i) data quality assurance for data
processing activities and (ii) updating reference data used by analytics. The first type is involved in the development
and improvement of Data Processing Function. The second one is a requirement for complex tasks of reexamining
relevant data in Analytics Reference Data and, if needed, to retrain and update reference data. In the following, we
discuss one example for the first strategy type.

We define and evaluate change metrics to characterize change phenomenons. A change metric has three factors:

• trend: indicates the direction of change, such as "increase" or "decrease"
• change rate: indicates the rate of changes to relevant analytics. Combining the change rate with the change

time, we can establish conditions reflecting the change impact (e.g., high impact in case of a high change rate in
a short change time).

• pattern: indicates the pattern of the change, such as sudden, incremental, and recurrent.

These factors are chosen due to their generality that we have seen in best practices to capture changes in data science/ML:
change point detection (e.g., trend), operation reaction (e.g., change rate/impact), data and concept drift (e.g., change
pattern). Change metrics are evaluated for a window of data. We use different functions for evaluating change metrics,
such as:

• Trends are detected using trend estimation functions for data in a window. The type of data determines the
type of the trend estimation function that a operator can use.

• We use a common way to determine change impact: 𝑐ℎ𝑎𝑛𝑔𝑒𝑟𝑎𝑡𝑒 =
|𝑦 (𝑡𝑒 )−𝑦 (𝑡𝑠 ) |

𝑦 (𝑡𝑠 ) , whereas 𝑡𝑒 and 𝑡𝑠 indicate the
end time and start time (in day resolution for our use cases), respectively, of the change period for an entity and

15



𝑦 (𝑡𝑒 ) and 𝑦 (𝑡𝑠 ) are the representative value of the entity at 𝑡𝑒 and 𝑡𝑠 respectively. Naturally, we can add and use
new functions to determine change rates.

• Change patterns are detected using common pattern detection algorithms, especially for time series and drift
[10, 31] and can be referred to by trend estimation functions.

Change metrics are applied only to selected entities under analytics (e.g., a zone or specific category of sites based on
the same vendor with a similar configuration). Based on that, we specify constraints and actions in the strategy. Listing
3 shows an example of change impact metrics and constraints based on the TENSAI strategy specification documents
in Figure 5.

1 {

2 "appliedTo": [

3 {

4 "dataResourceName": "NetworkMeasurement",

5 "dataComponent": "metric_forecast_gm",

6 "constraints": [

7 {

8 "dqMetricName": "changerate",

9 "condition": {

10 "operator": ">",

11 "value": "2"

12 }

13 }

14 ]

15 }

16 ],

17 "acceptedSolutions": [

18 {

19 "solutionName": "retrain_metric_forecast_gm",

20 "description": "retrain"

21 }

22 ]

23 }

Listing 3. An example of metrics and constraints

Quality-aware data pipeline engineering: Due to different data storage strategies in V-RAN, it is not possible to correct
all historical data in different datasets consisting of change entities. Therefore, along any data pipeline that handles
data related to changing entities, software components must decide if the input data overlaps fully, partially, or none
with the time and the list of changing entities to decide additional data correction. Figures 8 and 9 show high-level
designs for a common data pipeline and a data quality impact change-aware data pipeline of software components
and their configurations. Internally, inside appropriate components of the pipeline, the software implements features
to deal with impact changes. Such features are designed in a generic way that accepts different configurations for
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changes to automate additional corrections. From TENSAI, configurations can be generated (with/without input of
data engineer/scientist) during data engineering operations or analytics operations. To support the engineering, TENSAI
keeps the list of changes, including dates, and provides utilities for different situations. For example, if all data include
changes, the correction might be done before merging as it saves time. Since identity change cannot be updated into
data datalake/storage, it can be expensive to repeat the correction when the pipeline is executed often. In this case, we
can decide to create new version of data and use new version of data as the input for the pipeline.

Fig. 8. Common data pipeline Fig. 9. Change-aware data pipeline with modified software components
and configurations

One important aspect is to develop tools to detect change situations for metrics identified in the strategies that are
suitable for V-RAN. For structured time series data, the fundamental software to be used is change point detection
algorithms [5], pattern detection in timeseries [29, 44], and customized algorithms. For text data, currently we focus
on rule-based and pattern detection due to our light, fast log preprocessing tool. In the future, we can investigate ML
techniques, such as text/log classification and topic labeling [27] to decide if there are changes in the content. Existing
software can automatically detect the differences but the software does not know which situations would mean entity
changes in the specific context of the data. Therefore, we must customize code processing the output detected by
existing software to determine the right metrics.

Another tricky situation is how to distinguish between change and missing data when the change is unknown by the
people. In this case, we use automatic tools to detect the change but we require human operators to examine the result
and determine if it is a problem of missing data or change. Figure 10 explains the combination of automatic detection
of change in data with control configuration for data analytics. Software utilities can support automatic detection of
change whereas humans will provide control configuration to decide stop or adjust the analytics.

4.1.3 Examples. Two common changes are changing the name and the location of sites/cells. In order to prepare
network measurements for clustering, we need to check name identity change for network measurement data. This
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Fig. 10. Using additional check and control the analytics

can be done right after the data extraction. For example, we have changed more than 15000 cell/site entities. However,
people in data engineering operations and analytics operations were not aware of the changes, until we detected some
data problems. With TENSAI, the changes now can be available immediately for relevant operations. Given that Data
Extraction has to support different requests, two possibilities for improving the data pipelines have been introduced:
(i) updating all raw data before merging for different MLs or (ii) doing the update during the merging. A configuration
change can be reflected as:

1 {

2 "startTime": "2021-09-01 00:00:00",

3 "endTime": "2021-12-31 23:59:59",

4 "timeStampField": "DATE",

5 "changeEntityMapping": [

6 {

7 "entityField": "CELL",

8 "oldValueField": "Cellname",

9 "newValueField": "Cellname_new"

10 }

11 ]

12 }
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and change values can be stored in another dataset. Based on that, Listing 4 shows a simplified code abstracting the
complex update of data based on configuration changes. For many changes, the update is just for well-defined data
fields (e.g., based on column name of the data records). Therefore, we do not need to update the software pipeline but
configurations, which can be generated from TENSAI and revised by the corresponding people.

1 #for pandas

2 def get_new_name(old_name):

3 try:

4 new_name =mapping_data[old_name ][ new_value_field]

5 return new_name

6 except:

7 return old_name

8 data_df[entity_field_name ]= data_df[entity_field_name ]. apply(lambda x:

get_new_name(x))

9 #for spark

10 def get_new_name(old_name):

11 if (old_name in cell_name_list.keys()):

12 new_name=cell_name_list[old_name]

13 return new_name

14 return old_name

15 get_new_name_udf= udf(lambda x:get_new_name(x),StringType ())

16 selected_data_df=data_df.withColumn(entity_field_name , get_new_name_udf(col(

entity_field_name)))

Listing 4. Example of handling identity change for cell

In the second example, consider LC as a network zone representing a district. We detected its change (due to the
evolution of the V-RAN infrastructure) using our detection tool that can be scheduled to run periodically. Figure 11
presents a result from change detection for LC. Information about the change can be reported to the operators, who
can examine and confirm the situation. Listing 5 gives a concrete change confirmation message reported (see TENSAI
message in Figure 4).

1 {

2 "entity": {

3 "entityType": "DISTRICT",

4 "entityName": "LC"

5 },

6 "metrics": [

7 {

8 "metricName": "cell_evolution",

9 "trend": "increase",

10 "metricCategory": "evolution",

11 "detectionMethod": {
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12 "methodName": "CUSUM",

13 "detectionComponent": "ad_detect_evolution.py"

14 },

15 "changeLevel": "CELL",

16 "startTime": "2021-10-25 00:00:00",

17 "endTime": "****",

18 "additionalData": [

19 {

20 "uri": "https://****.****.****",

21 "desc": "figures in minio"

22 }

23 ],

24 "confirmedStatus": "yes",

25 "confirmedBy": "****",

26 "confirmedTime": "****"

27 }

28 ]

29 }

Listing 5. Example of a change confirmation

Given the change confirmed, the information is propagated to Data Scientist/Engineer as well as other interested
parties according to the communication and strategies defined in TENSAI. Data Scientist/Engineer use TENSAI to
calculate the change metric for making decisions (need to retrain models or not). A TENSAI message about change
metric is as follows:

1 {

2 "messages": [

3 {

4 "trend": "increase",

5 "changerate": "3.278",

6 "pattern": "sudden",

7 "startTime": "2021-09-01 00:00:00",

8 "endTime": "2021-11-08 00:00:00",

9 "dataResourceName": "NetworkMeasurement_LC"

10 }

11 ]

12 }

After evaluating the values in the change metric message, which recommends us to consider retraining models, Data
Scientist/Engineer can continue to perform the data drift check to decide if existing MLmodels in MachineLearning
must be retrained, thus being aware of possible drifts and proactive to prevent the ML model performance degradation.
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For example, based on the data quality impact change message, consider the evolution of sites/cells during September-
November, 2021. When we assume that the data from April-June, 2021 as reference data used for training ML models, we
evaluated data drift for September-November, 2021 data. The result based on Evidently14 reported "Drift is detected

for 70.83% of features (17 out of 24). Dataset Drift is detected". The drift also showed clearly the
drift w.r.t. the network downlink effect (new compared with the reference data) in Figure 12. Newly introduced cells
have smaller download throughput due to their lower capacity configuration, compared to other cells. If the data drift
due to the system evolution is unknown, ML models related to throughput analytics (e.g., classification, detection or
prediction) can give misleading results (such as giving false alarms about network problems when actually there is no
network issue). This forces Data Scientist/Engineer to retrain their ML models.

Fig. 11. Detection of the change of cells in a single district from a dataset of measurements with 6858308 records (including many
districts). The vertical red line indicates the start time of the change (due to the evolution of the infrastructure).

4.2 Currency of data and its structure

4.2.1 Problem description. The currency of data and the data structure reflects how current our view on the data and
its structure. For example, whether the data we have is current or old. Similarly, if we assume that the data structure is
version 𝑣1, while in fact, the data structure is already in 𝑣2, we have a problem of currency in data structure. Both may

14https://github.com/evidentlyai/evidently
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Fig. 12. Data drift of downlink network measurement, detected for LC, as a network zone, from a dataset of 6858308 records (including
many districts)

lead to the problem of missing current data due to the unavailability of current data and the schema mismatch when
processing data.

In data preprocessing for customer feedback, alarms, and incidents, we have parsed different types of logs. This
is within the building block Data Extraction in Figure 1. They include both structured records and text logs in
different languages (for example, Vietnamese and English in our datasets). The use of log parsing techniques [52]
is just one part of the data preprocessing. However, a major of data quality problems is related to this part, such as
unrecognized patterns lead to missing data. We have developed parsing modules and patterns to handle current raw
formats defined by the system operator team or equipment vendors for operation purpose. However, the currency of
data format/structure in the analytics operations is not the same as that in the V-RAN operations. It is often that software
update and reconfiguration in V-RAN operations change the data patterns, such as timestamp and log structure, and
create the currency problems w.r.t. data structures. Common data quality problems are log structure changes or the
textual content of the data fields being updated (for example, adding or modifying the customer complaint root causes
related to voice service when implementing IP Multimedia Subsystem system for Voice over LTE). It will lead to missing
or incorrectly processed data in analytics operations.
4.2.2 Dealing with data quality impact using TENSAI.

Cause/effect identification and communication: One important aspect is to communicate if contents and structures of
data (e.g., logs/alarms) have been changed. This often is due to hardware/software update and configuration changes in
the system components where the data is originally measured/generated. The change could lead to a schema drift (the
structure of the logs/alarms has been changed) and/or content drift. Therefore, the cause/effect of changes to the schema
drift and content details in data engineering operations and data/concept drift in analytics operations must be defined.
While in V-RAN operations, such changes may be known by System Operator, who manages the update, System
Operatormight not know the consequence of the changes on the schema drift or data drift, which are familiar concepts
in data engineering operations and analytics operations. Enabling the communication of changes, TENSAI would fill the
gap among these operations. Another type of information that needs to be communicated is the list of utilities and
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tools for detecting potential changes in data schemas and content details. Such utilities and tools sample data to detect
schemas and compare against existing schemas to detect the possibility of structure mismatch to present warnings
for data engineering pipelines. Strategies for specifying data quality contracts: A requirement of detecting the currency
problems must be defined. Strategies are defined for checking input data before performing other tasks. They can help
to implement features to take constraints into steering further actions. Within an operation belonging to analytics

operations or V-RAN operations, in order to solve an issue for an entity, the operation can identify required datasets as
data resources and conditions that must be available for the operation. We determine data currency metrics for each
dataset based on a requested window of available data –𝑤𝑑 , types of data –𝑑𝑡𝑦𝑝𝑒 , the issue – 𝑖𝑠𝑠𝑢𝑒 – to be solved, and the
operation – 𝑜𝑝 . Based on state-of-the-art, we leverage existing data currency functions [15] and combine with ratio of
the availability of data to calculate and manage currency:𝑑𝑎𝑡𝑎𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑦 = (𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑛𝑒𝑠𝑠, 𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑦, 𝑖𝑠𝑠𝑢𝑒, 𝑑𝑡𝑦𝑝𝑒, 𝑜𝑝,𝑤𝑑 ).
Let function 𝑡𝑖𝑚𝑒 () determine the timestamp and 𝑙𝑎𝑡𝑒𝑠𝑡 () return the latest element, we have

• 𝑤𝑑 includes data of 𝑑𝑡𝑦𝑝𝑒 returned from a request for available data from 𝑡𝑠 (𝑤𝑑 ) to 𝑡𝑒 (𝑤𝑑 ). 𝑡𝑠 and 𝑡𝑒 of 𝑤𝑑

indicate the start and end time, respectively, for a time window length, 𝑡𝑠 ≤ 𝑡𝑖𝑚𝑒 (𝑖𝑠𝑠𝑢𝑒) ≤ 𝑡𝑒 , identified by the
operation for solving for 𝑖𝑠𝑠𝑢𝑒 based on domain knowledge at 𝑡𝑖𝑚𝑒 (𝑜𝑝). Given 𝑡𝑠 and 𝑡𝑒 , we can calculate the
expected total length of records as 𝑡𝑤𝑙 (𝑑𝑡𝑦𝑝𝑒, 𝑖𝑠𝑠𝑢𝑒) based on the measurement frequency of 𝑑𝑡𝑦𝑝𝑒 . This applies
only to Network Measurement. For other types of data, such as Alarm or Incident, 𝑡𝑤𝑙 (𝑑𝑡𝑦𝑝𝑒, 𝑖𝑠𝑠𝑢𝑒) = 𝑙𝑒𝑛(𝑤𝑑 )
as the data is event-based.

• 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑛𝑒𝑠𝑠 = 𝑚𝑖𝑛(1, 𝑙𝑒𝑛 (𝑤𝑑 )
𝑡𝑤𝑙 (𝑑𝑡𝑦𝑝𝑒,𝑖𝑠𝑠𝑢𝑒) ): measures the ratio between the amount of available data –𝑙𝑒𝑛(𝑤𝑑 )

and the expected amount of data –𝑡𝑤𝑙 (𝑑𝑡𝑦𝑝𝑒, 𝑖𝑠𝑠𝑢𝑒) – required for the operation to be carried out.
• 𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑦 =𝑚𝑖𝑛(1, 𝑙𝑎𝑔𝑡𝑖𝑚𝑒 (𝑑𝑡𝑦𝑝𝑒)

𝑡𝑖𝑚𝑒 (𝑜𝑝)−𝑡𝑖𝑚𝑒 (𝑙𝑎𝑡𝑒𝑠𝑡 (𝑤𝑑 )) ): measures how current the available of data is for solving 𝑖𝑠𝑠𝑢𝑒 ,
based on the ratio between the optimal age of 𝑑𝑡𝑦𝑝𝑒 for the operation and the age of available data for 𝑖𝑠𝑠𝑢𝑒 .
The optimal age is represented by 𝑙𝑎𝑔𝑡𝑖𝑚𝑒 (𝑑𝑡𝑦𝑝𝑒) > 0 which is a known system parameter indicating the delay
of the data due to system configuration impacting the readiness of the data. The age of the available of data is
determined by the difference between 𝑡𝑖𝑚𝑒 (𝑜𝑝) and the timestamp of the latest available data 𝑡𝑖𝑚𝑒 (𝑙𝑎𝑡𝑒𝑠𝑡 (𝑤𝑑 ))15.
𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑦 = 1 means the highest currency of data. If there is no available data, 𝑙𝑎𝑡𝑒𝑠𝑡 (𝑤𝑑 ) == 𝑁𝑂𝑁𝐸, the
currency will be 0, the lowest value.

Given the currency and completeness of a datatype, the strategy specification will define possible actions such as
which teams are suitable to take the next step to solve customer feedback or provide data currency information to
data scientists or engineers performing related work. 𝑑𝑎𝑡𝑎𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑦 is context-specific for people/software carrying
out the analytics of a given data and the operation. We have different operations with varying amounts of analytics
for business, management, optimization, etc. purposes with different contexts. Each needs to deal with different data.
Therefore, different System Operator and Data Scientist may have different values of data currency and they will
have to act based on the values TENSAI calculates for them. Listing 6 shows an example of metrics and constraints
based on 𝑑𝑎𝑡𝑎𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑦.

1 "appliedTo": [

2 {

3 "dataResourceName": "NetworkMeasurement",

4 "dataComponent": "PRButilization",

15In V-RAN we see that 𝑡𝑖𝑚𝑒 (𝑜𝑝) > 𝑡𝑖𝑚𝑒 (𝑙𝑎𝑡𝑒𝑠𝑡 (𝑤𝑑 )) as the query is faster than the update of data. In some rare situations, it is possible the query
execution is delayed and the condition does not hold. This can be solved by adding a query delay.
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5 "constraints": [

6 {

7 "dqMetricName": "completeness",

8 "condition": {

9 "operator": "<",

10 "value": "0.95"

11 }

12 },

13 {

14 "dqMetricName": "currency",

15 "condition": {

16 "operator": "<",

17 "value": "0.92"

18 }

19 }

20 ]

21 }

22 ],

23 "acceptedSolutions": [

24 {

25 "solutionName": "wait_for_constraints",

26 "description": "wait until the constraint is fulfilled ."

27 }

28 ],

Listing 6. An example of data currency and constraints

Quality-aware data pipeline engineering: Figure 13 gives a high-level view of addressing the data currency problems.
At the basic level, a schema drift detection should be done within Parsing data. For example, in terms of Alarms,
structure of records can be inferred. This can be done using sampling or sending the logs for checking schema drift.
For example, alarm schemas can be represented in CSV. Based on CSV header detection and schema detection we can
detect if schema drift has occurred. One important aspect is that the detection must be lightweighted and integrated
to large-scale data processing technologies based on Apache Spark and Pandas. Another aspect is the incorporation
of testing techniques, (such as in [23] and Validatar16) with the employment of Analytics Reference Data, as a
lightweight monitoring/sampling error of preprocessing to report schema and data drift in Error Assessment Report.
Analytics Reference Data includes key entities in the systems, such as a list of site/cell names, list of hardware
components in system dependencies, and province/district. However, it is very challenging to test if the parsing is
correct (e.g., extract the correct entity name) with millions of records and currently it is out of the scope of TENSAI.
Based on Error Assessment Report, a decision will be made if we need to control Parsing Data or continue to
Analyzing Data. Here Error Assessment Report is a means for communicating the quality to the next step in data

16https://github.com/yahoo/validatar
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processing, such as realtime analytics or ML inferences. Analyzing Data also considers Control Configuration.
Another problem is the data drift related to raw logs. While schema drift might be detected, changes of data detail of
alarms are not easily detected and this requires new research.

Text (feedback, alarms, incidents)

parsing data

Structured Data (feedback, alarms, incidents)

Parsed Data

sampling data error

analyzing data

Error Assessment Report

selecting and configuring analytics

Analytics Result

Control Configurations

Analytics Reference Data

Fig. 13. Pipeline for addressing data currency problems

4.2.3 Examples. In our first example, considering the case of a customer service issue resolution in which TENSAI
supports data currency for resolving the issue. A customer feedback records a possible site/cell/zone service issue that
the customer has a problem. Resolving the issue may require the involvement of multiple types of operations across
V-RAN. However, handling such information without understanding data currency and corresponding communication
and strategies among these different operations could lead to huge effort and high cost. The call center (business
operations) has no detailed network measurements or alarms to handle certain types of feedback. Thus, the feedback
have to be passed to V-RAN operations due to data currency. Within V-RAN operations, there are different operations
with different views on data and data currency. Consider the case with a site Site6917 which was reported by customers
at t0=2022-06-17 22:15:13. A quick check by the call center gave no answer to the problem with the customer’s SIM
card or data subscription. Thus, an issue due to the feedback was created and escalated to V-RAN operations:

1 {

2 "feedback_id": "****",

3 "received_time": "17/06/2022 22:15:13",

4 "error_time": "17/06/2022",

17The site name has been changed to have an anonymous name to avoid revealing sensitive information.

25



5 "feedback_category": "42_ACCESSING_DATA_ISSUE"

6 }

Three types of system operators in V-RAN operations are involved in this case: Operator Type1 performs high-level
checks of the customer’s site serving, Operator Type2 addresses site engineering and Operator Type3 is network L1
optimizer/engineer18, who can go to the site to get driving test or single-site verification test logfiles and access other
low-level network data for in-depth analysis, such as PRB (Physical Resource Block) utilization. Operator Type3 is
only involved in handling emergencies or when other teams can’t find the problem.

At time t1=2022-06-17 22:33, Operator Type1 traced and found Site69 as the serving cell and check historical
KPIs in Network Measurement and alarm of Site69 but no abnormalities are found. Therefore, Operator Type1

used TENSAI to check 𝑑𝑎𝑡𝑎𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑦 metrics with a requested data window ranging from 2022-06-17 00:00:00 to
2022-06-17 22:00:00 (based on error_time in the issue):

1 {

2 "messages": [

3 {

4 "completeness": "1",

5 "currency": "1",

6 "dataResourceName": "Alarm",

7 "datavisibility": [

8 "Operator Type1",

9 "Operator Type2",

10 "Operator Type3"

11 ]

12 },

13 {

14 "completeness": "0.91",

15 "currency": "1",

16 "dataResourceName": "NetworkMeasurement -PRB",

17 "datavisibility": [

18 "Operator Type3"

19 ]

20 }

21 ]

22 }

The above TENSAI’s report on 𝑑𝑎𝑡𝑎𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑦 indicates that (i) Alarm data is current for resolving the issue, while (ii)
additional data (NetworkMeasurement-PRB) visible only for Operator Type3 does not meet the condition (𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑛𝑒𝑠𝑠

= 0.91 vs 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 = 0.95). Since Operator Type1 cannot find any problem with Site69 and the severity of feedback
is still low, the issue was propagated to Operator Type2 with additional information about Site69 as the serving cell
for checking neighboring sites to localize the fault area.
18Network L1 (Layer1) is about the physical layer
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At time t2=2022-06-18 07:43:02, using Uber H319 resolution 8, Operator Type2 finds three sites in the same area
{Site69,Site36,Site59}. Carrying out analytics with network measurements and alarms, Operator Type2 found
nothing. Operator Type2 did the same thingwith resolution 7with 5 sites: {Site10, Site04,Site69,Site70,Site42}.
Although Site04 has some alarms, these did not signal any suspicion. At this time, different datasets are accessed by
V-RAN operations and the 𝑑𝑎𝑡𝑎𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑦 for the datasets related to op=feedback(42_ACCESS_DATA_ISSUE) is calculated
by TENSAI is:

1 {

2 "messages": [

3 {

4 "completeness": "1",

5 "currency": "1",

6 "dataResourceName": "Alarm",

7 "datavisibility": [

8 "Operator Type1",

9 "Operator Type2",

10 "Operator Type3"

11 ]

12 },

13 {

14 "completeness": "1",

15 "currency": "1",

16 "dataResourceName": "NetworkMeasurement -PRB",

17 "datavisibility": [

18 "Operator Type3"

19 ]

20 }

21 ]

22 }

To resolve the issue, given𝑑𝑎𝑡𝑎𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑦met the condition but Operator Type2 does not have access to NetworkMeasurement
- PRB, Operator Type2 decided to escalate to another operation within V-RAN operations carried out by Operator

Type3. At time t3=2022-06-18 14:48:57, Operator Type3 received feedback information and used the same way
with zone analytics to access on a new type of data PRB and the data of alarms and PRB are more current (due to a
delay of data update (2-3 hours) and the gap between t2,t3). First, the value of RPB of Site69 signaled that Site69
was overloaded. Given the strategy of data currency, Operator Type3 must look for other close sites and alarms to
find the root cause.

DATE ALARM INFO

17/06/2022 20:47:36 Resource status indication , cell disabled

17/06/2022 20:47:36 Resource status indication , cell disabled

19https://h3geo.org/
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17/06/2022 20:47:36 Resource status indication , cell disabled

Such alarms, happened before t0, triggered the examine of other information and the root cause was founded by
Operator Type3: Site04 had connection problems and was not able to serve customers, leading to traffic handovers
to neighbour sites and Site69 became overloading to cause problems for customers.

Fig. 14. Reconstructed important network measurements over the time for Site69 and Site04. The data was based on peak hours to
demonstrate the behavior of sites. The operators got the data analytics based on the data at the analytics time only

Our second example is related to the currency of data schema w.r.t. the data detail (content of log). In V-RAN

operations, System Operator can swap RAN equipment for many reasons (such as old equipment has been depreciated
and needs to be replaced or launching equipment modernization projects), which can lead to a change in alarm detail
and/or format and affect data preprocessing for analytics. The following example describes the alarm format of two
vendors, Vendor N and Vendor E, in the same region at two different times (before and after the swap):

#alarm format vendor N

"7652| BASE STATION NOTIFICATION ","Failure in internal BTS connection or

connection to 3rd party tool ||6261 unitName=FSMF path=/SMOD_R -1 serial_no=

L1170804346 dstIPAddr =****:**** additionalFaultID =6261 SMOD -1||||"

#alarm format vendor E

"Sync Frequency PDV Problem","High PDV detected on IP packets towards PTP

Grandmaster#-ProbableCause(OSS)=m3100Unavailable",

These alarm data will enter into the same data streams andwill be ingested and processed by a component (preprocessing)
and the result will be fed into other analytics. Due to the structure of the data (CSV, text), the change might not be
detected until the analytics time. The orginal data preprocessing pipleline supports the first schema, thus, it can
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handle the record well (such as, able to obtain "unitName": "FSMF","dstIPAddr":"****", "FaultID": 6261). Due
to the problem of data format/detail currency, the preprocessing will not be able to parse the record, thus yield no
result. This failure would also mean that data/concept drift, which are important for ML, might not be detected. Why
rigorous schema drift detection has been extensive researched [13], detecting changes in data detail is not easy and
under developed, given complex data within V-RAN. For example in terms of log details, we can combine the schema
detection (such as bigquery-schema-generator20 for CSV and JSON data) with well-known schema drift detection
techniques. For detecting the change of data content detail due to V-RAN operations of reconfiguring/updating software,
we measure/sample the error when using existing grok patterns with contents. If the error rate is higher than a threshold
defined by Data Quality Manager based on the domain knowledge, the error report will be forwarded to V-RAN
operations team to confirm if there was any change in the system that made the error and trigger the review process of
logs by data engineering using TENSAI communication messages. This way can be replaced by advanced ML such as
text classification21, which would introduce more overhead for the sampling process. This technique is also used for
anomaly detection of log details due to security breach or rare events. Besides, the error report is also used to decide
if the related analytics could be stopped in districts with a high error rate or should be switched to other algorithms
automatically or done by a data scientist team.

4.3 Missing data

4.3.1 Problem description. Missing data is a common problem and it affects several analytics in V-RAN. Our focus is to
detect missing data and to control subsequent actions to react on the selection, configuration and execution of analytics
based on missing data (but not handling missing data within specific analytics as it is another subject of research and
engineering). Thus, we deal with missing data for inputs of specific analytics in the view of the operators, who interpret
missing data according to their operation context. Concretely, the severity of data missing can be evaluated to support
data quality-aware control in Data Extraction or ChangeDataCapture processes, which provide data for specific
analytics. This also means that data quality control is focused on concrete metrics to avoid to work on generic metrics
that may have no impact on the analytics. This differs from dealing with missing data in data storage or data ingestion
(where the data can be used for different analytics).

Missing data can happen at two levels: record level (missing the whole records) and missing fields (within records).
Missing data can be due to system errors and/or input errors (e.g., operators do not enter the data). However, the impact
of missing data would be evaluated for specific analytics within a context of an operation. In Figure 1, each indicate
in Network Measurement is determined from many counters associated with many different elements and factors. In
V-RAN, we have thousands of counters for 2-5G in different measurement period (e.g., event-based, minutes, hours,
and daily). When collecting these counters from OSS:Monitoring to the NM:DB through ChangeDataCapture, missing
data issues happen sometimes due to many reasons (synchronization loss, some components not working well or error,
change source, etc.). The key issue is that missing data cannot be detected easily by examining the analytics results.
It may also be too late to detect at the analytics as due to complex underlying systems (like OSS:Monitoring), the
original data may not be available after a period of time due to the system capability (e.g., 7 days). Therefore, handling
missing data must be implemented in the pipeline if required.
4.3.2 Dealing with data quality impact using TENSAI.

Cause/effect identification and communication: First, we define clearly data quality metrics related to missing data. Such

20https://github.com/bxparks/bigquery-schema-generator
21https://developers.google.com/machine-learning/guides/text-classification
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Fig. 15. Error rate of processing alarm logs in districts with a dataset for 9 months (1140268 log records). Data schemas for logs in few
districts have been changed a lot. A consequence is that the target ML analytics may have a problem.

metrics are associated with types of expected inputs for specific analytics, indicating the role of missing data for such
analytics. Due to the domain requirement, TENSAI helps communicate clearly the importance of data quality at the
records and analytics subjects levels (such as cell/site/zone and its measurements) but not at the data field level within
records (as this level is not relevant in V-RAN operations). From the communication perspective, analytics algorithms
are also documented with missing data handling capabilities (based on various literature [9]). Thus, as a consequence
of missing data, if we could not handle missing data, we still have a good understanding of which analytics (and its
internal algorithms) can handle missing data well. Therefore, the communication has to document well the algorithms
associated with analytics with expected data quality.
Strategies for specifying data quality contracts: Concretely, in our strategieswe define (i) data completeness (𝑑𝑎𝑡𝑎𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑛𝑒𝑠𝑠)
metrics at record levels for site/cell measurements (missing measurement records) and for zone (missing cells/sites) and
(ii) data dispersion among sites/cells for zone-based analytics (using standard deviation), for example:

• record-level missing data as 𝑑𝑎𝑡𝑎𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑛𝑒𝑠𝑠 = 1 − 𝑐𝑜𝑢𝑛𝑡 (𝑚𝑖𝑠𝑠𝑖𝑛𝑔𝑟𝑒𝑐𝑜𝑟𝑑𝑠)
𝑡𝑜𝑡𝑎𝑙
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• dispersion by value as 𝑑𝑎𝑡𝑎𝑑𝑖𝑠𝑝𝑒𝑟𝑠𝑖𝑜𝑛 = 𝑠𝑡𝑑 (𝑥 (𝑒𝑛𝑖 )) vs by time as 𝑑𝑎𝑡𝑎𝑑𝑖𝑠𝑝𝑒𝑟𝑠𝑖𝑜𝑛 = 𝑠𝑡𝑑 (𝑥 (𝑒𝑛𝑖 , 𝑡 𝑗 )) where 𝑠𝑡𝑑
is the standard deviation function, 𝑥 is the number of records for entity 𝑒𝑛𝑖 either for all times or at a specific
time 𝑡 𝑗 .

In the context of V-RAN, if the timeliness, validity, and accuracy of the data are not met, we consider them causing
missing data (as either the data is not available or cannot be used and can be removed like NaN values). We define
constraints in strategy specifications, in which data completeness and data dispersionmetrics must bemet for appropriate
analytics and types of analytics with suitable internal algorithms are accepted solutions given the values of metrics.
These constraints can be updated. However, they have to be setup based on expertise and domain-knowledge for types
of data and analytics. This will be defined by Data Quality Manager and Data Scientist/Engineer with the input
from the user of analytics.
Quality-aware data pipeline engineering: Figure 16 shows an example that the output of extracting data (e.g., in ChangeDataCapture)
and the result is used to perform data profiling to decide which algorithms should be run (or should not), if missing
data is detected or extracting data must be redone to update data before running analytics. TENSAI communicates
data quality metrics, together with the type of data (network measurement) as input for the reaction to be carried out
automatically or manually (via strategies). In order to make the decision, the error rate must be estimated by training a
prediction model using data quality metrics and error rates and suitable invocations of analytics/ML are implemented
based on constraints of the error rates. The constraints can also specify (additional) algorithms that impute missing
data [1] to provide estimated true measurements for missing ones. Which methods should be used are not in the scope
of TENSAI, which enables the communication and integration of data quality with possible consequent actions by
leveraging other MLs.

Data Resource

extracting data

Extracted Data

analyzing data

profiling data

Algorithm Characteristics

deciding algorithm strategy

Analytics Results

Fig. 16. Handling missing data in analytics Fig. 17. Data quality-aware system control/optimization given missing data
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4.3.3 Examples. We illustrate two examples to show diverse impacts of missing data to different analytics. Consider
𝐶𝑆𝐹𝐵_𝑆𝑅 (Circuit Switched Fallback Success Rate) for a zone, site or cell as a key metric for evaluating voice services
when customers have bad experiences (and for other optimization). This metric is monitored continuously via common
analytics like realtime streaming analytics with Apache Flink/Apache Spark22 and t-digest [8] for different window
times (hourly and daily). The metric will be retrieved by System Operator to consider if, for example, voice services
cannot be switched from 4G to 3G and the system does not support voice over LTE (VoLTE), given complaints from the
customer. This metric is calculated as 𝐶𝑆𝐹𝐵_𝑆𝑅 = 100% ∗ 𝐶𝑆𝐹𝐵_𝑆𝑢𝑐𝑐𝑒𝑠𝑠

𝐶𝑆𝐹𝐵_𝑅𝑒𝑞𝑢𝑒𝑠𝑡 . The 𝐶𝑆𝐹𝐵_𝑆𝑢𝑐𝑐𝑒𝑠𝑠 and 𝐶𝑆𝐹𝐵_𝑅𝑒𝑞𝑢𝑒𝑠𝑡 values
are aggregated based on appropriate time windows (hourly or daily) from the records of the 15 minutes measurement
frequency. When one or more records are missing, 𝐶𝑆𝐹𝐵_𝑆𝑅 value is not calculated correctly. Detecting this problem
cannot be done by examining the analytics result, e.g., shown in Table 3 where with two data quality metrics –
𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑛𝑒𝑠𝑠 and 𝑑𝑎𝑡𝑎𝑑𝑖𝑠𝑝𝑒𝑟𝑠𝑖𝑜𝑛 – high missing data rates and data dispersion could lead to higher 𝐶𝑆𝐹𝐵_𝑆𝑅. This
causes a big problem for reactive actions of System Operator in V-RAN operations at realtime. Furthermore, since
aggregated 𝐶𝑆𝐹𝐵_𝑆𝑅 will be stored for long-term prediction using ML algorithms, data problems will be propagated
to data lake/storage. Therefore, in our strategies ChangeDataCapture and analytics components implements the data
quality monitoring and check against with expected constraints. For example System Operator in V-RAN operations

expected to have max 0.01% error rate. The data quality will be used to trigger quality assurance and enforce exactly-once
data policies from OSS:Monitoring. Furthermore, for daily 𝐶𝑆𝐹𝐵_𝑆𝑅, data quality will be stored to provide additional
information for MachineLearning. Thus through measuring and providing data quality metrics, we use them for
communicating potential problems to different stakeholders, of which involvements spread over different pipelines at
different times.

Data quality CSFB_SR Error rate
’completeness’: 0.1, ’datadispersion’: 0.46 99.877 0.017
’completeness’: 0.2, ’datadispersion’: 0.52 99.684 0.177
’completeness’: 0.3, ’datadispersion’: 0.7 99.904 0.044
’completeness’: 0.4, ’datadispersion’: 0.77 99.812 0.048
’completeness’: 0.5, ’datadispersion’: 0.8 99.877 0.017
’completeness’: 0.6, ’datadispersion’: 0.9 99.886 0.026
’completeness’: 0.7, ’datadispersion’: 0.78 99.852 0.008
’completeness’: 0.8, ’datadispersion’: 0.93 99.844 0.017
’completeness’: 0.9, ’datadispersion’: 0.65 99.868 0.008
’completeness’: 1.0, ’datadispersion’: 0.0 99.860 0.000

Table 3. Example of𝐶𝑆𝐹𝐵_𝑆𝑅 for a single zone with 10 sites for single day. Missing data is introduced by using sampling techniques
of Pandas.

The second example is to consider data as input for important ML-based analytics, such as predicting data traffic
growth for network planning and evolution. Consider a V-RAN operation to explore traffic growth in a specific zone.
The zone is defined by a distance from a specific location. In our test, we select a location and use Uber H3 resolution
= 7 (average hexagon area 5̃.16 km2 and average hexagon edge length 1.22 km) and predict different V-RAN traffic
types, including 2-4G. We emulated missing data missing and observed the effect of missing data on the prediction.
Figure 18 shows one example of the effect of missing data with 4G traffic. Clearly, predicted values are smaller and the

22https://flink.apache.org/ and https://spark.apache.org/
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peak/busy hours are different. Thus, being unaware of missing data could lead to a wrong decision. In this situation,
by integrating TENSAI features into the data pipeline, TENSAI will provide data quality metrics for deciding if an
ML algorithm should be invoked. TENSAI strategies can also provide insightful information to help select or trigger
suitable ML algorithms with right parameters (such as for tackling missing data).

Fig. 18. Forecast of traffic 4G using Kats Global Model [39]: quantile 0.5 with 𝑑𝑎𝑡𝑎𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑛𝑒𝑠𝑠 == 1 (line fcst_quantitle_0.5
1.0) and 𝑑𝑎𝑡𝑎𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑛𝑒𝑠𝑠 == 0.8 (line fcst_quantitle_0.5 0.8)

Note that some prediction algorithms cannot work if timeseries data is missing. In this case, detecting data problems
by TENSAI would prevent the execution of the prediction and support automatically switching of prediction algorithms.
Thus, the strategy will help to use and verify the result. Furthermore, we note that it is possible to carry out data
imputation with suitable libraries or with suitable parameter configurations for an ML algorithm. However, these
libraries must also be tested and put into the strategies. For example, using Luminaire23 in a simple way, we observed
some low accuracy of interpolated values for missing data:

raw interpolated

2022 -05 -09 02:00:00 5.59577 5.595770

2022 -05 -09 03:00:00 NaN 4.153613

2022 -05 -09 04:00:00 1.90175 1.901750

23https://zillow.github.io/luminaire/
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... ... ...

2022 -06 -15 19:00:00 33.38404 33.38404

2022 -06 -15 20:00:00 NaN 36.971412

2022 -06 -15 21:00:00 42.16067 42.16067

raw

2022 -05 -09 03:00:00 1.93416

2022 -06 -15 22:00:00 32.05771

This example demonstrates that strategies should also consider the variety of algorithms abilities in selecting and
invoking suitable algorithms. TENSAI helps to manage such complex relationships between data quality constraints
and algorithm abilities.

5 RELATEDWORK

In mobile networks, there are many big data analytics and ML case studies for various problems, such as [14, 51]. Our
work in this paper is not focused on such analytics per see, but on the question of how to facilitate the utilization and
correctness of complex big data analytics by filling the gaps in communication, strategy specifications and engineering
of data quality awareness for such analytics. There is no lack of papers about data quality in general and data quality
in telecommunications and in data analytics [25, 42]. Many of these works just discuss the methodology at the level
of conceptual high-level frameworks, raising key metrics and possible approaches but without concrete techniques
and practical solutions for large-scale mobile networks. This is partially due to the fact that solving data quality
problems one must work (i) with concrete data in domain contexts and (ii) with pipelines and interpretation of data
quality based on specific operations. In our work, we apply existing methodologies to define/evaluate some concrete
metrics for demonstrating our solutions. From the domain understanding, the work in [4] provides some high-level
recommendations for designing big data quality in different situations that we take into account, e.g., we consider to
link the original sources of data problems to all possible subsequent actions on data using communication, strategies
and engineering. In the view of data science, papers like [40] emphasize the lifecycle management. While our work does
not work on lifecycle for specific data science projects or datasets, we address the lack in establishing a uniform view
on several aspects of data. However, we look at cross systems with many phases among different types of operations
beyond the boundaries of a lifecycle.

Recently, DataOps approaches have incorporated automation for data lifecycle engineering and management [30],
dealing alsowith data qualitywithin a pipeline [38]. TENSAI can be integratedwithDataOps and vice versa. However, our
TENSAI goal is different as it works for cross systems with different types of data, introducing communication/strategy
and engineering techniques to achieve the goal, where automation features could be incorporated but are not in our
focus. Furthermore, DataOps solutions usefully work well for a single type of data within a single system, but not among
different types of data spreading different systems where automation might not be fully established in a cross-system
manner. In software engineering, organization management and information systems, there are many papers discussing
about change management [6, 21]. They provide foundation concepts for changes and communications of changes. Our
work differs by focusing on change and strategy associated with data quality for big data analytics.

At the technical level, TENSAI relies on different enablers for evaluating data quality problems. Different techniques
show how to evaluate quality of data using different tools and integration models [43, 46]. Various techniques are for
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anomaly detection [16, 34, 41] that can be used to detect changes in data. Many open sources of anomaly detection
tools, such as Twitter AD[48], Alibi [49], Kats [19], EGADS [20] can be integrated into data analytics frameworks.
Similarly, one can easily follow many ML models for time series data [24, 33]. DataOps-4G is a platform supporting
data quality discovery [50]. Our work in this paper is to leverage existing tools and develop customized utilities that
can be integrated into the quality process. In [35] the paper discusses quality data evaluation for ML, following the data
science lifecycle. Our TENSAI is not bound to a data science cycle, which can be contained within certain activities in
our work. In this paper we did not work on the data quality for ML algorithms. However, we share a common view on
the importance of quality evaluation. We address the strategies in configuring and executing data pipelines and their
possible embedded ML methods. But we do not work at the level of ML algorithms.

In terms of exchange data quality impacts and problems, works like [12] present a data quality model used to inform
the user. But such a work does not answer the question of how to detect and adapt software based on data quality.
Most research and industrial observability systems are not focused on data quality [22, 32]. As a framework, TENSAI
supports data observability approach [28], a subject which has been increasingly discussed. Both TENSAI and data
observability services, stimulated by software and service observability but targeting to data, must support key data
quality metrics that have been well studied. But TENSAI is more than data observability techniques, which are strongly
related to data quality evaluation in TENSAI. TENSAI supports communication and strategies associated with observed
data quality metrics to support the different types of operations, including data analytics tasks. TENSAI does not focus
on solving data problems found in data, which are the main goals of data observability. Naturally, if a suitable data
observability service exists for V-RAN, TENSAI can utilize such a service.

6 CONCLUSIONS AND FUTUREWORK

Efficient ways to integrating data observability, data quality impacts, and suitable actions in large-scale analytics across
multiple systems and operations, like in V-RAN, require us to capture quality impact cause/effect, communicate data
quality problems, develop strategies and engineer data quality-aware pipelines. We have presented TENSAI framework
as a set of practical ways to deal with data quality impacts in very large analytics infrastructures. We show that, for
such complex systems, we must incorporate different techniques from data engineering, software development and
team collaboration. The rich, available set of algorithms and techniques to detect data quality and to analyze data under
different quality awareness levels must be selected and used in a coherent view of data quality constraints based on
operations and business contexts. The TENSAI framework has presented different solutions for the real-world data
analytics based on concrete techniques to convey quality problems and potential impacts from their original sources
along data engineering and analytics pipelines for different operations. Most of datasets used for our proof-of-concept
are for 3G and 4G networks, the most active usage in our V-RAN with 2-5G technologies. However, there should be no
difference when applying TENSAI to operations requiring 2G or 5G datasets.

Although TENSAI is developed to deal with strategies and actions centered around data quality problems and
consequences, we see that the data quality problem is just one excellent candidate to demonstrate hard problems of
doing data science across different types of operations in a large-scale system. Therefore, we believe that TENSAI can
be extended for other problems, such as the quality of analytics results from ML models and performance of ML models.
Furthermore, this problem is investigated with our mobile networks data, but it can be applied to other domains, such
as electricity networks and manufacturing.

Our future work is focused on engineering and integration of TENSAI into complex business and operation workflows
in V-RAN. Further characteristics of data detection techniques, data quality-aware ML algorithms, and communication
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means will be incorporated to provide richer data quality assurance strategies and actions. Automation based on data
quality metrics and strategies will be the next step.
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