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Abstract Increasingly complexgenerativemodels are being
used across disciplines as they allow for realistic charac-
terization of data, but a common difficulty with them is
the prohibitively large computational cost to evaluate the
likelihood function and thus to perform likelihood-based
statistical inference. A likelihood-free inference framework
has emerged where the parameters are identified by find-
ing values that yield simulated data resembling the observed
data. While widely applicable, a major difficulty in this
framework is how to measure the discrepancy between the
simulated and observed data. Transforming the original prob-
lem into a problem of classifying the data into simulated
versus observed, we find that classification accuracy can be
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used to assess the discrepancy. The complete arsenal of clas-
sification methods becomes thereby available for inference
of intractable generative models. We validate our approach
using theory and simulations for both point estimation and
Bayesian inference, and demonstrate its use on real data by
inferring an individual-based epidemiologicalmodel for bac-
terial infections in child care centers.

Keywords Approximate Bayesian computation · Genera-
tive models · Intractable likelihood · Latent variable models ·
Simulator-based models

1 Introduction

The likelihood function plays a central role in statistical infer-
ence by quantifying towhich extent some values of themodel
parameters are consistent with the observed data. For com-
plex models, however, evaluating the likelihood function can
be computationally very costly, which often prevents its use
in practice. This paper is about statistical inference for gener-
ative models whose likelihood function cannot be computed
in a reasonable time.1

A generative model is here defined as a parametrized
probabilistic mechanism which specifies how the data are
generated. It is usually implemented as a computer program
that takes a state of the random number generator and some
values of the model parameters θ as input and that returns
simulated data Yθ as output. The mapping from the param-
eters θ to simulated data Yθ is stochastic, and running the
computer program for different states of the random number
generator corresponds to sampling from the model. Genera-
tivemodels are also known as simulator- or simulation-based

1 Early versions were communicated as (Gutmann et al. 2014a, b).
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models (Hartig et al. 2011), or implicit models (Diggle and
Gratton 1984), and are closely related to probabilistic pro-
grams (Mansinghka et al. 2013). Their scope of applicability
is extremely wide ranging from genetics and ecology (Beau-
mont 2010) to economics (Gouriéroux et al. 1993), physics
(Cameron and Pettitt 2012), and computer vision (Zhu et al.
2009).

A disadvantage of complex generative models is the dif-
ficulty of performing inference with them: evaluating the
likelihood function involves computing the probability of
the observed data X as function of the model parameters
θ , which for complex models cannot be done analytically or
computationally within practical time limits.

As generative models are widely used, solutions have
emerged inmultiple fields to perform “likelihood-free” infer-
ence, that is, inference which does not rely on the availability
of the likelihood function. Approximate Bayesian computa-
tion (ABC) stems from research in genetics (Beaumont et al.
2002; Marjoram et al. 2003; Pritchard et al. 1999; Tavaré
et al. 1997),while themethodof simulatedmoments (McFad-
den 1989; Pakes and Pollard 1989) and indirect inference
(Gouriéroux et al. 1993; Smith 2008) come from economet-
rics. The latter methods are traditionally used in a classical
inference framework while ABC has its roots in Bayesian
inference, but the boundaries have started to blur (Drovandi
et al. 2011). Despite their differences, the methods all share
the basic idea to perform inference about θ by identifying
values which generate simulated data Yθ that resemble the
observed data X.

The discrepancy between the simulated and observed data
is typically measured by reducing each data set to a vector of
summary statistics andmeasuring the distance between them.
Both the distance function used and the summary statistics
are critical for the success of the inference procedure (see, for
example, the reviews by Lintusaari et al. (2017) and Marin
et al. (2012). Traditionally, researchers choose the two quan-
tities subjectively, relying on expert knowledge about the
observed data. The goal of this paper is to show that the
complete arsenal of classification methods can be brought to
our disposal to measure the discrepancy, and thus to perform
inference for intractable generative models.

The paper is based on the observation that distinguishing
two data sets thatwere generatedwith very different values of
θ is usually easier than distinguishing two data sets that were
generatedwith similar values.We propose to use the discrim-
inability (classifiability) of the observed and simulated data
as a discrepancy measure in likelihood-free inference.

We visualize the basic idea in Fig. 1 for the inference of
the mean θ of a bivariate Gaussian with identity covariance
matrix. The observed dataX, shown with black circles, were
generated with mean θ◦ equal to zero. Figure 1a shows that
data Yθ simulated with mean θ = (6, 0) can be easily dis-
tinguished from X. The indicated classification rule yields

an accuracy of 100%. In Fig. 1b, on the other hand, the data
were simulated with θ = (1/2, 0) and distinguishing such
data from X is much more difficult; the best classification
rule only yields 58% correct assignments. Moreover, if the
datawere simulatedwith θ = θ◦, the classification task could
not be solved significantly above chance level. This suggests
that we can perform likelihood-free inference by identifying
parameters which yield chance-level discriminability only.

The remaining parts of the paper are structured as fol-
lows: In Sect. 2, we flesh out the basic idea. We then show in
Sects. 3 and 4 how classification allows us to perform statis-
tical inference of generative models in both a classical and
Bayesian framework. The approach will be validated on con-
tinuous, binary, discrete, and time series data where ground
truth is known. In Sect. 5, we apply the methodology to real
data, and in Sect. 6, we discuss the proposed approach and
related work. Section 7 concludes the paper.

2 Measuring discrepancy via classification

Standard classification methods operate on feature vectors
that numerically represent the properties of the data that are
judged relevant for the discrimination task (Hastie et al. 2009;
Wasserman 2004). There is some freedom in how the feature
vectors are constructed. In the simplest case, the data are
statistically independent and identically distributed (iid) ran-
dom variables, and the features are equal to the data points, as
in Fig. 1. But the approach of using classification to measure
the discrepancy is not restricted to iid data. In the paper, we
will construct features and set up a classification problems
also for time series or matrix-valued data.

We denote the feature vectors from the observed data X
by xi , and the feature vectors from the simulated data Yθ by
yi , where the dependency on θ is suppressed for notational
simplicity. We assume that we obtained n feature vectors
from each of the two data sets. The xi are then associated
with class label 0 and the yi with class label 1, which yields
the augmented data set Dθ ,

Dθ = {(x1, 0), . . . , (xn, 0), (y1, 1), . . . , (yn, 1)}. (1)

Classification consists in predicting the class labels of the
features inDθ . This is done by means of a classification rule
h that maps each feature vector u to its class label h(u) ∈
{0, 1}. The performance of h on Dθ can be assessed by the
classification accuracy CA,

CA(h,Dθ ) = 1

2n

(
n∑

i=1

[1 − h(xi )] + h(yi )

)
, (2)

which is the proportion of correct assignments. The largest
classification accuracy on average is achieved by the Bayes
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Fig. 1 Discriminability as discrepancy measure. The observed data X
are shown as black circles and were generated with mean θ◦ = (0, 0).
The hatched areas indicate the Bayes classification rules. a High dis-
criminability: Simulated dataYθ (green diamonds) were generatedwith
θ = (6, 0). b Low discriminability: Yθ (red crosses) were generated

with θ = (1/2, 0). As θ approaches θ◦, the discriminability (best
classification accuracy) of X and Yθ drops. We propose to use the
discriminability as discrepancy measure for likelihood-free inference

classification rule h∗
θ , which consists in assigning a feature

vector toX if it is more probable that the feature belongs toX
than toYθ , and vice versa forYθ (Hastie et al. 2009; Wasser-
man 2004). We denote this largest classification accuracy by
J ∗
n (θ),

J ∗
n (θ) = CA

(
h∗

θ ,Dθ ) (3)

It is an indicator of the discriminability (classifiability) of X
and Yθ .

In the motivating example in Fig. 1, the labels of the
data points are indicated by their markers, and the Bayes
classification rule by the hatched areas. The classification
accuracy J ∗

n (θ) decreases from 100% (perfect classification
performance) toward 50% (chance-level performance) as θ

approaches θ◦, the parameter value which was used to gen-
erate the observed data X. While this provides an intuitive
justification for using J ∗

n (θ) as discrepancy measure, an ana-
lytical justification will be given in the next section where
we show that J ∗

n (θ) is related to the total variation distance
under mild conditions.

In practice, J ∗
n (θ) is not computable because the Bayes

classification rule h∗
θ involves the probability distribution of

the data which is unknown in the first place. But the clas-
sification literature provides a wealth of methods to learn
an approximation ĥθ of the Bayes classification rule, and
J ∗
n (θ) can be estimated via cross-validation (Hastie et al.

2009; Wasserman 2004).

We will use several straightforward methods to obtain ĥθ :
linear discriminant analysis (LDA), quadratic discriminant
analysis (QDA), L1-regularized polynomial logistic regres-
sion, L1-regularized polynomial support vector machine
(SVM) classification, and an aggregation of the above and
other methods (max-rule, see Supplementary material 1.1).
These are by no means the only applicable methods. In fact,
any method yielding a good approximation of h∗

θ may be
chosen; our approach makes the complete arsenal of classifi-
cation methods available for inference of generative models.

While other approaches are possible, for the approxima-
tion of J ∗

n (θ), we use K -fold cross-validation where the data
Dθ are divided into K folds of training and validation sets, the
different validation sets being disjoint. The training sets are
used to learn the classification rules ĥkθ by any of the meth-
ods above, and the validation sets Dk

θ are used to measure

their performances CA(ĥkθ ,Dk
θ ). The average classification

accuracy on the validation sets, Jn(θ),

Jn(θ) = 1

K

K∑
k=1

CA
(
ĥkθ ,Dk

θ

)
, (4)

approximates J ∗
n (θ) and is used as computable measure of

the discrepancy between X and Yθ .
We used K = 5 folds in the paper. In cross-validation,

large values of K generally lead to approximations with
smaller bias but larger variance than small values of K . Inter-
mediate values like K = 5 are thought to lead to a good
balance between the two desiderata (e.g., Hastie et al. 2009,
Section 7.10).
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We next show on a range of different kinds of data that
most of the different classification methods yield equally
good approximations of J ∗

n (θ) for large sample sizes. Con-
tinuous data (drawn from a univariate Gaussian distribution
of variance one), binary data (from a Bernoulli distribution),
count data (from a Poisson distribution), and time series data
(from a zero mean moving average model of order one)
are considered. For the first three data sets, the unknown
parameter is the mean, and for the moving average model,
the lag coefficient is the unknown quantity (see Supplemen-
tary material 1.2 for the model specifications). Unlike for
the other three data sets, the data points from the moving
average model are not statistically independent, as the lag
coefficient affects the correlation between two consecutive
time points xt and xt+1. For the classification, we treated
each pair (xt , xt+1) as a feature.

Figure 2 shows that for the Gaussian, Bernoulli, and Pois-
son data, all the considered classificationmethods perform as
well as the Bayes classification rule (BCR), yielding discrep-
ancy measures Jn(θ) that are practically identical to J ∗

n (θ).
The same holds for the moving average model, with the
exception of LDA. The reason is that LDA is not sensitive to
the correlation between xt and xt+1, which would be needed
to discover the value of the lag coefficient. In other words, the
Bayes classification rule h∗

θ is outside the family of possible
classification rules learned by LDA.

The examples show that classification can be used to
identify the data-generating parameter value θ◦ by minimiz-
ing Jn(θ). Further evidence is provided as Supplementary
material 2. The derivation of conditions which guarantee the
identification of θ◦ via classification in general is the topic
of the next section.

3 Classical inference via classification

In this section, we consider the task of finding the single best
parameter value. This can be the primary goal of the inference
or only the first step before computing the posterior distri-
bution, which will be considered in the following section. In
our context, the best parameter value is the value for which
the simulated data Yθ are the least distinguishable from the
observed data X, that is, the parameter θ̂n which minimizes
Jn ,

θ̂n = argminθ Jn(θ). (5)

We show that θ̂n is a consistent estimator: Assuming that the
observed data X equal some Yθ◦ , generated with unknown
parameter θ◦, conditions are given under which θ̂n converges
to θ◦ in probability as the sample size n increases. Figure 3
provides motivating evidence for consistency of θ̂n .
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Fig. 2 Comparison of the classification accuracy of the Bayes and the
learned classification rules for large sample sizes (n = 100,000). The
symmetric curves depict Jn and J ∗

n as a function of the relative deviation
of the model parameter from the true data-generating parameter. As the
curves of the differentmethods are indistinguishable, quadratic discrim-
inant analysis (QDA), L1-regularized polynomial logistic regression
(L1 logistic), L1-regularized polynomial support vector machine clas-
sification (L1SVM), and amax-combination of these and othermethods
(max-rule) perform as well as the Bayes classification rule, which
assumes the true distributions to be known (BCR). For linear discrimi-
nant analysis (LDA), this holdswith the exception of themoving average
model
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Fig. 3 Empirical evidence for consistency. The figure shows the mean
squared estimation error E[||θ̂n − θ◦||2] for the examples in Fig. 2 as
a function of the sample size n (solid lines, circles). The mean was
computed as an average over 100 outcomes. The dashed lines depict
the mean ±2 standard errors. The linear trend on the log–log scale
suggests convergence in quadratic mean, and hence consistency of the
estimator θ̂n . The results are for L1-regularized logistic regression, see
Supplementary material 3 for the other classification methods

The proposition below lists two conditions. The first one
is related to convergence of frequencies to expectations
(law of large numbers), the second to the ability to learn
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the Bayes classification rule more accurately as the sam-
ple size increases. We prove the proposition in “Appendix.”
Some basic assumptions are made: The xi are assumed to
have the marginal probability measure Pθ◦ and the yi the
marginal probability measure Pθ for all i , which amounts
to a weak stationarity assumption. Importantly, the station-
arity assumption does not rule out statistical dependencies
between the data points; time series data, for example, are
allowed. We also assume that the parametrization of Pθ is
not degenerate, that is, there is a compact set Θ containing
θ◦ where θ �= θ◦ implies that Pθ �= Pθ◦ .

Proposition 1 Denote the set of features which the Bayes
classification rule h∗

θ classifies as being from the simulated
data by H∗

θ . The expected discriminability E(J ∗
n (θ)) equals

J (θ),

J (θ) = 1

2
+ 1

2

(
Pθ

(
H∗

θ

) − Pθ◦
(
H∗

θ

))
, (6)

and θ̂n converges to θ◦ in probability as the sample size n

increases, θ̂n
P→ θ◦, if

sup
θ∈Θ

∣∣J ∗
n (θ) − J (θ)

∣∣ P→ 0 and (7)

sup
θ∈Θ

∣∣Jn(θ) − J ∗
n (θ)

∣∣ P→ 0. (8)

The two conditions guarantee that Jn(θ) converges uniformly
to J (θ), so that J (θ) is minimized with the minimization of
Jn(θ) as n increases. Since J (θ) attains its minimum at θ◦,
θ̂n converges to θ◦. By definition of H∗

θ , Pθ (H∗
θ )−Pθ◦(H∗

θ )

is one half of the total variation distance between the two dis-
tributions (Pollard 2001, Chapter 3). The limiting objective
J (θ) corresponds thus to a well-defined statistical distance
between Pθ and Pθ◦ .

The condition in Eq. (7) is about convergence of sample
averages to expectations. Standard convergence results apply
for statistically independent features. For features with sta-
tistical dependencies, e.g., time series data, corresponding
convergence results are investigated in empirical process the-
ory (van der Vaart and Wellner 1996), which forms a natural
limit ofwhat is studied in this paper.Wemay only note that by
definition of J , convergencewill depend on the complexity of
the sets H∗

θ , θ ∈ Θ , and hence the complexity of the Bayes
classification rules h∗

θ . The condition does not depend on
the classification method employed. In other words, this first
condition is about the difficulty of the classification problems
that need to be solved. The condition in Eq. (8), on the other
hand, is about the ability to solve them: The performance of
the learned rule needs to approach the performance of the
Bayes classification rule as the number of available samples
increases. How to best learn such rules and finding condi-

tions which guarantee successful learning is a research area
in itself (Zhang 2004).

In Fig. 2, LDA did not satisfy the condition in Eq. (8) for
the moving average data, which can be seen by the chance-
level performance for all parameters tested. This failure of
LDA suggests a practical means to test whether the second
condition holds: We generate data sets with two very differ-
ent parameter values so that it is unlikely that the data sets are
similar to each other, and learn to discriminate between them.
If the performance is persistently close to chance level, the
Bayes classification rule is likely outside the family of clas-
sification rules that the method is able to learn, so that the
condition would be violated. Regarding the first condition,
the results in Fig. 3 suggest that it is satisfied for all four
inference problems considered. Generally verifying whether
the sample average converges to the expectation, e.g., via a
general method that works reliably for any kind of time series
data, seems, however, difficult.

4 Bayesian inference via classification

We consider next inference of the posterior distribution of
θ in the framework of approximate Bayesian computation
(ABC).

ABC comprises several simulation-based methods to
obtain samples from the posterior distribution when the like-
lihood function is not known (for review papers, see, e.g.,
Lintusaari et al. 2017; Marin et al. 2012). ABC algorithms
are iterative: The basic steps at each iteration are as follows:

1. Proposing a parameter value θ ′,
2. Simulating pseudo-observed data Yθ ′ , and then
3. Accepting or rejecting the proposal based on a compari-

son of Yθ ′ with the real observed data X.

How to actually measure the discrepancy between the
observed and the simulated data is a major difficulty in these
methods (Lintusaari et al. 2017; Marin et al. 2012). We here
show that Jn can be used as a discrepancy measure in ABC;
in the following, we call this approach “classifier ABC.” In
step 3, we thus compare Yθ ′ and X through the lenses of a
classifier by computing the discriminability of the two data
sets.

The results reported in this paper were obtained with a
sequential Monte Carlo implementation (see Supplementary
material 1.3). The use of Jn inABC is, however, not restricted
to that particular algorithm.

We validated classifier ABC on binary (Bernoulli), count
(Poisson), continuous (Gaussian), and time series (ARCH)
data (see Supplementary material 1.2 for the model details).
The true posterior for the autoregressive conditional het-
eroskedasticity (ARCH) model is not available in closed
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Fig. 4 Posterior distributions inferred by classifier ABC for binary,
count, continuous, and time series data. The results are for 10,000
ABC samples and n = 50. For the univariate cases, the samples are
summarized as empirical pdfs. For the bivariate cases, scatter plots of
the obtained samples are shown (the results are for the max-rule). The
numbers on the contours are relative to the maximum of the reference

posterior. For the autoregressive conditional heteroskedasticity (ARCH)
model, the hatched area indicates the domain of the uniform prior.
Supplementary material 4 contains additional examples and results.
a Binary data (Bernoulli), b count data (Poisson), c continuous data
(Gauss), and d time series (ARCH)

form.We approximated it using deterministic numerical inte-
gration, as detailed in Supplementary material 1.2.

The inferred empirical posterior probability density func-
tions (pdfs) are shown in Fig. 4. There is a good match with
the true posterior pdfs or the approximation obtained with
deterministic numerical integration. Different classification
methods yield different results, but the overall performance
is rather similar. Regarding computation time, the simpler
LDA and QDA tend to be faster than the other classifica-
tion methods used, with the max-rule being the slowest one.
Additional examples as well as links to movies showing the

evolution of the posterior samples in the ABC algorithm can
be found in Supplementary material 4.

As a quantitative analysis, we computed the relative error
of the posterior means and standard deviations. The results,
reported as part of Supplementary material 4, show that the
errors in the posteriormean arewithin 5% after five iterations
of the ABC algorithm for the examples with independent
data points. For the time series, where the data points are not
independent, a larger error of 15% occurs. The histograms
and scatter plots show, however, that the corresponding ABC
samples are still very reasonable.
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Fig. 5 Sketch of the individual-based epidemic model. The evolution
of the colonization states in a single child care center is shown. Colo-
nization is indicated by the black squares

5 Application on real data

We next used our approach to infer an intractable model of
bacterial infections in child care centers.

5.1 Data and model

TheobserveddataXwere the presence or absence of different
strains of the bacterium Streptococcus pneumoniae among
attendees of M = 29 child care centers in the metropolitan
area of Oslo, Norway, at single points of time Tm (cross-
sectional data). On average, N = 53 children attended a
center. Only a subset of size Nm of all attendees of each center
was sampled. The data were collected and first described by
Vestrheim et al. (2008).

In the following, we represent the colonization state of
individual i in a child care center by the binary variable
I tis, s = 1, . . . , S, where S the total number of strains in
circulation. If the attendee is infected with strain s of the
bacterium at time t , I tis = 1, and otherwise, I tis = 0.
The observed data X consisted thus of a set of M = 29
binary matrices of size Nm × S formed by the I Tmis , i =
1, . . . , Nm, s = 1, . . . , S.

The model for which we performed inference was devel-
oped by Numminen et al. (2013). It is individual-based and
consists of a continuous-time Markov chain for the trans-
mission dynamics inside a child care center paired with an
observation model. The child care centers were assumed
independent. The model is sketched in Fig. 5 for a single
center.

In each child care center, the transmission dynamics
started with zero infected individuals, I 0is = 0 for all i and s,
after which the states evolved in a stochastic manner accord-
ing to the following transition probabilities:

P
(
I t+h
is = 0|I tis = 1

)
= h + o(h), (9)

P
(
I t+h
is = 1|I tis′ = 0 ∀s′) = Rt

sh + o(h), (10)

P
(
I t+h
is =1|I tis =0, ∃s′ : I tis′ = 1

)
=θRt

sh + o(h), (11)

where h is a small time interval and o(h) a remainder term
satisfying limh→0 o(h)/h = 0. Equation (9) describes the
probability to clear strain s, Eq. (10) the probability to be
infected by it when previously not infected with any strain,
and Eq. (11) the probability to be infected by it when pre-
viously infected with another strain s′. The rate of infection
with strain s at time t is denoted by Rt

s , and θ ∈ (0, 1) is an
unknown co-infection parameter. For θ = 0, the probability
for a co-infection is zero. The rate Rt

s was modeled as

Rt
s = βEt

s + ΛPs, (12)

Et
s =

N∑
j=1

1

N − 1

I tjs
ntj

, (13)

ntj =
S∑

s′=1

I tjs′ , (14)

where N is the average number of children attending the child
care center, and Λ and β are two unknown rate parameters
that scale the static probability Ps for an infection happening
outside the child care center and the dynamic probability Et

s
for an infection fromwithin, respectively. The probability Ps
and the number of strains S were determined by an analysis
of the overall distribution of the strains in the cross-sectional
data (yielding S = 33; for Ps , see Numminen et al. 2013).
The expression for Et

s in Eq. (13) was derived by assuming
that contacts happen uniformly at random [the probability
for a contact is 1/(N − 1)], and that the strains attendee j is
carrying are all transmitted with equal probability (with ntj
being the total number of strains carried by attendee j , the
probability for a transmission of strain s is I tjs/n

t
j ).

The observation model was random sampling of Nm indi-
viduals without replacement from the average number N
of individuals attending a child care center. A stationarity
assumption was made so that the exact value of the sampling
time Tm was not of importance as long as it is sufficiently
large so that the system is in its stationary regime.

The model has three parameters for which uniform priors
were assumed: Parameter β ∈ (0, 11) which is related to the
probability to be infected by someone inside a child care cen-
ter, parameter Λ ∈ (0, 2) for the probability of an infection
from an outside source, and parameter θ ∈ (0, 1) which is
related to the probability to be infected with multiple strains.
With a slight abuse of notation, we will use θ = (β,Λ, θ) to
denote the compound parameter vector.

5.2 Reference inference method

Since the likelihood function is intractable, the model was
inferredwithABC in previous work (Numminen et al. 2013).
The summary statistics were chosen based on epidemiolog-
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ical considerations and the distance function was adapted to
the specific problem at hand.

To compare X and Yθ , Numminen et al. (2013) first sum-
marized each of the M = 29 child care centers of the
simulated and observed data using four statistics:

1. The strain diversity in the child care centers,
2. The number of different strains circulating,
3. The proportion of individuals who are infected, and
4. The proportion of individuals who are infectedwithmore

than one strain.

For each of the four summary statistics, the empirical
cumulative distribution function (cdf) was computed from
the obtained M = 29 values. The L1 distances between
the empirical cdfs of the summary statistics for X and
Yθ were then used to assess the discrepancy (Numminen
et al. 2013). Inference was performed with a sequential
Monte Carlo ABC algorithm with four generations. The
corresponding posterior distribution will serve as refer-
ence against which we compare the solution by classifier
ABC.

5.3 Formulation as classification problem

For likelihood-free inference via standard classification, the
observed matrix-valued data were transformed to feature
vectors. We used simple features which reflect the matrix
structure and the binary nature of the data.

For the matrix nature of the data, the rank of each matrix
and the L2-norm of the singular values (scaled by the size of
the matrix) were used. For the binary nature of the data, we
counted the fraction of ones in certain subsets of each matrix
and used the average of the counts and their variability as
features. The set of rows and the set of columns were used,
as well as 100 randomly chosen subsets. Each random subset
contained 10% of the elements of a matrix. Since the average
of the counts is the same for the row and column subsets (it
equals the fraction of all ones in a matrix), only one average
was used.

The features xi or yi in the classification had thus size
seven (2 dimensions are for the matrix properties, 3 dimen-
sions for the column and row subsets, and 2 dimensions
for the random subsets). Multiple random subsets can be
extracted from each matrix. We made use of this to obtain
n = 1000 features xi and yi . We also ran classifier ABC
without random subsets; the classification problems con-
sisted then in discriminating between two data sets consisting
each of 29 five-dimensional feature vectors. As classification
method, we used LDA.

5.4 Inference results

In ABC, the applicability of a discrepancy measure can be
assessed by first performing inference on synthetic data of
the same size and structure as the observed data but simu-
lated from the model with known parameter values. Since
ABC algorithms are rather time-consuming, we first tested
the applicability of Jn in the framework of point estimation.
We computed Jn(θ) varying only two of the three parameters
at a time, keeping the third parameter fixed at the value which
was used to generate the data. To eliminate random effects,
we used for all θ the same random number generator seed
when simulating the Yθ . The seeds for X and the Yθ were
different.

Figure 6 shows the results for classificationwith randomly
chosen subsets (top row) and without (bottom row). The
diagrams on the top and bottom row are very similar, both
have well-defined regions in the parameter space for which
Jn is close to one half, which corresponds to chance-level
discriminability. But the features from the random subsets
were helpful to discriminate betweenX andYθ and produced
more localized regionswith small Jn . The results suggest that
LDA, the arguably simplest classification method, is suitable
to infer the epidemic model.

Wenext applied classifierABCon the synthetic data, using
a sequential Monte Carlo ABC algorithm with four genera-
tions as previously done by Numminen et al. (2013).

The resulting posterior pdfs are shown in Fig. 7 in the
form of kernel density estimates (smoothed and scaled his-
tograms) based on 1000 ABC samples. It can be seen that
classifier ABC with or without random subsets both yielded
results which are qualitatively similar to the expert solution.
The strongest difference is that the tails of the posterior pdf
of β are heavier for classifier ABC than for the expert solu-
tion. In case of classifier ABC with random subsets, this
difference became less pronounced when the algorithm was
run for an additional fifth iteration (Supplementary mate-
rial 5). For classifier ABC without random subsets, on the
other hand, the difference persisted. This behavior is in
line with Fig. 6 where the random features led to tighter
Jn-diagrams. Overall, the results on synthetic data confirm
the applicability of classifier ABC to infer the epidemic
model.

The results on real data are shown in Fig. 8. It can be seen
that the posterior distributions obtained with classifier ABC
are generally similar to the expert solution. The posterior
mode of β for classifier ABC with random subsets is slightly
smaller than for the other methods. The shift could be due to
stochastic variation because we only worked with 1000 ABC
samples. It could, however, also be that the random features
picked up some properties of the real data which the other
methods are not sensitive to.
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Fig. 6 Testing the applicability of the discrepancy measure Jn to infer
the individual-based epidemicmodel. The figures show Jn(θ)when one
parameter is fixed at a time. The red crosses mark the data-generating

parameter value θ◦ = (βo,Λo, θo) = (3.6, 0.6, 0.1). The presence of
random features produced more localized regions with small Jn
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Fig. 7 Inferring the individual-based epidemic model with classifier
ABC. The results are for simulated data with known data-generating
parameter θ◦ (indicated by the green vertical lines). ClassifierABCwith
random subsets (blue, circles) or without (red, squares) both yielded

posterior pdfs which are qualitatively similar to the expert solution
(black). a Posterior pdf for β, b posterior pdf for Λ and c posterior
pdf for θ

The computation time of classifier ABC with LDA was
about the same as for the method by Numminen et al.
(2013): On average, the total time for the data generation
and the discrepancy measurement was 28.49±3.45 s for
LDA while it was 28.41±3.45 s for the expert method; with
28.4±3.45 s, most of the time was spent on generating data
from the epidemic model. Altogether, classifier ABC thus
yielded inference results which are equivalent to the expert
solution, from both a statistical and computational point of
view.

5.5 Compensating for missing expert statistics

So far we did not use expert knowledge about the inference
problemwhen solving it with classifier ABC. Using discrim-
inability in a classification task as a discrepancy measure
is a data-driven approach to assess the similarity between
simulated and observed data. But it is not necessarily a
black-box approach. Knowledge about the problem at hand
can be incorporated when specifying the classification prob-
lem. Furthermore, the approach is compatible with summary
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Fig. 8 Inference results on real data, visualized as in Fig. 7. a Posterior pdf for β, b posterior pdf for Λ and c posterior pdf for θ
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Fig. 9 Using classifier ABC to compensate for insufficient expert
statistics. The setup and visualization is as in Fig. 7. Its expert solu-
tion is reproduced for reference. Working with a reduced set of expert
statistics affects the posteriors of Λ and θ adversely, but classifier ABC

is able to compensate (blue curves with circles vs. black dashed curves).
a Internal infection parameter β, b external infection parameter Λ and
c co-infection parameter θ

statistics derived from expert knowledge: Classifier ABC,
and more generally the discrepancy measure Jn , is able to
incorporate the expert statistics by letting them be features
(covariates) in the classification. The combined use of expert
statistics and classifier ABC enables one to filter out proper-
ties of the model which are either not of interest or known
to be wrong. Moreover, it makes the inference more robust,
for example to possible misspecifications or insufficiencies
of the summary statistics, as we illustrate next.

We selected two simple expert statistics used by Num-
minen et al. (2013), namely the number of different strains
circulating and the proportion of infected individuals, and
inferred the posteriors with this reduced set of summary
statistics, using the method by Numminen et al. (2013) as
before. Figure 9 shows that consequently, the posterior dis-
tributions of Λ and θ deteriorated. The used expert statistics
alone were insufficient to perform ABC. Combining the
insufficient set of summary statistics with classifier ABC,
however, led to a recovery of the posteriors. The result are
for classifier ABC with random subsets, but the same holds
for classifier ABC without random subsets (Supplementary
material 5).

6 Discussion

Generative models are useful and widely applicable for deal-
ing with uncertainty and for making inferences from data.
The intractability of the likelihood function is, however, often
a serious problem in the inference for realistic models.While
likelihood-free methods provide a powerful framework for
performing inference, a limiting difficulty is the required
discrepancy measurement between simulated and observed
data.

We found that classification canbeused tomeasure thedis-
crepancy. This finding has practical value because it reduces
the difficult problem of choosing an appropriate discrepancy
measure to a more standard problem where we can lever-
age a wealth of existing solutions; whenever we can classify,
we can do likelihood-free inference. It offers also theoretical
value because it reveals that classification canyield consistent
likelihood-free inference, and that the two fields of research,
which appear verymuch separated at first glance, are actually
tightly connected.
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6.1 Summary statistics versus features

In the proposed approach, instead of choosing summary
statistics and a distance function between them as in the stan-
dard approach, we need to choose a classification method
and the features. The reader may thus wonder whether we
replaced one possibly arbitrary choice with another. The
important point is that by choosing a classification method,
we only decide about a function space, and not the classifi-
cation rule itself. The classification rule that is finally used
to measure the discrepancy is learned from data and is not
specified by the user, which is in stark contrast to the tradi-
tional approach based on fixed summary statistics.Moreover,
the function space can be chosen using cross-validation, as
implemented with our max-rule, which reduces the arbi-
trariness even more. In Fig. 2, for example, the max-rule
successfully chose to use other classification methods than
LDA for the inference of the moving average model. The
influence of the choice of features is also rathermild, because
they only affect the discrepancymeasurement via the learned
classification rule. This property of the proposed approach
allowed us to even use random features in the inference of
the epidemic model.

The possibility to use random features, however, does
not mean that we should not use reliable expert knowl-
edgewhen available. Indeed, summary statistics derived from
expert knowledge can be included by letting them be features
(covariates) in the classification.

6.2 Related work

In previous work, regression with the parameters θ as
response variables was used to generate summary statistics
from a larger pool of candidates (Aeschbacher et al. 2012;
Fearnhead and Prangle 2012; Wegmann et al. 2009). The
shared characteristic of these works and our approach is the
learning of transformations of the summary statistics and the
features, respectively. The criteria which drive the learning
are, however, rather different.

Since the candidate statistics are a function of the simu-
lated data Yθ , we may consider the regression to provide
an approximate inversion of the data generation process
θ 
→ Yθ . In this interpretation, the (Euclidean) distance of
the summary statistics is an approximation of the (Euclidean)
distance of the parameters. The optimal inversion of the
data-generating process in a mean squared error sense is
the conditional expectation E(θ |Yθ ). Fearnhead and Pran-
gle (2012) showed that this conditional expectation is also
the optimal summary statistic for Yθ if the goal is to infer
θ◦ as accurately as possible under a quadratic loss. Trans-
formations based on regression are thus strongly linked to
the computation of the distance between the parameters. The
reason we learn transformations, on the other hand, is that

we would like to approximate J ∗
n (θ) well, which is linked to

the computation of the total variation distance between the
distributions indexed by the parameters.

Classification was recently used in other work on ABC,
but in a differentmanner. Intractable density ratios inMarkov
chain Monte Carlo algorithms were estimated using tools
from classification (Pham et al. 2014), in particular random
forests, and Pudlo et al. (2016) used random forests formodel
selection by learning to predict the model class from the sim-
ulated data instead of computing their posterior probabilities.
This is different from using classification to define a discrep-
ancy measure between simulated and observed data, as done
here.

A particular classification method, (nonlinear) logistic
regression, was used for the estimation of unnormalized
models (Gutmann and Hyvärinen 2012), which are mod-
els where the probability density functions are known up
to the normalizing partition function only (see Gutmann
and Hyvärinen (2013a) for a review paper, and Barthelmé
and Chopin (2015), Gutmann et al. (2011) and Pihlaja
et al. (2010) for generalizations). Likelihood-based infer-
ence is intractable for unnormalized models, but unlike in
the generative models considered here, the shape of the
model-pdf is known which can be exploited in the infer-
ence.

At about the same time, we first presented our work (Gut-
mann et al. 2014a, b), Goodfellow et al. (2014) proposed to
use nonlinear logistic regression to train a neural network
such that it transforms “noise” samples into samples approx-
imately following the same distribution as some given data
set. The main difference to our work is that the method of
Goodfellow et al. (2014) is a method for producing random
samples while ours is a method for statistical inference.

6.3 Sequential inference and prediction

Wedid notmake any specific assumptions about themodel or
the structure of the observed data X. An interesting special
case occurs when X are an element X(t0) of a sequence of
data sets X(t) which are observed one after the other, and
the generative model is specified accordingly to generate a
sequence of simulated data sets.

For inference at t0, we can distinguish between sim-
ulated data which were generated either before or after
X(t0) are observed: In the former case, the simulated data
are predictions about X(t0), and after observation of X(t0),
likelihood-free inference about θ corresponds to assessing
the accuracy of the predictions. That is, the discrepancymea-
surement converts the predictions of X(t0) into inferences of
the causes of X(t0). In the latter case, each simulated data set
can immediately be compared toX(t0) which enables efficient
iterative identification of parameter values with low discrep-
ancy (Gutmann and Corander 2016). That is, the possible
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causes of X(t0) can be explained more accurately with the
benefit of hindsight.

6.4 Relation to perception and artificial intelligence

Probabilistic modeling and inference play key roles in image
understanding (Gutmann and Hyvärinen 2013b), robotics
(Thrun et al. 2006), and artificial intelligence (Ghahramani
2015). Perception has been modeled as (Bayesian) inference
based on a “mental” generativemodel of the world (e.g., Vin-
cent 2015). In most of the literature, variational approximate
inference has been used for intractable generative models,
giving rise to the Helmholtz machine (Dayan et al. 1995)
and to the free-energy in neuroscience (Friston 2010). But
other approximate inference methods can be considered as
well.

The discussion about sequential inference and prediction
points to similarities between perception and likelihood-free
inference or approximate Bayesian computation. It is intu-
itively sensible that perception would involve prediction of
new sensory input given the past, as well as an assessment of
the predictions and a refinement of their explanations after
arrival of the data. The quality of the inference depends
on the quality of the generative model and the quality of
the discrepancy assessment. That is, the inference results
may only be useful if the generative model of the world
is rich enough to produce data resembling the observed
data, and if the discrepancy measure can reliably distinguish
between the “mentally” generated and the actually observed
data.

We proposed to measure the discrepancy via classifica-
tion, being agnostic about the particular classifier used. It is
an open question how to generally best measure the clas-
sification accuracy when the data are arriving sequentially.
Classifiers are, however, rather naturally part of percep-
tual systems. Rapid object recognition, for instance, can be
achieved via feedforward multilayer classifiers (Serre et al.
2007), and there are several techniques to learn representa-
tions which facilitate classification (Bengio et al. 2013). It
is thus conceivable that a given classification machinery is
used for several purposes, for example to quickly recognize
certain objects but also to assess the discrepancy between
simulated and observed data.

7 Conclusions and future work

In the paper, we proposed to measure the discrepancy in
likelihood-free inference via classification. We focused on
the principle and not on a particular classification method.
Some methods may be particularly suited for certain mod-
els, where it may be possible to measure the discrepancy via

the loss function that is used to learn the classification rule
instead of the classification accuracy.

When working with the classification accuracy, we only
use a single bit of information per data point. While this
is little information, we showed that the approach yielded
accurate posterior inferences and that it defines a consistent
estimator. TheBayesian inference resultswere empirical, and
it is likely that amore rigorous theoretical analysis will reveal
that the single bit of information puts a limit on the possible
closeness to the true posterior. While our empirical results
suggest that other error sources may be more dominant in
practice, the bottleneck can be avoided by using the current
setup to identify the relevant summary statistics, or some
transformation of them, and by computing the discrepancy
by their Euclidean distance as in classical ABC.While this is
a possible approach, in recent work, we chose another path
by training the classifier on two simulated data sets whose
size can be made as large as computationally possible (Dutta
et al. 2016).

We here worked with a single simulated data set per
parameter value. If multiple simulated data sets are avail-
able, they may be used to define an approximate likelihood
function by, for example, averaging their corresponding dis-
crepancies (see, e.g., Gutmann and Corander 2016, Section
3.3). The approximate likelihood function can then be max-
imized with respect to the parameters or used in place of the
actual likelihood function in standard methods for posterior
sampling.

Further exploration of the connection between classifica-
tion and likelihood-free inference is likely to lead to practical
improvements in general: Each parameter θ , for instance,
induces a classification problem. We here treated the clas-
sification problems separately, but they are actually related.
First, the observed dataX occur in all the classification prob-
lems. Second, the simulated data sets Yθ are likely to share
someproperties if the parameters are not too different. Taking
advantage of the relation between the different classifica-
tion problems may lead to both computational and statistical
gains. In the classification literature, leveraging the solution
of one problem to solve another one is generally known as
transfer learning (Pan and Yang 2010). In the same spirit,
leveraging transfer learning, or other methods from classi-
fication, seems promising to further advance likelihood-free
inference.
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Appendix: Proof of proposition 1

Proposition 1 is proved using an approach based on uniform
convergence in probability of Jn to a function J whose min-
imizer is θ◦ (van der Vaart 1998). The proof has three steps:
First, we identify J . Second, we find conditions under which
J is minimized by θ◦. Third, we derive conditions which
imply that Jn converges to J .

Definition of J

For validation sets Dk
θ consisting of 2m labeled features

(xki , 0) and (yki , 1), i = 1, . . . ,m, we have by definition of
CA(h,Dθ ) in Eq. (2)

CA
(
ĥkθ ,Dk

θ

)
= 1

2m

(
m∑
i=1

[
1 − ĥkθ

(
xki

)]
+ ĥkθ

(
yki

))
(15)

= 1

2
+ 1

2m

m∑
i=1

ĥkθ

(
yki

)
− ĥkθ

(
xki

)
, (16)

so that Jn(θ) in Eq. (4) can be written as

Jn(θ) = 1

K

K∑
k=1

(
1

2
+ 1

2m

m∑
i=1

ĥkθ

(
yki

)
− ĥkθ

(
xki

))
(17)

= 1

2
+ 1

2Km

m∑
i=1

K∑
k=1

ĥkθ

(
yki

)
− ĥkθ

(
xki

)
. (18)

Each feature is used exactly once for validation since the
Dk

θ are disjoint. We make the simplifying assumption that
splitting the original n features into K folds of m features
was possible without remainders. We can then order the yki
as

y11, . . . , y
1
m, y21, . . . , y

2
m, y31, . . . , y

K
m ,

and relabel them from 1 to n. Doing the same for the xki , we
obtain

Jn(θ) = 1

2
+ 1

2n

n∑
i=1

ĥk(i)θ (yi ) − 1

2n

n∑
i=1

ĥk(i)θ (xi ). (19)

The function k(i) in the equation indicates to which valida-
tion set feature i belonged. If the Bayes classification rule is

used instead of the learned ĥk(i)θ , we obtain J ∗
n (θ) in Equa-

tion (3),

J ∗
n (θ) = 1

2
+ 1

2n

n∑
i=1

h∗
θ (yi ) − 1

2n

n∑
i=1

h∗
θ (xi ). (20)

The function k(i) disappeared because of the weak station-
arity assumption that the marginal distributions of the xi and
yi do not depend on i .

In what follows, it is helpful to introduce the set H∗
θ =

{u : h∗
θ (u) = 1}. The normalized sums in (20) are then

the fractions of features which belong to H∗
θ . Taking the

expectation over X and Yθ , using that the expectation over
the binary function h∗

θ equals the probability of the set H∗
θ ,

E
(
h∗

θ (yi )
) = Pθ

(
H∗

θ

)
, E

(
h∗

θ (xi )
) = Pθ◦

(
H∗

θ

)
, (21)

we obtain the average discriminability E(J ∗
n (θ)) = J (θ),

J (θ) = 1

2
+ 1

2

(
Pθ

(
H∗

θ

) − Pθ◦
(
H∗

θ

))
. (22)

The difference between Jn and J is twofold: First, rela-
tive frequencies instead of probabilities (expectations) occur.
Second, learned classification rules instead of the Bayes clas-
sification rule are used.

Remark There is an interesting analogy between the objec-
tive J ∗

n and the log-likelihood: The sum over the yi does not
depend on the observed data but on θ and may be considered
an analogue to the log-partition function (or an estimate of
it). In the same analogy, the sum over the xi corresponds to
the logarithm of the unnormalized model of the data. The
two terms have opposite signs and balance each other as in
the methods for unnormalized models reviewed by Gutmann
and Hyvärinen (2013a).

Minimization of J

Wenote that J (θ◦) = 1/2. Since H∗
θ contains only the points

which are more probable under Pθ than under Pθ◦ , we have
further that J (θ) ≥ 1/2. Hence, θ◦ is a minimizer of J .
However, θ◦ might not be the only one: Depending on the
parametrization, it could be that Pθ◦ = Pθ for some θ̃ other
than θ◦.We thereforemade the identifiability assumption that
the θ̃ are well separated from θ◦ so that there is a compact
subset Θ of the parameter space which contains θ◦ but none
of the θ̃ . The above can then be summarized as Proposition 2.

Proposition 2 J (θ◦) = 1/2 and J (θ) > 1/2 for all other
θ ∈ Θ .

Restricting the parameter space to Θ , consistency of θ̂n fol-
lows from uniform convergence of Jn to J on Θ (van der
Vaart 1998, Theorem 5.7).
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Uniform convergence of Jn to J

We show that Jn converges uniformly to J if J ∗
n converges to

J and if Jn stays close to J ∗
n for large n. This splits the con-

vergence problem into two subproblems with clear meanings
which are discussed in the main text.

Proposition 3

If sup
θ∈Θ

∣∣J (θ)− J ∗
n (θ)

∣∣ P→ 0 and sup
θ∈Θ

∣∣J ∗
n (θ)− Jn(θ)

∣∣ P→ 0

then sup
θ∈Θ

|J (θ) − Jn(θ)| P→ 0. (23)

Proof By the triangle inequality, we have

|J (θ) − Jn(θ)| ≤ ∣∣J (θ) − J ∗
n (θ)

∣∣ + ∣∣J ∗
n (θ) − Jn(θ)

∣∣ , (24)
so that

sup
θ∈Θ

|J (θ) − Jn(θ)|
≤ sup

θ∈Θ

∣∣J (θ) − J ∗
n (θ)

∣∣ + sup
θ∈Θ

∣∣J ∗
n (θ) − Jn(θ)

∣∣ ,
and hence

P

(
sup
θ∈Θ

|J (θ) − Jn(θ)| > ε

)

≤ P

(
sup
θ∈Θ

∣∣J (θ) − J ∗
n (θ)

∣∣ + sup
θ∈Θ

∣∣J ∗
n (θ) − Jn(θ)

∣∣ > ε

)
(25)

It further holds that

P

(
sup
θ∈Θ

∣∣J (θ) − J ∗
n (θ)

∣∣ + sup
θ∈Θ

∣∣J ∗
n (θ) − Jn(θ)

∣∣ > ε

)

≤ P

(
sup
θ∈Θ

∣∣J (θ) − J ∗
n (θ)

∣∣ >
ε

2

)

+ P

(
sup
θ∈Θ

∣∣J ∗
n (θ) − Jn(θ)

∣∣ >
ε

2

)
(26)

which concludes the proof. �
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