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Vessel bearing estimation using visible and
thermal imaging

Ajinkya Gorad, Sakira Hassan, and Simo Särkkä

Aalto University, Dept. of Electrical Engineering and Automation
Otakaari 3, 02150 Espoo, Finland

Abstract. Maritime awareness and autonomous navigation can be en-
abled by state-of-the-art deep learning methods, by monitoring and track-
ing the position of maritime vessels. In our experiment, we acquire ship
dataset from Megastar cruise ferry campaigns in Baltic Sea. We detect
the nearby vessels using visible and infrared imaging sensors and object
detectors You-Only-Look-Once v5 (YOLOv5), and Detectron2 RCNN
network and use that information along with DeepSORT method to track
the position of the vessel. We obtain the bearing of the vessels detected
from both infrared and visible image sequences of ship and fuse them
using a Kalman filter (KF) and Rauch-Tung-Striebel (RTS) smoother.
We then compare the result to the bearing obtained from the automatic
identification system (AIS) of the vessel, and also compare it among ob-
ject detectors. We obtained a root-mean-square error of 0.17◦ in vessel
bearing tracking as compared to AIS.

Keywords: Maritime awareness · Ship detection · Bearing estimation

1 Introduction

Maritime awareness has recently gained large interest due to its need in enabling
autonomous harbour-to-harbour navigation [22]. Awareness can be obtained us-
ing various sensing like incoming sound direction, or sound reflections through
sonar, or imaging in various electromagnetic spectra through commercially avail-
able cameras. From visible light to heat emissions, visual information can provide
the vessel a large amount of data regarding its environment and other ships in
addition to the vessel’s automatic identification system (AIS), and radar.

Artificial Intelligence (AI) using deep learning on image information through
cameras can provide detection of nearby obstacles and avoid them, such as other
vessels, buoys, small boats, and so on. Moreover, small objects which are unable
to transmit the AIS messages, or objects which are undetected by radar can
be detected, and even detecting breach from those ships deliberately switching
off AIS. Such use of cameras can offer improved safety of the vessel and could
provide critical information in detecting an imminent collision with the nearby
vessels or obstacles. Projects like Mayflower by International Business Machines
(IBM) have already demonstrated working prototypes of autonomous ships [1].
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Numerous developments have been accomplished in the past decade to aid
autonomous navigation system through imaging sensors for effective target track-
ing [6,14,21]. For instance, feature-from-the-accelerated-segment-test (FAST) al-
gorithm has been used to detect a small boat object in a Region of Interest (ROI)
near horizon, and also its bearing and range information in real time [6]. The
result is used to estimate the trajectory of the target ship by using an extended
Kalman filter (EKF). In recent years, feature extraction in object detection task
has been significantly improved by AI-based algorithms.

Imaging sensors and machine learning techniques such as convolutional neu-
ral networks (CNNs) have been used to detect and classify marine objects [22].
Region proposal CNN (R-CNN) networks were among the earliest object detec-
tors with good performance, while its improved versions are Fast-RCNN, and
Faster-RCNN [8, 9, 17]. Deep networks have also be utilized to perform a fused
image detection of ships [7]. Among CNNs, You-Only-Look-Once (YOLO) [16]
has been proven to be a very efficient and fast object detection method, and
also are improved for maritime object detection tasks [10]. An object detection
on an thermal infrared image taken from sky is presented in [12]. A YOLOv3
ship detection in both visible and near-infrared from dataset taken in northern
Taiwan port is achieved in [4,5]. U-Net segmentation and YOLOv4/5 detections
on thermal images of ships are presented in [18]. Fusion of AIS and visible image
information is used to get better position estimate in [15].

Improvements have been made by modifying YOLO network. A YOLOv3
network optimized by Holistically-nested edge detection (HED) is used to detect
and track moving marine targets in [24]. Reverse depthwise separable convolution
(RDSC) was fused with the backbone of YOLOv4 in [13] and GhostbottleNet al-
gorithm was merged with YOLOv5 in [23]. Recent developments in online target
tracking, such as SORT [2], used YOLO for detecting the targets and estimate
bounding box of the object in a video. Its successor DeepSORT tackled longer
periods of occlusions in video sequences by using appearance feature descriptors
for improved association [25].

In this work, we adopt YOLOv5 [11], and Detectron2 RCNN-FPN [26] object
detectors with DeepSORT tracking method to investigate the use of visible and
infrared imaging to detect various nearby vessels and obtain their relative bearing
information. We report multi-sensor ship detection and tracking method (Section
2), and report the results (Section 3) obtained from both the detectors and
tracking with DeepSORT with OSNet [3]. We fuse the bearings measurements
obtained from visible and infrared camera detections with Kalman filter and
Rauch-Tung-Striebel (RTS) smoother, and compare results among detectors,
and to AIS. The method is applied to the data we obtained from Megastar
cruise ferry campaign in Baltic Sea.

2 Materials and Methods

This section summarizes the data and methods used in our work.
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2.1 Data collection, labeling, and training

The data collection experiment was conducted in Baltic Sea on Megastar cruise
ferry which operates on Helsinki–Tallinn route and takes approximately 3 hours
in one direction (∼80km). Two campaigns were conducted: first on 16th February
2021, and the second on 26th August, 2021. Route had sparse maritime traffic
yet we were able to obtain image data from few nearby passing cruise ships.
A FLIR Blackfly visible range camera with resolution of 1920×1200 px and a
maritime grade FLIR M232 thermal infrared camera with resolution of 320×240
px were mounted on the command deck of the Megastar cruise. We collected
data with both cameras and from the vessel’s DGNSS SAAB R5 automatic
identification system (AIS) system having self positioning error <2.5 m which
provided ground-truth measurements for surrounding vessels. Dataset contained
2465 IR images, and 893 RGB images. In which, IR had 2482 ship labels, and
57 bird labels. And, RGB had 444 buoy, 384 boat, 795 ship, 6 helicopter, 9 bird,
and 105 lighthouse labels. In this dataset, we were able to obtain synced RGB
and IR image frames for 3 ships. Unfortunately for unknown reasons, AIS data
was only found available for the Viking XPRS ship during our campaign, and
was missing for other encounters such as Silja Europa.

We used a train–test partition of 70–30 from the shuffled dataset. Model
YOLOv5-s was trained on visible, and infrared dataset separately for 500 epochs
with 8 images per batch, and it took 12 hours on Tesla P100-PCIE-16GB GPU
for visible,and 3 hours for infrared, which ended at 464 epochs with an early stop.
We also trained a Detectron2 Base-RCNN-FPN detector on the same datasets
with batch size of 16 for 5000 epochs with learning rate of 0.001, and it took 3
hours for visible, and 1.6 hours for infrared on the same device.

(a) Algorithm (b) Camera positioning

Fig. 1: Algorithm flowgraph for ship bearing estimation (a). Camera angle defi-
nitions (b).

2.2 Vessel detection and tracking

In this section we describe the approach used for vessel detection and tracking.
Method flow is presented in Fig. 1a. The image sequence consists of images
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from both the test set. We use a combination of an object detectors YOLOv5
and Detectron2 based Base-RCNN-FPN along with DeepSORT tracking with
OSNet features [3] with the our trained model to detect and track ships in
image sequences. Fig. 2 consists of few images selected from an encounter with
the Viking XPRS and Silja Europa cruise. A confidence threshold of 0.01 was set
during detection. We then convert these coordinates into bearing information.
These bearings are then fused to provide an bearing estimate of the target ship.

2.3 Vessel bearing calculation

Ship vessel bearing estimation through cameras is as follows. On both the visible
and infrared views, YOLO ship detections are obtained and bearing is obtained
from calibrated field-of-view (FoV) of camera. Camera angle parameters are
defined in Fig. 1b. Let (x, y) be the camera coordinates in pixels of the center
of the detected bounding box of a ship in an image. Camera placement is at an
azimuth-elevation offset of (θ0, θϵ) w.r.t. the heading of ship. Camera has pan-
zoom-tilt (PZT) as (θp, γ, θt), and a small horizon angle θh is measured clockwise
in the image. For each camera image, H, W be the height, and the width of the
image in pixels, fy be the vertical FoV, and fx be the horizontal FoV. Then the
calculated approximate bearing β, and elevation ψ of the observed ship w.r.t.
heading of the on-boarded ship (1b), is:[

β
ψ

]
=

1

γ

[
cos θh sin θh
− sin θh cos θh

] [
arctan(2 tan( fx2 )( x

W − 0.5)) + θp
arctan(2 tan(

fy
2 )( y

H − 0.5)) + θt

]
+

[
θ0
θϵ

]
. (1)

Camera FoV and offset is manually calibrated using sequence generated from
a train images set and AIS calculated bearings. FoV calibration on the same
image sequence resulted in the value of fx as 19◦ for infrared and 20.0◦ for visible-
range camera. Camera azimuth offsets θ0 are -79.2◦, and -61.8◦ while camera
elevation offsets θϵ are 2.7◦, and 3.5◦, for infrared and visible camera respectively
obtained relative to ship heading. FLIR infrared camera pan information θp was
extracted from its image data, and visible camera had no pan control. Horizon
angle θh is found to be −1.55◦ in visible image, and infrared had no noticeable
tilt, which also can be concluded from images in Fig. 2.

AIS bearing β0 relative to Megastar heading is calculated from the AIS log
messages. At a given time instant, for the Megastar the heading is θh, and its
latitude and longitude are (φR, λR), while the nearby target vessel has its value
of (φT, λT). AIS based bearing relative to megastar heading is then calculated
using the following formula:

β0 = θh − arctan

(
sin(λT − λR) cosφT

cosφR sinφT − sinφR cosφT cos(λT − λR)

)
. (2)

2.4 Vessel bearing fusion

Fused estimate of bearings is obtained by combining of the infrared and visible
bearing measurement. It is accomplished using a Kalman filter followed by the
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(a) Viking XPRS (b) Silja Europa

Fig. 2: Ship detection (YOLOv5) shown for Viking XPRS (a) and Europa (b)
in visible (top) and in infrared (bottom). Shown blue bounding boxes are hand
labels, whereas, the detected and tracked bounding boxes are shown in black
with its confidence values.

Rauch-Tung-Striebel (RTS) smoother [19, 20]. We manually choose the tracked
bearings of the same ship after the DeepSORT, and filter through KF using
discretized Wiener velocity model with time step differences obtained from the
measurements. The model has the form:

xi = Aixi−1 + qi−1, yi = Hxi + ri, (3)

Ai =

[
1 ∆Ti
0 1

]
, Qi =

[
∆T 3

i

3
∆T 2

i

2
∆T 2

i

2 ∆Ti

]
, (4)

where the state contains bearing and its derivative x = [β, β̇]⊺, state tran-
sition matrix with Wiener velocity model at time step i as Ai and process
noise qi ∼ N(0, 0.012Qi) with its covariance matrix Qi. Measurement matrix
H = [1 0] with measurement noise ri ∼ N(0, 0.72) for visible, and ri ∼ N(0, 12)
for infrared. At every time step i, an measurement sample [si, ti, βi, ci] is ob-
tained. Where the source si, is 1 for visible, and 2 for infrared detection. Times-
tamp ti is in seconds, bearing measurement βi is calculated according to (1),
and detection confidence is ci. ∆Ti is the time step. At every i’th measure-
ment sample, matrices Ai, and Qi are updated, and then prediction step of the
Kalman filter is executed, and based on the source of bearing information from
the visible or infrared, the update step is executed with suitable variance of the
measurement. KF result is then smoothed with an RTS smoother. Finally, the
RMS error is reported between smoother output and AIS based bearing β0.

3 Results

Detection results of surface vessels in Baltic sea are summarized in this section.
Result of YOLOv5+DeepSORT tracked detections and corresponding hand-
labels on an image sequence of Viking XPRS ferry are shown in Fig. 2a and
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Fig. 3: Calculated bearing β and elevation ψ from (1), and bounding box width
and height, and object detection confidence obtained through YOLOv5 on
Viking XPRS ferry sequence, with x-axis as time in seconds.

Base-RCNN-FPN YOLOv5-s
Imaging spectra Visible Infrared Visible Infrared
Object detection 137.2 72.2 27.7 10.1
DeepSORT tracking 33.2 33.2 22.9 22.1
Net 170.4 105.3 50.6 32.2
Net ( + KF + RTS) 274.8 (3.64 FPS) 83.0 (12.05 FPS)
Bearing RMSE 0.42◦ 0.29◦ 0.43◦ 0.28◦

Bearing RMSE (+ KF + RTS) 0.19◦ 0.17◦

Table 1: Processing time per image frame (in ms), performance in FPS, and bear-
ing RMSE to AIS (in ◦) for object detection using YOLOv5-s, and a RCNN-FPN,
and their DeepSORT tracking times on Tesla P100-PCIE-16GB GPU device. KF
+ RTS fusion took 220 µs per measurement update.

on Silja Europa ferry are shown in Fig. 2b. YOLO detector may also out-
put multiple low-confidence false bounding box detections, which are filtered
by DeepSORT to provide a single ship bounding-box trajectory and erroneous
bounding-box detections are removed. Whereas, RCNN detector may provide
multiple detections with strong confidence for the same object. Fig. 3 shows
the YOLOv5+DeepSORT obtained bounding box azimuth or bearing, elevation,
width, height, and detection confidence value for the Viking XPRS ferry. We ob-
serve that bearing from both visible and infrared is almost matched. Bounding
box elevation captures the elevation of the ship relative to horizon in view.
Change of object size is apparent in the YOLOv5 detector. Object detection
confidence stays high during the visibility of ships in the cameras.

Fig. 4b shows the Viking XPRS bearing obtained from tracked bounding
boxes. We can observe in Fig. 4b that the fusion of visible and infrared angle
measurements gives an smooth estimated bearing. Using camera information al-
lows more frequent bearing measurements than AIS. We can also obtain observed
apparent angular velocity of the ship and is shown in Fig. 4c. RMSE of between
KF+RTS fused bearing measurements and AIS based bearings for YOLOv5 was
0.17◦, while it was 0.19◦ for Detectron2 Base-RCNN-FPN network. For compari-
son, we computed the errors with YOLOv5 + DeepSORT only which resulted in
errors 0.43◦ for visible, and 0.28◦ for infrared which are both inferior to the KF
+ RTS fused results, and same for RCNN network based bearing output (See
Table 1). Hence KF+RTS fusion has benefited the bearing accuracy. Although,
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(a) AIS – Viking XPRS (b) Estimated bearing (c) Angular velocity

(d) AIS missing – Europa (e) Estimated bearing (f) Angular velocity

Fig. 4: Results of our algorithm with YOLOv5 object detection. (a) Available AIS
information, (b) its fused ship bearing, and (c) angular velocity on Viking XPRS.
(d) AIS information is missing, (e) its obtained bearing, and (f) its angular
velocity for Silja Europa.

we take AIS as the ground truth, the maximum bearing error from the given AIS
when localization error is 2.5 m and at range of 3 km is 0.1◦. Hence, from our
obtained error it can be said that the calibrated vision based bearing can provide
accuracy close to AIS. In the case of missing AIS, for example, in Silja Europa
ferry (Fig. 4d), we obtain a mismatch of few degrees between bearings obtained
through visible and infrared, this however may be due to closeness of the ferry
to the camera. Also a sudden shift in bearing values in infrared in Fig. 4e is
due to sudden pan motion of the camera. Regardless, a fusion value is obtained
representing the AIS equivalent bearing of the ship (Fig. 4e) and estimate of
its angular velocity (Fig. 4f). Although, due to lack of AIS measurements, its
error cannot be computed. However, this example in our experiment is exactly
one of the scenarios when vision system can take over the AIS measurements for
positioning due to failure of missing AIS information.

Proposed system can run in realtime, and its time performance in millisec-
onds for processing on Tesla P100-PCIE-16GB GPU is summarized in Table 1.
RGB image size when input to the YOLOv5 is 1920×1920×3, and IR image
size is 320×320×3. During bearing fusion, Kalman filter took 160 µs ms per
image frame, and RTS smoother took 60 µs, and so KF + RTS fusion took
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220 µs. YOLOv5 object detector performed at 12.05 frames per second (FPS),
and Detectron2 RCNN implementation at 3.64 FPS for bearing estimation using
DeepSORT tracking and KF + RTS fusion.

4 Conclusion

In this paper, we have presented a method for obtaining maritime vessel ship
bearing by fusing information from both visible and thermal camera images.
For this purpose, we have collected data from two campaigns in Baltic sea from
Tallink Megastar cruise ferry. We presented an approach which utilizes object
detectors with DeepSORT tracking followed by fusion of vessel bearings using
Kalman filter and RTS smoother, where YOLOv5 detector outperforms De-
tectron2’s Base-RCNN-FPN in bearing estimation. Our proposed system with
YOLOv5 detector obtained RMS error of 0.17◦ deg for vessel bearing tracking
through fusion, and is capable of real-time performance on the GPU at 12 FPS.
Thus, we show the scenario of multi-sensor fusion as an application using ex-
isting methods is possible in maritime scenario and has potential use in near
future.
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