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Abstract

Motivation: Alternative splicing is an important mechanism in which the regions of pre-mRNAs are

differentially joined in order to form different transcript isoforms. Alternative splicing is involved in

the regulation of normal physiological functions but also linked to the development of diseases

such as cancer. We analyse differential expression and splicing using RNA-sequencing time series

in three different settings: overall gene expression levels, absolute transcript expression levels and

relative transcript expression levels.

Results: Using estrogen receptor a signaling response as a model system, our Gaussian process-

based test identifies genes with differential splicing and/or differentially expressed transcripts. We

discover genes with consistent changes in alternative splicing independent of changes in absolute

expression and genes where some transcripts change whereas others stay constant in absolute

level. The results suggest classes of genes with different modes of alternative splicing regulation

during the experiment.

Availability and Implementation: R and Matlab codes implementing the method are available at

https://github.com/PROBIC/diffsplicing. An interactive browser for viewing all model fits is available

at http://users.ics.aalto.fi/hande/splicingGP/

Contact: hande.topa@helsinki.fi or antti.honkela@helsinki.fi

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Alternative splicing is an important mechanism for increasing prote-

ome complexity in eukaryotes. A great majority of human genes

have been found to exhibit alternative splicing with a growing num-

ber of annotated spliceforms (Djebali et al., 2012; Sultan et al.,

2008; Wang et al., 2008). Changes in splicing are important for cell

differentiation (Trapnell et al., 2010). Abnormal splicing has been

associated with many diseases, including cancer (Barrett et al.,

2015; David and Manley, 2010) as well as neurodegenerative dis-

eases (Cooper-Knock et al., 2012).

Our ability to study and understand alternative splicing is limited

by the technology to measure it. The most widely used method is

RNA-sequencing (RNA-seq). There are emerging sequencing tech-

niques that enable sequencing of full-length mRNAs (Tilgner et al.,

2014), but they do not match the sequencing depth and economy of

short-read sequencing technologies which are needed at least to com-

plement the long read sequencing for more reliable quantification of

low-abundance genes and transcripts. Analysis of short-read RNA-

seq data raises a difficult problem to identify and infer the expression

levels of transcript isoforms from reads that are too short to uniquely

map to a single isoform. Several methods have been developed to

solve this problem (e.g. Glaus et al., 2012; Jiang and Wong, 2009; Li

et al., 2010; Trapnell et al., 2010), whereas others have focused on in-

ference of individual alternative splicing events instead of full tran-

script quantification (Katz et al., 2010). A recent evaluation found

that especially the transcript assembly problem is currently too diffi-

cult to solve reliably from short-read data (J€anes et al., 2015), and rec-

ommended quantification based on known annotated transcripts.

Even for this problem there is significant variation between alternative

methods (Kanitz et al., 2015; SEQC/MAQC-III Consortium, 2014).

Our study is motivated by the desire to understand the principles

of the regulation of splicing. On a large scale, DNA/RNA sequence

motifs (Barash et al., 2010; Xiong et al., 2015) and epigenetics

(Luco et al., 2010) are important factors in regulation of splicing
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(Luco and Misteli, 2011), especially between individuals as well as

between tissues. In this article, we study short-term changes in splic-

ing during signaling response within a single tissue or cell line, hap-

pening on a time scale of minutes to a few hours. We use estrogen

receptor a signaling response on MCF7 breast cancer cell line as our

model system here using data from Honkela et al. (2015). The first

studies performing genome-wide RNA-seq analyses on similar time

scale (€Aijö et al., 2014; Trapnell et al., 2010) have investigated cell

differentiation, while ours is the first to study signaling in this detail.

Methodologically, our work resembles that of €Aijö et al. (2014),

except they only focus on analysis of gene expression from RNA-seq

and do not study splicing. A similar dynamical model and test for

generic gene expression analysis that does not take the properties of

RNA-seq data into account was proposed by Kalaitzis and

Lawrence (2011).

2 Materials and methods

2.1 Methods overview
We present a method for ranking the genes and transcripts accord-

ing to the temporal change they show in their expression levels. In

order to identify differential splicing and its underlying dynamics,

we model the expression levels in three different settings: overall

gene expression level, absolute transcript expression level and rela-

tive transcript expression level expressed as a proportion of all tran-

scripts for the same gene.

An outline of our method is shown in Figure 1. Having the

RNA-seq time series data, we first start by aligning the RNA-seq

reads to the reference transcriptome by Bowtie (Langmead et al.,

2009) and then estimate the transcript expression levels by BitSeq

(Glaus et al., 2012) separately at each time point. We use BitSeq be-

cause it was found to deliver state-of-the-art performance in recent

evaluations (Kanitz et al., 2015; SEQC/MAQC-III Consortium,

2014). The same procedure could be applied to other methods that

provide reliable uncertainties on quantification results, such as

RSEM with posterior sampling (Li and Dewey, 2011). Finally, we

model the time series of log-expression or relative expression by two

alternative Gaussian process (GP) models, namely time-dependent

and time-independent GPs. In time-dependent GPs, we combine a

squared exponential covariance matrix to model the temporal de-

pendency and a diagonal covariance matrix to model the noise

whereas in the time-independent GP, we use only the diagonal noise

covariance matrix. Finally, we rank the time series by Bayes factors

which are computed by the ratio of the marginal likelihoods under

alternative GP models.

Our GP-based ranking method utilizes the expression posterior

variances from BitSeq in the noise covariance matrices of our GP

models, which allows us to set different lower bounds on the noise

levels at different time points. A similar approach for modeling the

variance from count data has recently been shown to yield higher

precision than the naive application of GP models in detecting SNPs

(single-nucleotide polymorphisms) selected under natural selection

in an experimental evolution study (Topa et al., 2015).

We further introduce a method for improving the variance esti-

mation in situations where the replicates are available only at a

small number of time points. More specifically, we perform a simu-

lation with an L-shaped experiment design which consists of three

replicates only at the first time point and only one observation at

each of the subsequent time points. We then develop a mean-

expression-dependent variance model in order to identify the rela-

tion between the mean and the variance of the expression levels by

using the replicated data available at the first time point and ex-

trapolate this relation to the other time points in order to determine

the variance estimates depending on the mean expression level

estimates.

With a small-scale simulation study, we evaluate the perform-

ances of our GP-based ranking method under different scenarios in

which the variance information is obtained or used in different

ways. We then apply the best-performing variance method in

genome-wide real data set and present interesting short-term splic-

ing modes observed in the absolute and relative transcript expres-

sion levels. In the following subsections, we will elaborate the

intermediate steps in the methods pipeline which have been summar-

ized in Figure 1.

2.2 Gene and transcript expression estimation
As the data were based on an rRNA depletion protocol, we con-

structed the reference transcriptome by combining cDNA sequences

of the protein-coding transcripts, long non-coding RNA and pre-

mRNA sequences from gencode.v19 human transcriptome files,

Reads

Aligned 
  reads

    GP models for 
            overall
             gene
        expression
             levels

     GP models for 
         transcript
          absolute
        expression
             levels

    GP models for 
         transcript
           relative
        expression
             levels

          I       II  III

A

B

Expression
    level
estimates

      Reference
  transcriptome

Fig. 1. Methods pipeline: (A) The reads are aligned to the reference transcrip-

tome at each time point. (B) Expression levels are estimated for each tran-

script at the given time points. After appropriate normalization and filtering,

time series are ranked by the Bayes factors which are computed by dividing

the marginal likelihoods under time-dependent and time-independent GP

models in three settings: (I) overall gene expression; (II) absolute transcript

expression and (III) relative transcript expression.
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which we downloaded from ftp://ftp.sanger.ac.uk/pub/gencode/

Gencode_human/release_19/. Then we ran Bowtie (Langmead et al.,

2009) to align the RNA-seq reads to our reference transcriptome ac-

cording to instructions of the BitSeq package.

Having obtained the aligned reads, we estimated the transcript

absolute expression levels by BitSeq (v.0.7.0). BitSeq is a Bayesian

method for inferring transcript expression levels from RNA-seq ex-

periments (Glaus et al., 2012) and it returns a posterior distribution

over expression levels represented as Markov chain Monte Carlo

(MCMC) samples from the distribution.

After obtaining the BitSeq MCMC samples of the expression

level estimates for each transcript, we focused to mature mRNAs by

removing the pre-mRNAs and renormalizing the reads per kilobase

per million reads (RPKM) values of the remaining transcripts with

respect to the new number of total mapped reads after exclusion of

the reads mapped to the pre-mRNAs. This was necessary to stand-

ardize the samples against possible changes in mRNA/pre-mRNA

ratio. In addition, we normalized the gene expression levels across

time points using the method of Anders and Huber (2010).

2.3 GP modeling of expression time series
A GP is defined as a collection of random variables, any finite subset

of which have a joint Gaussian distribution (Rasmussen and

Williams, 2006). A GP is specified by its mean function m(t) and co-

variance function Rðt; t0Þ:

f ðtÞ � GPðmðtÞ;Rðt; t0ÞÞ: (1)

Let us assume that we have noisy observations yt measured at time

points t for t ¼ 1; . . . ;n and the noise at time t is denoted by �t. Then,

yt ¼ f ðtÞ þ �t: (2)

To make the computation simpler, let us subtract the mean from

the observations and continue with a zero-mean GP. From now on,

yt will denote the mean-subtracted observations and hence

f ðtÞ � GPð0;Rðt; t0ÞÞ. Let us combine all the observations in the vector

y such that y ¼ ½y1; y2; . . . ; yn�. Assuming that the noise �t is also dis-

tributed with a Gaussian distribution with zero mean and covariance

R�, and combining the sampled time points in vector T ¼ ½1; . . . ;n�
and the test time points in vector T

*
, the joint distribution of the train-

ing values y and the test values f� ¼ f ðT�Þ can be written as:

y

f�

" #
� N 0;

RðT;TÞ þ R�ðT;TÞ RðT;T�Þ

RðT�;TÞ RðT�;T�Þ

24 350@ 1A: (3)

Applying the Bayes’ theorem, we obtain

pðf�jyÞ ¼
pðy; f�Þ

pðyÞ ; (4)

where

y � Nð0;RðT;TÞ þ R�ðT;TÞÞ: (5)

The computation of Equation 4 leads to:

f�jy � Nðm�;R�Þ; (6)

where

m� ¼ E½f�jy� ¼ RðT�;TÞ½RðT;TÞ þ R�ðT;TÞ��1y (7)

and

R� ¼ RðT�;T�Þ � RðT�;TÞ½RðT;TÞ þ R�ðT;TÞ��1RðT;T�Þ: (8)

The covariance function Rðt; t0Þ of the GP determines the shape

of the model, and for estimation purposes it can be constructed

based on the assumptions of the underlying model. Squared expo-

nential covariance (RSE) is one of the commonly used covariance

functions which is suitable for modeling smooth temporal changes

with its two parameters: the length scale, ‘, and the variance, r2
f .

Each element of the matrix RSE can be computed as

RSEðt; t0Þ ¼ r2
f e�

ðt�t0 Þ2

2‘2 : (9)

As demonstrated in Topa et al. (2015), the performance of the

GP-based ranking methods can be improved by incorporating the

available variance information into the GP models. For this reason,

we modify the noise covariance matrix such that the variances given

in the diagonal have lower bounds which are determined by the vari-

ances estimated at each time point separately:

R� ¼ diagðr2
N þ s2

1; . . . ; r2
N þ s2

nÞ: (10)

R� resembles the white noise covariance r2
NI except for the fact that

the variances are not identical at each time point, being restricted by

a lower bound. Note that the only parameter of R� is r2
N since the

variances s2
t are considered fixed for t ¼ 1; . . . ; n.

The log marginal likelihood of the GP model can be written as:

ln pðyjTÞ ¼ �1

2
yTRobs

�1y� 1

2
lnjRobsj �

n

2
ln 2p; (11)

where Robs ¼ RðT;TÞ þ R�ðT;TÞ. We estimate the parameters of the

covariance matrices by maximizing the log marginal likelihoods by

using the gptk R package which applies scaled conjugate gradient

method (Kalaitzis and Lawrence, 2011). In order to prevent the al-

gorithm from getting stuck in a local maximum, we try out different

initialization points on the likelihood surface.

2.4 Ranking by Bayes factors
For ranking the genes and transcripts according to their temporal ac-

tivity levels, we model the expression time series with two GP mod-

els, one time-dependent and the other time-independent. While

time-independent model has only one noise covariance matrix R�,

time-dependent model additionally involves RSE in order to capture

the smooth temporal behavior. Then, the log marginal likelihoods of

the models can be compared with Bayes factors, which are com-

puted by their ratios under alternative models where the log mar-

ginal likelihoods can be approximated by setting the parameters to

their maximum likelihood estimates instead of integrating them out,

which would be intractable in our case. Therefore, we calculate the

Bayes factor (K) as follows:

K ¼ Pðyjbh1; ‘time� dependent model’Þ
Pðyjbh0; ‘time� independent model’Þ

; (12)

where bh0 and bh1 contain the maximum likelihood estimates of the

parameters in the corresponding models. According to Jeffrey’s

scale, log Bayes factor of at least 3 is interpreted as strong evidence

in favor of our ‘time-dependent’ model (Jeffreys, 1961).

2.5 Application of the methods in three different

settings
Assuming we have M transcripts whose expression levels have been

estimated at n time points, let us denote the kth MCMC sample

from the expression level estimates (measured in RPKM) of tran-

script m at time t by hk
mt, for t ¼ 1; . . . ;n; m ¼ 1; . . . ;M and

k ¼ 1; . . . ; 500. Here we will explain how we determine the
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observation vector y and the fixed variances (s2
1; . . . ; s2

n) which we

incorporated into the noise covariance matrix R� in our GP models

in three different settings:

2.5.1 Gene-level

We compute the overall gene expression levels by summing up the

expression levels of the transcripts originated from the same gene,

and we calculate their means and variances as following:

yjt;gen ¼ Ek log
X
m2Ij

hk
mt

0@ 1A0@ 1A; (13)

where Ij is the set of the indices of the transcripts which belong to

gene j.

s2
jt;gen ¼ max

�
s2bitseq

jt;gen ; s
2modeled

jt;gen

�
; (14)

where

s2bitseq

jt;gen ¼ Vark

 
log
�X

m2Ij

hk
mt

�!
(15)

and modeled variances (s2modeled

jt;gen ) are obtained by a mean-dependent

variance model which will be explained in Section 2.6.

2.5.2 Absolute-transcript-level

Note that in order to remove the noise that could arise from lowly

expressed transcripts, we filtered out the transcripts which do not

have at least 1 RPKM expression level at two consecutive time

points. Subsequent transcript-level analyses, both in absolute and

relative level, were performed by keeping these transcripts out. Then

we computed the means and the variances for the absolute transcript

expression levels as:

ymt;abs ¼ Ekðlogðhk
mtÞÞ; (16)

s2
mt;abs ¼ max

�
s2bitseq

mt;abs; s
2modeled

mt;abs

�
; (17)

where

s2bitseq

mt;abs ¼ Varkðlogðhk
mtÞÞ (18)

and modeled variances (s2modeled

mt;abs ) are obtained by a mean-dependent

variance model which will be explained in Section 2.6.

2.5.3 Relative-transcript-level

We computed the relative expression levels of the transcripts by

dividing their absolute expressions to the overall gene expression

levels:

ymt;rel ¼ Ek
hk

mtX
m2Ij

hk
mt

0BB@
1CCA; (19)

and

s2
mt;rel ¼ maxðs2bitseq

mt;rel; s
2modeled

mt;rel Þ; (20)

where

s2bitseq

mt;rel ¼ Vark
hk

mtX
m2Ij

hk
mt

0BB@
1CCA (21)

and modeled variances for transcript relative expression levels

(s2modeled

mt;rel ) are obtained by Taylor approximation using the modeled

variances of logged gene and logged absolute transcript expression

levels:

s2modeled

mt;rel ¼ ðs2
mt;abs þ s2

jt;genÞðymt;relÞ2: (22)

2.6 Modeling the mean-dependent variance
In this section, we will explain how we model the mean-dependent

variances by utilizing the MCMC samples generated by BitSeq for

each of the replicates available at one time point. Our variance

model resembles that of BitSeq Stage 2 (Glaus et al., 2012) except

for the fact that we have only one condition and we assume the

mean expression levels are fixed. A similar approach is also used by

DESeq (Anders and Huber, 2010). Let us assume that at a time point

we have R replicates, each of which can be estimated by the mean of

the MCMC samples generated by BitSeq. We start by dividing the

genes into groups of �500 such that each group contains the genes

with similar mean expression levels. Let us denote the expression

level (log RPKM) of the rth replicate of the jth gene in the gth group

by y
ðrÞ
g;j , and the mean expression level by lg;j, which is calculated as

lg;j ¼ ErðyðrÞg;j Þ: (23)

Let us also assume that y
ðrÞ
g;j follows a normal distribution with

mean lg;j and variance 1
kg;j

:

y
ðrÞ
g;j � Norm lg;j;

1

kg;j

� �
; (24)

where

kg;j � Gammaðag; bgÞ (25)

and

Pðag; bgÞ � Unið0;1Þ: (26)

Setting lg;j fixed to the mean of the MCMC samples over repli-

cates, we apply a Metropolis-Hastings algorithm to estimate the

hyperparameters ag and bg for each gene group g. Then we estimate

the modeled variance s2modeled

j� for any given expression level yj� by

Lowess regression which is fitted by smoothing the estimated group

variances ðb1kg
Þ (¼

bbgbag

) across group means.

The details about the estimation of the hyperparameters with

Metropolis-Hastings algorithm can be found in ‘Supplementary

text’.

2.7 Evaluation of the variance estimation and feature

transformation methods with synthetic data
Although high-throughput sequencing technologies have become

less costly during the last decade, the trade-off between the cost and

the number of replicates still remains as an important factor which

needs to be handled with caution. Especially in time series experi-

ments, having replicated measurements at each and every time point

could still be very costly.

Here, we evaluate our method under different experiment de-

signs with different numbers of replicates by developing appropriate

variance estimation methods for each design.

For this aim, we simulated small-scale RNA-seq time series data

and compared the performances of different variance estimation

methods in GP models when replicates are available only at some

time points or are not available at all. We simulated RNA-seq reads
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at 10 time points (t 2 f1; . . . ; 10g) for 15 530 transcripts originating

from 3811 genes in chromosome 1 in the transcriptome

Homo_sapiens.GRCh37.73. Expression levels of 384 (�10%) genes

are changing in time while the rest are constant except for noise.

Similarly, 2868 (�18%) and 1530 (�10%) of the transcripts have

been generated from a time-dependent model in absolute and rela-

tive expression levels, respectively. As RNA-seq data is generally

known to follow a negative binomial distribution (Robinson et al.,

2010), we generated three replicates at each time point from a nega-

tive binomial distribution in which the variance (r2) depends on the

mean (l) and the overdispersion parameter (/) with the function

r2 ¼ lþ /2l2. We simulated three sets of experiments with overdis-

persion parameter (/) set to 0.05, 0.1 and 0.2.

We compare average precision (AP) values of the methods in

which the variances which are incorporated into the noise covari-

ance matrix of the GP models are estimated in different ways. We

can list the variance estimation methods as following:

• unrep_naive: Standard GP regression which does not incorporate

the variance information into the noise covariance matrix. In

other words, the noise covariance matrix in Equation 10 does

not include any fixed variances s2
t .

• n-rep_naive: Standard GP regression which does not incorporate

the variance information into the noise covariance matrix.

However, there are n replicates available at all time points.
• unrep_bitseq: Only one observation is available at each time

point. The means and the variances of the expression level esti-

mates are computed by using the BitSeq MCMC samples.
• n-rep_bitseq: The ideal case in which n replicates are available at

all time points. BitSeq variances are computed separately for

each replicate and are included in the noise covariance matrix.
• unrep_modeled: There are three replicates only at the first time

point and only one observation at the other time points. At the

first time point, genes are divided into groups with similar mean

expression levels and mean-dependent variances are estimated

Fig. 2. Precision–recall curves for the GPs with different variance estimation methods and overdispersion parameters (/). The numbers in the legend denote APs

of the methods (equivalent to area under the curve). The circles indicate the cut-off logðBFÞ > 3. The low precision values obscured by the legend correspond to

high false discovery rate (FDR) that would not be used in practice.
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for each group. Then, the variances for the gene and transcript

expression levels at the unreplicated time points are modeled by

smoothing the group variances as described in Section 2.6. We

use the modeled variances at the unreplicated time points if they

are larger than the BitSeq variances, and we use the BitSeq vari-

ances for each replicate at the first time point.

Additionally, we compute the BitSeq variances for the relative tran-

script expression levels after applying the following transformations:

• Isometric log ratio transformation (ILRT): It is a popular transform-

ation which is used for transforming compositional data into linearly

independent components (Aitchison and Egozcue, 2005; Egozcue

et al., 2003). ILRT for a set of m proportions fp1; p2; . . . ; pmg is

applied by taking component wise logarithms and subtracting

the constant 1
m

P
k logðpkÞ from each log-proportion component.

This results in the values qi ¼ logðpiÞ � 1
m

Pm
k¼1 logðpkÞ whereP

k logðqkÞ ¼ 0.
• Isometric ratio transformation(IRT): Similar to the above transform-

ation, but without taking the logarithm, that is, qi ¼ pi

ð
Qm

k¼1 pkÞ
1
m
.

3 Results and Discussion

3.1 Comparison of variance estimation methods with

simulated data
Having simulated the RNA-seq data, we estimated the mean expres-

sion levels and variances from the samples generated by BitSeq

separately for each replicate at each time point. We evaluated our

GP-based ranking method with different variance estimation meth-

ods under the scenario where the replicates are not available at all

time points. As can be seen in Figure 2, using BitSeq variances in the

GP models in unreplicated scenario yields a higher AP than the naive

application of GP models without BitSeq variances. An L-shaped

design with three replicates at the first time point and the mean-

dependent variance model increase the precision of the methods fur-

ther. In this model, we use the BitSeq samples of these replicates for

modeling the mean-dependent variances and we propagate the vari-

ances to the rest of the time series, and use these modeled variances

if they are larger than the BitSeq variances of the unreplicated meas-

urements. Comparison of the precision recall curves in Figure 2 indi-

cates that this approach leads to a higher AP for all settings. We also

observed that the modeled variances become more helpful for highly

expressed transcripts when overdispersion increases as can be seen

in Figure 3, in which the precision and recall were computed by con-

sidering only the transcripts with mean log expression of at least 4

log-RPKM. The figures also show the conventional logðBFÞ > 3 cut-

off. This highlights the fact that the naive model can be very anti-

conservative, leading to a large number of false positives.

Fig. 3. Precision–recall curves for the GPs with different variance estimation methods and overdispersion parameters (/) for the highly expressed (mean log-

RPKM � 4) transcripts. The numbers in the legend denote APs of the methods (equivalent to area under the curve). The circles indicate the cut-off logðBF Þ > 3.

Table 1 Numbers of nonDE and DE genes which have at least one

transcript belonging to the corresponding absolute-relative (abs-

rel) transcript groups

Gene

NonDE DE Sum

DE-DE 336 88 424

Transcript NonDE-DE 152 12 164

Abs-rel DE-nonDE 1014 700 1714

NonDE-nonDE 16 511 449 16 960

Sum 18 013 1249 19 262

The values in the table have been calculated by excluding the single-tran-

script genes, and only expressed transcripts have been taken into account, i.e.

transcripts which had at least 1 RPKM expression level at two consecutive

time points.
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Figure 2 also shows results for fully two-way and three-way

replicated time series. Introducing the second replicate at each time

point improves the performance very significantly while the mar-

ginal benefit from the third replicate is much smaller. Introducing

the BitSeq variances increases the accuracy significantly for

transcript-level analyses, especially for transcript relative expression.

3.2 Comparison of feature transformation methods on

relative transcript expression levels with synthetic data
Transcript relative expression levels represent a special type of data

called compositional data because they always sum to 1 for each gene.

This property generates an artificial negative correlation between the

transcripts which can make analysis more challenging. Several
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(a) Gene expression levels of
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(c) Relative transcript expres-
sion levels of gene GRHL3.
log-BFs:
GRHL3-008 (blue): 0
GRHL3-201 (red): 0.50
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(d) Gene expression levels of
gene RHOQ.
log-BF= 8.16
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(e) Absolute transcript ex-
pression levels of gene RHOQ.
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(f) Relative transcript expres-
sion levels of gene RHOQ. log-
BFs:
RHOQ-001 (red): 3.66
RHOQ-006 (purple): 0.22
RHOQ-007 (blue): 4.10
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(g) Gene expression levels of
gene MTCH2.
log-BF= 0.27
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(h) Absolute transcript
expression levels of gene
MTCH2. log-BFs:
MTCH2-001(red): 0.98
MTCH2-002 (blue): 7.83
MTCH2-201 (purple): 1.64
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(i) Relative transcript expres-
sion levels of gene MTCH2.
log-BFs:
MTCH2-001 (red): 0
MTCH2-002 (blue): 6.56
MTCH2-201 (purple): 3.64

Fig. 4. GP profiles of three example genes and their transcripts. Error bars indicate 62 fixed-standard-deviation (square root of the fixed variances) intervals and

the colored regions indicate the 62 standard-deviation confidence regions for the predicted GP models. The transcripts are shown in the same color in absolute

(b,e,h) and relative (c,f,i) transcript-expression-level plots. Prior to GP modeling, time points were transformed by logðt þ 5Þ transformation.
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transformation techniques have been recommended in the literature

for this task. ILRT is one of the most commonly used transformations

for breaking the linear dependency between the proportions.

We applied ILRT as well as its unlogged version (IRT) to the

relative transcript expression levels. Calculating the BitSeq variances

for the transformed values, we compared the performance of our

method with the performance when no transformation is applied.

As can be seen in Supplementary Figure 1, we observed that the fea-

ture transformations were not useful for increasing the performance

of our method. Therefore, we did not apply any transformation to

the relative expression levels in real data analysis. The reason for

their poor performance may be that the new transformation was

poorly compatible with our GP model and variance models.

3.3 Differential splicing in ER-a signaling response
Encouraged by the good performance of the modeled variances and

especially their good control of false positives, we apply that method

for real data using the estrogen receptor-a (ER-a) signaling as a

model system using RNA-seq time series data from Honkela et al.

(2015) (accession GSE62789 in GEO).

The data set contains RNA-seq data obtained from MCF7 breast

cancer cell lines treated with estradiol at 10 different time points (0,

5, 10, 20, 40, 80, 160, 320, 640 and 1280 min). We treat the first

three time points as if they were the replicates measured at the same

time point to fit the variance model. This approach is reasonable be-

cause the system starts from a quiescent steady state and only very

little new transcription is expected to occur during the first 10 min.

We build our reference transcriptome from gencode.v19 by com-

bining the protein-coding cDNA sequences, long non-coding RNA

sequences and pre-mRNA sequences. The reference transcriptome

contains 34 608 genes and their 119 207 transcripts. We exclude

15 346 single-transcript genes from our transcript-level analyses.

The numbers of non-differentially expressed (nonDE) and DE

genes which have at least one transcript belonging to the corres-

ponding abs-rel (absolute-relative) transcript groups (DE-DE,

nonDE-DE, DE-nonDE, nonDE-nonDE) are given in Table 1. We

assumed that a transcript is expressed only if it has at least 1 RPKM

expression level at two consecutive time points, and we ignored the

unexpressed transcripts which do not satisfy this criterion in order

to avoid the noise originated from lowly expressed transcripts. We

call genes and transcripts DE in absolute expression levels if the GP-

smoothed fold change (the ratio of the maximum GP mean expres-

sion to the minimum GP mean expression) is at least 1.5, and the

log-Bayes factor is larger than 3. We set the same thresholds for the

relative transcript expression levels except for the fold change which

we replaced with the condition that the difference between the GP-

smoothed maximum and minimum proportions be larger than 0.1.

According to the table, �11% of genes undergo either differen-

tial splicing or have DE transcripts. There is a significant number of

genes which are not called DE or differentially spliced, but have at

least one DE transcript. The model fits for these genes can be viewed

in the online model browser, which shows that many of these ex-

amples are probably due to lower sensitivity of relative expression

change detection. There are also many cases where the absolute ex-

pression signal of a single transcript appears very clean, but the

other transcripts mess up the gene and relative expression signals

making them appear more like noise.

3.4 Evidence for different modes of splicing regulation
The results in Table 1 suggest that different genes employ different

strategies for the regulation of splicing. This is confirmed by visual

observation of the model fits, available in the online model browser.

Illustrative examples of genes from the different classes are shown in

Figure 4.

The gene GRHL3 in the top row shows an example of a gene

where the relative proportions of the different transcripts remain

constant throughout the experiment even though the expression of

the gene changes. This appears to be a relatively common case. Even

using stringent criteria for no change in relative expression

(log�BF < 1) almost 450 genes follow this pattern.

The RHOQ and MTCH2 genes in the middle and bottom rows

show two slightly different interesting examples where the absolute

expression level of one of the transcripts remains constant while the

others change, suggesting highly sophisticated regulation of the indi-

vidual transcript expression levels. These are both examples of the

class with both differential relative and absolute expression which

covers more than 400 genes. The behavior of these genes is extremely

diverse and hard to categorize further, but by visual inspection one

can find many more examples where the gene and some of its tran-

scripts are changing whereas some expressed transcripts remain con-

stant, such as ARL2BP, RB1CC1, HNRNPD, TBCEL, OSMR,

ESR1, ADCY1, PMPCB, AP006222.2, EPS8, RAVER2 and P4HA2.

4 Conclusion

In this article, we have presented a method for detecting temporal

changes in gene expression and splicing as well as transcript expres-

sion patterns that successfully incorporates uncertainty arising from

RNA-seq quantification in the analysis.

We evaluated the performance of our method under different ex-

periment designs in a simulation study. Our results again confirm

the importance of replication in genomic analyses. In our clean syn-

thetic data adding a second replicate gives a dramatic boost but im-

provements from having more than two replicates of the entire time

course are modest. Things may of course not be as simple for real

data where a third replicate could at least be very useful for detect-

ing corrupted and otherwise significantly diverging measurements

that could otherwise decrease the power.

We compared approaches based on noise variances inferred only

from the data and using posterior variance from BitSeq as a lower

bound on the noise for the GP. The BitSeq variances were found to be

very useful in unreplicated case as well as for transcript-level analyses.

We also experimented with a computational method for modeling

variances to fill in missing replicates with information propagated

from a single replicated time point. The results indicate that this

method can increase the accuracy of the analyses. However, in the

case of transcript relative expression there are still unsolved technical

challenges that may have a role in the performance. As the variance of

the relative transcript expression levels depends on the variances of

the overall gene expression levels and the absolute transcript expres-

sion levels as well as the covariance between them, which we did not

take into account here, it is not straightforward to model the variance

for the relative transcript expression levels and it would require more

powerful methods which would be suitable for compositional data.

Application of our method to the analysis of splicing patterns

during estrogen receptor signaling response in a human breast can-

cer cell line lead to the discovery of classes of genes with different

kinds of splicing and expression changes. We found several genes

for which the relative expression levels of different transcripts re-

main approximately constant whereas the total gene expression level

changes and for which the relative expression levels change appar-

ently independently of the total expression level, consistent with a
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model of independent regulation of total expression level and rela-

tive splicing levels. There appears however to also be a potentially

more interesting set of genes where the absolute expression of some

transcripts remains constant whereas the expression level of others

changes. These examples suggest a link between regulation of gene

expression and splicing, but further research with careful controls is

needed to assess how common this phenomenon is. The finding

nevertheless suggests that alternative splicing analyses need to com-

bine both absolute and relative transcript expression analyses.
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€Aijö,T. et al. (2014) Methods for time series analysis of RNA-seq data with ap-

plication to human Th17 cell differentiation. Bioinformatics, 30, i113–i120.

Aitchison,J.J. and Egozcue,J. (2005) Compositional data analysis: where are

we and where should we be heading? Math. Geol., 37, 829–850.

Anders,S. and Huber,W. (2010) Differential expression analysis for sequence

count data. Genome Biol., 11, R106.

Barash,Y. et al. (2010) Deciphering the splicing code. Nature, 465, 53–59.

Barrett,C.L. et al. (2015) Systematic transcriptome analysis reveals tumor-

specific isoforms for ovarian cancer diagnosis and therapy. Proc. Natl.

Acad. Sci. USA, 112, E3050–E3057.

Cooper-Knock,J. et al. (2012) Gene expression profiling in human neurodege-

nerative disease. Nat. Rev. Neurol., 8, 518–530.

David,C.J. and Manley,J.L. (2010) Alternative pre-mRNA splicing regulation

in cancer: pathways and programs unhinged. Genes Dev., 24, 2343–2364.

Djebali,S. et al. (2012) Landscape of transcription in human cells. Nature,

489, 101–108.

Egozcue,J. et al. (2003) Isometric logratio transformations for compositional

data analysis. Math. Geol., 35, 279–300.

Glaus,P. et al. (2012) Identifying differentially expressed transcripts from

RNA-seq data with biological variation. Bioinformatics, 28, 1721–1728.

Honkela,A. et al. (2015) Genome-wide modeling of transcription kinetics re-

veals patterns of RNA production delays. Proc. Natl. Acad. Sci. USA, 112,

13115–13120.

J€anes,J. et al. (2015) A comparative study of RNA-seq analysis strategies.

Brief Bioinform., 16, 932–940.

Jeffreys,H. (1961). Theory of Probability, 3rd edn. Oxford Classic Texts in the

Physical Sciences. Oxford University Press, Oxford.

Jiang,H. and Wong,W.H. (2009) Statistical inferences for isoform expression

in RNA-Seq. Bioinformatics, 25, 1026–1032.

Kalaitzis,A.A. and Lawrence,N.D. (2011) A simple approach to ranking dif-

ferentially expressed gene expression time courses through Gaussian process

regression. BMC Bioinformatics, 12, 180.

Kanitz,A. et al. (2015) Comparative assessment of methods for the computa-

tional inference of transcript isoform abundance from RNA-seq data.

Genome Biol., 16, 150.

Katz,Y. et al. (2010) Analysis and design of RNA sequencing experiments for

identifying isoform regulation. Nat. Methods, 7, 1009–1015.

Langmead,B. et al. (2009) Ultrafast and memory-efficient alignment of short

DNA sequences to the human genome. Genome Biol., 10, R25.

Li,B. and Dewey,C.N. (2011) RSEM: accurate transcript quantification from

RNA-Seq data with or without a reference genome. BMC Bioinformatics,

12, 323.

Li,B. et al. (2010) RNA-Seq gene expression estimation with read mapping un-

certainty. Bioinformatics, 26, 493–500.

Luco,R.F. and Misteli,T. (2011) More than a splicing code: integrating the

role of RNA, chromatin and non-coding RNA in alternative splicing regula-

tion. Curr. Opin. Genet. Dev., 21, 366–372.

Luco,R.F. et al. (2010) Regulation of alternative splicing by histone modifica-

tions. Science, 327, 996–1000.

Rasmussen,C.E. and Williams, C.K.I. (2006). Gaussian Processes for Machine

Learning. The MIT Press, Cambridge, MA.

Robinson,M.D. et al. (2010) edgeR: a Bioconductor package for differential

expression analysis of digital gene expression data. Bioinformatics, 26,

139–140.

SEQC/MAQC-III Consortium (2014) A comprehensive assessment of RNA-

seq accuracy. Nat. Biotechnol., 32, 903–914. reproducibility and informa-

tion content by the Sequencing Quality Control Consortium.

Sultan,M. et al. (2008) A global view of gene activity and alternative

splicing by deep sequencing of the human transcriptome. Science, 321,

956–960.

Tilgner,H. et al. (2014) Defining a personal, allele-specific, and single-

molecule long-read transcriptome. Proc. Natl. Acad. Sci. USA, 111,

9869–9874.

Topa,H. et al. (2015) Gaussian process test for high-throughput sequencing

time series: application to experimental evolution. Bioinformatics, 31,

1762–1770.

Trapnell,C. et al. (2010) Transcript assembly and quantification by RNA-Seq

reveals unannotated transcripts and isoform switching during cell differenti-

ation. Nat. Biotechnol., 28, 511–515.

Wang,E.T. et al. (2008) Alternative isoform regulation in human tissue tran-

scriptomes. Nature, 456, 470–476.

Xiong,H.Y. et al. (2015) The human splicing code reveals new insights into

the genetic determinants of disease. Science, 347, 1254806.

Different modes of short-term splicing regulation i155

Deleted Text: while 

