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Abstract: We present multi-wavelength studies of the radio galaxy 3C 120 and the blazar CTA 102
during unprecedented γ-ray flares for both sources. In both studies the analysis of γ-ray data
has been compared with a series of 43 GHz VLBA images from the VLBA-BU-BLAZAR program,
providing the necessary spatial resolution to probe the parsec scale jet evolution during the high
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energy events. To extend the radio dataset for 3C 120 we also used 15 GHz VLBA data from the
MOJAVE sample. These two objects which represent very different classes of AGN, have similar
properties during the γ-ray events. The γ-ray flares are associated with the passage of a new
superluminal component through the mm VLBI core, but not all ejections of new components lead
to γ-ray events. In both sources γ-ray events occurred only when the new components are moving
in a direction closer to our line of sight. We locate the γ-ray dissipation zone a short distance from
the radio core but outside of the broad line region, suggesting synchrotron self-Compton scattering
as the probable mechanism for the γ-ray production.

Keywords: galaxies: active; galaxies: radio continuum; galaxies: jets

1. Introduction

The majority of active galactic nuclei (AGN) detected at γ-ray energies are blazars, as expected
from the orientation of their jets that point closer to our line of sight, and only a few percentage
are radio galaxies. The radio galaxy 3C 120 for example is not officially listed in any of the Fermi
Gamma-Ray Space Telescope catalogs. Hence, the bright γ-ray flare detected by the Large Area
Telescope (LAT) on board the Fermi satellite on 24 September 2014 from the radio galaxy 3C 120 [1],
was an unexpected event. This bright flare seems actually associated with a prolonged γ-ray
activity from the source that started in December 2012 and lasted until at least October 2014, which
corresponds to our last data analyzed.

On the other hand, blazars usually display brighter γ-ray fluxes and more rapid variations.
The blazar CTA 102 is more often observed in a quiescent state, leading to an average γ-ray flux
rather low (∼5 × 10−9 photon cm−2s−1, 1 < E < 100 GeV), as reported in the third Fermi catalog [2].
However, occasionally this source shows bright γ-ray outbursts where it increases its daily flux by
three orders of magnitude or more. A bright γ-ray flare was reported in April 2011, when the source
reached a daily γ-ray flux of (1.4 ± 0.3) × 10−6 photon cm−2s−1 [3], but it was in September 2012
when the source showed an unprecedented γ-ray outburst reaching a daily flux of (5.2 ± 1) × 10−6

photon cm−2s−1 [4], also associated with bright optical and near-infrared (NIR) outbursts, as reported
in [5,6], respectively.

We studied the γ-ray events of both sources, the radio galaxy 3C 120 and the blazar CTA 102.
In both studies the analysis of γ-ray data has been compared with a series of 43 GHz VLBA images
from the VLBA-BU-BLAZAR program (http://www.bu.edu/blazars/research.html), providing the
necessary spatial resolution to probe the parsec scale jet evolution during the high energy events.
In the case of 3C 120, to extend the observing period covered by radio data, we also used 15 GHz
VLBA data from the MOJAVE survey (http://www.physics.purdue.edu/MOJAVE/). For CTA 102
we extended the study to the entire electromagnetic spectrum, collecting data from many ground
telescopes and satellites.

The analysis of the entire dataset for both 3C 120 and CTA 102 and the results obtained in
both studies have been recently reported in [7,8], respectively. Here we describe the main results
achieved focusing the attention on the common properties displayed by these two sources during the
high-energy events, despite belonging to two different classes of AGN.

2. Observations and Data Reduction

2.1. The VLBA Data Analysis

The radio data set of 3C 120 includes MOJAVE data from June 2008 to August 2013, and
VLBA-BU-BLAZAR data from January 2012 to May 2014. The calibration of VLBA 15 GHz data has
been performed by the MOJAVE team, following the procedure described in [9]. VLBA data at 43 GHz
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have been calibrated using a combination of AIPS and Difmap packages, as described in [10]. The final
images have been restored with a common mean beam of 1.2 × 0.5 mas in a position angle (P.A.)
of 0◦ and 0.3 × 0.15 mas (P.A. = 0◦) for the MOJAVE and VLBA-BU-BLAZAR programs, respectively.
To follow the evolution of the radio jet we have modeled the radio emission performing a fitting of
the visibilities to circular Gaussian components using Difmap. For each epoch we obtained a model-fit
whose components contain information about the flux density, distance and position angle from the
core, considered stationary over epochs, and the size.

2.2. The Fermi Data Analysis

The analysis of Fermi-LAT data of the radio galaxy 3C 120 covered the observing period
from the start of the mission, August 2008, to October 2014. In this case we first performed the
analysis in the 100 MeV–100 GeV band with a bin size of three months and then we reduced
the integration time interval to 15 days in order to better constrain the epoch of the detections
that we found in the 3 months-bin analysis. For CTA 102 we analyzed the γ-ray data from
August 2008 to September 2013, producing a light curve in the energy band 100 MeV–200 GeV with
an integration time of 1 day. The analysis with a smaller bin in this case was possible because of
the higher γ-ray flux of the source. In both cases we considered a successful detection when the test
statistic TS was greater than 10, which corresponds to a signal-to-noise ratio >3σ; when TS < 10 a 2σ

upper limit of the flux is provided. For further details on the γ-ray analysis of both sources see [7,8].

2.3. CTA 102 Multi-Wavelength Analysis

In the case of CTA 102, which displayed in September 2012 a bright γ-ray outburst in coincidence
with flares at optical and NIR wavelengths, we studied the source in the entire electromagnetic
spectrum. Hence, we collected data from millimeter to γ-ray frequencies covering an observing
period of 10 years, from June 2004 to June 2014. The millimeter-wave dataset, besides VLBA 43 GHz
(7 mm) data, included data at 350 GHz (0.85 mm) and 230 GHz (1.3 mm) from the Sub Millimeter
Array in Hawaii, 230 (1.3 mm) and 86.24 GHz (3.5 mm) data from the Telescope of the Institut de
Radioastronomie Millimétrique in Pico Veleta (Spain), and 37 GHz (8 mm) data from the Metsähovi
Radio Observatory (Finland).

NIR photometric data were obtained at the Lowell Observatory (Arizona, AZ, USA) and
the Main Astronomical Observatory of the Russian Academy of Sciences located at Campo
Imperatore (Italy).

We analyzed optical photometric data (UBVRI filters) coming from numerous observatories:
the Calar Alto Observatory in Spain, the Liverpool Observatory in Canary Island (Spain), the Lowell
Observatory in Arizona (US), the Steward Observatory in Arizona (US), the St. Petersburg State
University in Russia, the Crimean Astrophysical Observatory in Ukraine, the Higashi-Hiroshima
Observatory in Japan, and the Ultraviolet and Optical Telescope (UVOT) on board the Swift satellite.

Ultraviolet and X-ray data were taken from UVOT and X-ray Telescope, respectively, on board
the Swift satellite. A more detailed description of the multi-wavelength dataset and the calibration
procedures is reported in [7,8].

3. Results

3.1. The Radio Galaxy 3C 120

The γ-ray analysis performed on 3C 120 with a bin width of three months revealed that the
flare observed in September 2014 [1] was part of a prolonged γ-ray activity in the source covering
the period from December 2012 up to at least the last epoch considered in our analysis, October
2014. From the 15-days bin analysis we were able to distinguish six γ-ray detections from December
2012 to October 2014, as we report in Table 1. The observing period covered by VLBA 43 GHz data
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allowed us to compare the γ-ray event in 3 December–18 December 2012 and the two detections in
14 September–14 October 2013 with the radio analysis.

Table 1. γ-ray detections of 3C 120 in the energy range 0.5–100 GeV as we obtained from the
15 days-bin analysis. We report the integration time in MJD and date, the flux with the corresponding
error in 10−8 photon cm−2s−1 and the TS value associated with each γ-ray detection.

MJD Date Flux Err TS

56264−56279 3 December–18 December 2012 1.41 0.60 10.6
56549−56564 14 September–29 September 2013 1.65 0.54 21.6
56564−56579 29 September–14 October 2013 1.31 0.53 13.3
56774−56789 27 April–12 May 2014 1.15 0.52 10.4
56819−56834 11 June–26 June 2014 1.47 0.59 13.8
56924−56939 24 September–9 October 2014 2.52 0.86 18.4

In Figure 1 we display a sequence of VLBA images at 15 GHz (left) and 43 GHz (center) in
total intensity where red circles are the model-fit components. In Figure 1 we also show the plots
containing the 15 and 43 GHz light curves (right-top) and the distances from the core over time for the
43 GHz model-fit components only (right-bottom). From the light curves of the total intensity peaks
we can distinguish two increase in flux; the first one occurred around 2009, only visible in 15 GHz
data because of the lack of 43 GHz data in that period, and the second one between the end of 2012
and the beginning of 2013, visible first in the 43 GHz light curves and later on in the 15 GHz light
curves, as expected due to opacity effect and energy stratification of electrons predicted by the
shock-in-jet model [11]. The first radio flare is associated with the ejection of a bright component,
E4, whose ejection is shown in the sequence of MOJAVE images and became brighter than the core
itself. No clear detections came out from our analysis of Fermi data in coincidence with the appearance
of component E4. On the other hand, we found that the γ-ray event in December 2012 is close to the
second bright radio flare, which is associated with the ejection of of a new superluminal component,
d11. The time of ejection (2013.03 ± 0.03), namely the time when the component d11 crossed the
radio core at 43 GHz, is just after the γ-ray flare. Later on, another γ-ray event happened in
14 September–14 October 2013. Also during this event, the core displayed an increase in flux
at 43 GHz, and a new superluminal component, d12, was ejected. Also the 15 GHz light curve of
the core displayed a hint of increase close to the second γ-ray flare.

From the kinematics analysis of model-fit components at both 15 GHz and 43 GHz, we found
that new components are seen in the jet of 3C 120 roughly every 8 months. These components
revealed a clear pattern of decreasing apparent velocities, from a value of 6.21 ± 0.11c for a component
ejected in April 2007 to values of 4.2 ± 0.2c and 4.7 ± 0.3c for components d11 and d12, respectively,
ejected close to γ-ray events. This progressive slowdown in the apparent velocity of components
could be explained by a change in the velocity and/or a change in the orientation of the components.
A precession model for 3C 120 has been already proposed by [12] as well as by [13]. Interestingly,
in [13], the authors interpreted the γ-ray event in September 2014 considering the jet as formed
by a fast spine and a slower outer layer, where it is only the spine that changes its direction and
occasionally points more toward the observer, as during γ-ray flares. By using the observed apparent
velocities, and minimizing the required reorientation of the jet, we could estimate the Lorentz factor
Γ = 6.3, and a change in viewing angle from 9.2◦ to 3.6◦, where the latter corresponds to the epoch
of the ejection of component d11 and the γ-ray event. This change in the orientation would lead to a
change in the Doppler factor from δ∼6.2 to δ∼10.9, producing an enhancement of the γ-ray emission
above the flux detectable by Fermi.
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Figure 1. Left and center: Sequence of total intensity 15 GHz (left) and 43 GHz (center) VLBA images
of 3C 120. The images show the appearance of components E4 and d11. Contours are traced at 0.0015,
0.004, 0.009, 0.02, 0.05, 0.10, 0.30, 0.60, 1.20 Jy/beam, in the 15 GHz sequence, and at 0.003, 0.006,
0.014, 0.03, 0.07, 0.15, 0.34, 0.74, 1.64 Jy/beam, in the 43 GHz image. Red circles represent model-fits
components; Right: 15 GHz and 43 GHz light curves of the total intensity peaks and main model-fit
components (top) and distance from the core vs. time (bottom) for the 43 GHz model-fit components.
Grey shaded areas correspond to the γ-ray flares.

The delays between the time of ejections of components d11 and d12 and the 15 days-bin γ-ray
detections allowed us to constrain the location of the γ-ray events, obtaining that the first event
(December 2012) took place ∼2 pc (de-projected, considering θ = 3.6◦) upstream of the mm-VLBI
core and the second event (September–October 2013) ∼2 pc (de-projected) downstream of the
mm-VLBI core.

3.2. The Blazar CTA 102

In the case of the blazar CTA 102 we performed a multi-wavelength monitoring from millimeter
to γ-ray frequencies collecting 10 years of data, from June 2004 up to June 2014. Figure 2 (left panel)
displays the light curves obtained considering the entire dataset. Three γ-ray flares were observed
between 2011 and 2013: two minors flares, one in June 2011 and the other one in April 2013, without
counterpart at the other wavebands, and a third brighter flare in September–October 2012 where the
source reached a daily flux of 5.2 × 10−6 photon cm−2s−1 and at the same time other bright flares
were observed at all the other analyzed wavebands.
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Figure 2. Light curves of CTA 102 from γ-ray to millimeter wavelengths. From top to bottom:
γ-ray, X-ray, UV, optical, NIR, and millimeter-wave data; Left panel: data from May 2004 to January
2014; Right panel: expanded view during the γ-ray outburst between August and November 2012.
Reproduced from [8] by permission of the AAS.

Also in this case the γ-ray analysis was accompanied by the study of the evolution of the radio
jet through a total of 80 VLBA images at 43 GHz in total and linearly polarized intensity from
the VLBA-BU-BLAZAR program, which covers the observing period from June 2007 to June 2014.
A sequence of some selected epochs are displayed in Figure 3 (left and central panel). From the
light curves at 43 GHz of the core and the stationary component C1, located very close to the core
(∼0.1 mas), we can identify two flaring periods: the first one is a prolonged event that extends from
mid-2007 to the beginning of 2009, and the second one from mid-2012 to the end of 2012 (see Figure 3).
The first millimeter flare is followed by the ejection of a bright component, N1, well visible also in
VLBA images as shown in Figure 3. In this case the lack of γ-ray data prevents a comparison between
radio and γ-ray emission, but we know from the optical light curve that no flares are observed
at optical wavelengths in that period. Instead the second flaring period at millimeter wavebands,
in 2012, is accompanied by the ejection of a weaker component, N4, and it is in coincidence with the
bright γ-ray flare and also bright flares from NIR to X-ray frequencies.
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Figure 3. Left and center: Sequence of total intensity (in contours) and linearly polarized intensity
(in colors) 43 GHz VLBA images of CTA 102. Contours are traced at 0.003, 0.008, 0.04, 0.1, 0.3, 0.6, 1.2,
1.8, 2.5, and 3.0 Jy beam−1. The images show the appearance of components N1 and N4. Red circles
represent model-fits components; Right: Light curves (top) and distance from the core vs. time for
the 43 GHz model-fit components. The grey vertical line corresponds to the main γ-ray flare and the
green ones to the minor γ-ray flares in June 2011 and April 2013.

Also in this case we analyzed the kinematics of model-fit components that we can follow in
their motion along the jet and we calculated variability physical parameters, as described in more
details in [8]. We observed a progressive increase in the variability Doppler factor associated with a
progressive decrease in the variability viewing angle, where the component related to the main γ-ray
flare, component N4, has the largest doppler factor (δ∼30) and the smallest viewing angle (θ = 1.2◦).
Hence, we also found in this source evidence of a reorientation of the emitting region during the γ-ray
flare as in 3C 120.

We found that component N4 was ejected in 2012.49 ± 0.11, within a time range between 47 and
127 days before the main γ-ray flare in 2012 (2012.73). This leads us to conclude that the bright γ-ray
flare took place at a de-projected distance (considering θ = 1.2◦) >5 pc downstream of the core.
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4. Conclusions

We performed two multi-wavelength studies, on the radio galaxy 3C 120 and the blazar CTA 102,
during unprecedented γ-ray flares for both sources which have been already presented in [7,8].
Here we compare the main results obtained in both analysis. It is interesting to note that despite
representing very different classes of AGN, the radio galaxy 3C 120 and the blazar CTA 102 display
very similar properties during the γ-ray events. In particular we found that the γ-ray outbursts are
associated with the passage of new superluminal components through the VLBI core, as seen also
in other active galactic nuclei (e.g., [14]). However, not all ejections produce detectable γ-ray flares,
and components responsible for the γ-ray emission are not necessary bright components. One of
the key aspect to detect γ-ray emission is the orientation of the emitting region. In fact, components
associated with the γ-ray flares move in a direction closer to our line of sight, leading to an increase in
the Doppler factor, therefore enhancing the γ-ray emission above the flux detectable by Fermi. In both
sources, the γ-ray events happened close to the millimeter core.

In both 3C 120 and CTA 102 the mm-VLBI core is located parsecs away from the black hole, at a
distance of ∼104−5 Schwarzschild radii [15,16]. Hence, the location of the γ-ray dissipation zone close
to the mm-VLBI core in both sources and at such distances from the black hole lead us to suggest the
synchrotron self Compton mechanism for the production of γ-ray photons in both sources, due to the
difficulty of having contributions of photons from the disk or the broad line region and probably also
from the molecular torus.

It is important to note that the location of the γ-ray emission close to the mm-VLBI core and far
from the black hole supports the hypothesis of a recollimation shock in the core.

From these studies we conclude that in both radio galaxies and blazars, the γ-ray flares, often in
coincidence with outbursts at other energy bands, are related to the orientation of the jet and to the
interaction between a moving and a stationary shock (the core).

Conflicts of Interest: The authors declare no conflict of interest.
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