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Abstract
Many complex phenomena, from trait selection in biological systems to hierarchy
formation in social and economic entities, show signs of competition and
heterogeneous performance in the temporal evolution of their components, which
may eventually lead to stratified structures such as the worldwide wealth distribution.
However, it is still unclear whether the road to hierarchical complexity is determined
by the particularities of each phenomena, or if there are generic mechanisms of
stratification common to many systems. Human sports and games, with their (varied
but simple) rules of competition and measures of performance, serve as an ideal
test-bed to look for universal features of hierarchy formation. With this goal in mind,
we analyse here the behaviour of performance rankings over time of players and
teams for several sports and games, and find statistical regularities in the dynamics of
ranks. Specifically the rank diversity, a measure of the number of elements occupying
a given rank over a length of time, has the same functional form in sports and games
as in languages, another system where competition is determined by the use or
disuse of grammatical structures. We use a Gaussian random walk model to
reproduce the rank diversity of the studied sports and games. We also discuss the
relation between rank diversity and the cumulative rank distribution. Our results
support the notion that hierarchical phenomena may be driven by the same
underlying mechanisms of rank formation, regardless of the nature of their
components. Moreover, such regularities can in principle be used to predict lifetimes
of rank occupancy, thus increasing our ability to forecast stratification in the presence
of competition.

Keywords: complex systems; sports; data analysis; rank distribution; rank diversity

1 Introduction
Sports and games can be described as hierarchical complex systems due to the myriad
of factors influencing the dynamics of competition and performance in them, including
networked interactions, human and environmental heterogeneities, and other traits at the
individual and group levels [–]. In particular, the performance of players and teams is
influenced by a variety of causes: Economical, political and geographical conditions deter-
mine their rankings and may thus be used for predicting performance. Moreover, the (rel-
atively) simple rules of competition and measures of performance associated with sports
and games allow us to explore basic mechanisms of interaction leading to hierarchy for-
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mation, which may be common to many systems driven by competition, not only leisure
activities but other social, biological and economic systems. With this goal in mind, the
availability of a large corpus of data related to sports, teams, and players allows researchers
to perform multiple statistical analyses, in particular with respect to the structure and dy-
namics of performance rankings [–].

Data availability has made it possible not only to study the distribution of scores deter-
mining rankings, but also its time evolution []. In a recent paper, Deng et al. present a
statistical analysis of  sports and report a universal scaling in rankings, despite the fact
that the sports considered have very different ranking systems []. Here, we focus on the
temporal trajectories of player and team performances, meaning the evolution of rank,
with the objective of finding statistical regularities that indicate how competition shapes
hierarchies of players and teams. In principle, rankings may be affected in time by events
as apparently insignificant as a bad breakfast prior to an important event, or the weather
during a competition []. Since these factors are inherently present for all activities, we
would expect the evolution of rank to have generic features across sports and games.

We propose to quantify such evolution by means of a recently introduced measure, the
rank diversity. With the help of the Google n-gram dataset [], rank diversity has been
used before to study how vocabulary changes in time []. That work shows that rank di-
versity has the same functional form for all languages studied, and is able to discriminate
the size of the core of each language. Thus, here we concentrate on the temporal features
of rank distributions corresponding to several sports and games with different ranking
schemes. We consider data where an appropriate time resolution is available, and limit the
analysis to six activities only: tennis, chess, golf, poker and football (both national teams
and clubs). We find that all rank diversities have the same functional form as languages,
despite having differences in their rank frequency distributions. Finally, we introduce a
random walk model that, tuned by the parameter values of each dataset, reproduces qual-
itatively the diversity of all sports and games considered. Overall, our goal is to use rank
diversity as a tool to understand rank dynamics in sports, games, and other hierarchical
complex systems, thus enabling us to identify the dependence on rank of a change in the
hierarchy of the system. By using this analysis, we may be able to estimate how well can
a change in rank be predicted, regardless of the particularities of the phenomenon under
study.

The article is organized as follows. In Section  we describe the datasets used. We then
analyse ranking distributions in Section  and compare them with several models. In Sec-
tion  we study the rank diversity for each sporting activity and compare it with a random
walk model. The main conclusions of our analysis are included in Section . In Appendix A
we discuss in detail the Kolmogorov-Smirnov index, which measures the goodness of fit
for a given dataset. Finally, in Appendix B we describe the generic relation between rank
diversity and the cumulative rank distribution in the random walk model.

2 Ranking data
We use ranking data on players and teams from six sports and games: (a) Tennis players
(male), ranked by the Association of Tennis Professionals (ATP) []; (b) Chess players
(male), ranked by the Fédération Internationale des Échecs (FIDE) []; (c) Golf players,
ranked by the Official World Golf Ranking (OWGR) []; (d) Poker players, ranked by
the Global Poker Index (GPI) []; (e) Football teams, ranked by the Football Club World
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Table 1 Summary of ranking data for each sport and game considered in this study

Sport/game Data source Time period Ranking resolution #players/teams

Tennis players
(male)

Association of Tennis
Professionals (ATP) [13]

May 5 2003-Dec 27 2010 Weekly 1,600

Chess players
(male)

Fédération Internationale
des Échecs (FIDE) [14]

Jul 2012-Apr 2016 Monthly 13,500

Golf players Official World Golf Ranking
(OWGR) [15]

Sept 10 2000-Apr 19 2015 Weekly 1,000

Poker players Global Poker Index
(GPI) [16]

Jul 25 2012-Jun 10 2015 Weekly 1,799

Football teams Football Club World
Ranking (FCWR) [17]

Feb 1 2012-Dec 29 2014 Weekly 850

National football
teams

Fédération Internationale
de Football Association
(FIFA) [18]

Jul 2010-Dec 2015 Monthly 150

Table listing the main properties of the ranking data used here (including data source, time period, ranking resolution, and
number of players/teams). In order to have a homogeneous distribution of ranking snapshots and the same number of
players/teams in each snapshot for a given activity, we disregard some data for the ATP, FIDE, OWGR, GPI, and FIFA datasets,
as explained in the main text.

Ranking (FCWR) []; and (f ) national football teams, ranked by the Fédération Interna-
tionale de Football Association (FIFA) [].

The ranking procedure varies among sports. In ATP, for example, tennis players are or-
dered according to the number of points they have up to the date of publication of the
ranking. The number of points depends on the tournaments players have participated in
(and how well they have performed), but not all tournaments are taken into account. FIDE
uses the Elo system [] to rank players, which considers the number of matches, their
results, and the opponent ranking. The FIFA ranking takes into account official matches
between countries. The number of points depends on the confederation and classification
of each team, as well as the importance and result of the match. Table  summarises the
main properties of the ranking data considered in this study, including the time resolution
used to measure rankings (i.e. the time difference between two snapshots of the ranking
in a sport or game). In order to have a homogeneous distribution of ranking snapshots
and the same number of players/teams in each snapshot for a given activity, we disre-
gard some data for the ATP, FIDE, OWGR, GPI, and FIFA datasets: In all of these cases,
the time elapsed between the publication of two rankings varies greatly (from less than a
week to more than a month), and the number of players/teams across ranking snapshots
may change as well. Therefore, for each dataset we choose a constant time resolution of
rankings (weeks or months, as shown in Table ) that maximises and keeps constant the
number of ranked players/teams throughout time. All datasets, filtered as explained above,
are included in Additional file .

3 Comparison with ranking models
Player or team performance is usually measured by a score that varies with time. This score
results in a time-dependent rank with a rather complex behaviour, as we will explain below.
We first focus on the distribution of scores versus ranks (i.e. a rank distribution) for a given
time. Particularly, we are interested in seeing if this distribution can be reproduced by a
single ranking model for all sports and games considered. We select five ranking models
to fit the data, four of which are particular cases of

f (k) = N (N +  – k)q exp(–bk)
ka , ()
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where f is the score associated with rank k, a is an exponent that dominates most of the
curve, b an exponent controlling its exponential decay, and q an algebraic decay that reg-
ulates a sharp drop of the curve for large k. Finally, N is the total number of elements (i.e.
players or teams) in the system, and N is a normalization constant.

The first four models are

m(k) ∝ 
ka , m(k) ∝ exp(–bk)

ka ,

m(k) ∝ (N +  – k)q

ka , m(k) = f (k),
()

whereas the fifth model is a double Zipf law [],

m(k) = N

⎧
⎨

⎩


ka , k ≤ kc,
ka′–a

c
ka′ , k > kc,

()

with a′ an alternative exponent that regulates the behaviour of the curve after a critical
rank kc. Model m is obtained by setting q = b =  in Eq. (), and has been considered in a
vast amount of studies, both in the realm of sports [, ] and in other studies of ranking
behaviour [], including the famous Zipf ’s law of languages where the particular case
a =  has drawn a lot of attention (see, e.g., [] and references therein). The Gamma (m)
and Beta (m) distributions have been useful in many disciplines for decades; a quick look
at their Wikipedia entries provides numerous examples [, ]. Model m, being a more
general expression than the previous ones, tends to provide a better fit at the expense of
more parameters, and will serve as benchmark for the comparison between the rest of the
models. Finally, model m in Eq. () has been used with success in several contexts [,
], prompting us to test it in the area of sports and games.

The results of the fitting process between data and Eqs. ()-() are shown in Figure ,
while Table  summarises the parameter values obtained. Data corresponds to a single
time snapshot for all sports and games: Dec   (ATP); Sept  (FIDE); Mar 
 (GPI); Apr   (OWGR); Dec   or Week   (FCWR); and Dec 
 (FIFA). The following results are, however, representative of all time snapshots (see
Table  and the text below for further details). Both models and data show variation in
their goodness of fit. From Figure  it is clear that Zipf ’s law (m) is not adequate. On
the other hand, the Gamma distribution (m) fits some datasets rather well, particularly
those that do not show an abrupt fall of score as a function of rank. Datasets with an
abrupt decay of frequency are well fitted by the Beta distribution (m) instead. However,
most sports and games seem to be an intermediate case where both functions capture
global behaviour accurately, and thus the fit is considerably better for a combination of
both models, i.e. m. We also see that the double Zipf law (m) is a good fit for FIDE and
GPI, as seen from Table .

In order to objectively compare goodness of fit between models, we consider several
measures: The coefficient of determination R [], the maximum deviation between the-
ory and observation D, and the Kolmogorov-Smirnov index p [, ]. The coefficient R

is calculated from the -norm with respect to the data coming from a single time snapshot,

R =  –
∑

k[mi(k) – yk)]
∑

k[yk – 〈y〉] , ()
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Figure 1 Comparison of ranking data with several models. Plot showing the rank distributions (score
versus rank k) for all sports considered in this study, at one time slice, as well as their fits with the four models
in Eqs. (1)-(2). In general, Zipf’s law (m1) does not accurately reproduce the ranking of any sport or game
reported here. Both the Gamma (m2) and Beta (m3) distributions seem to be appropriate in some cases.
Overall, most datasets are well fitted by a combination of both functions, modelm4. Although these plots
correspond to one time slice only, results are representative of the entire datasets (see Table 3 for further
details). For the sake of clarity,m5 and tick labels are not shown.

for a given model mi(k), i = , . . . , , and data yk , where 〈y〉 is the expectation value of yk .
The closer R is to one, the better the fit is. To calculate D, we consider the cumulative of
both the proposed distribution mi(k) and a dataset with N data points (the equivalence
between an empirical rank-value distribution and the empirical cumulative distribution
corresponding to scores is discussed in []). There it is also shown that for a given theo-
retical rank distribution mi(k), the cumulative is simply Mi(mi) = [N +  – k(mi)]/[N + ],
where k = k(mi) is the inverse function of mi that implicitly depends on scores. Whereas
for a dataset, Mdata(s) = (/N)

∑
j θ (s – sj), with θ a step function and {si, . . . , sN } the set

of scores in the data []. We then define D (the so-called Kolmogorov statistics) as the
maximum vertical difference between the two curves, D = sups |Mi(mi) – Mdata(s)|. The
calculation of the Kolmogorov-Smirnov index p is more involved so we discuss it in Ap-
pendix A. The measure p allows us to consider that a small dataset will have some noise
due to poor statistics. Thus, if a model is consistent with a dataset, but we have poor statis-
tics, we might still have a good (large) p. Usually, a ‘good’ fit is required to have p > ., see
e.g. [].

Table  shows the mean values 〈R〉 and 〈D〉 (and their associated standard deviations
σD and σR ), averaged over all time slices available, for the fitting process between the six
datasets and five models mi used here. We also include values of p for the single time
slice of Figure . Higher 〈R〉 and lower 〈D〉 imply better fits. Since σD and σR are small,
the fits shown in Figure  are representative of the entire datasets. We observe that none
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Table 3 Goodness of fit measures

m1 m2 m3 m4 m5

ATP 〈R2〉 0.222 0.982 0.879 0.982 0.964
〈D〉 0.433 0.044 0.08 0.038 0.077
σR2 0.0969 0.01652 0.009 0.0124 0.0288
σD 0.211 0.0126 0.0672 0.0128 0.0287
p 0.01 0.17 0.0 0.12 0.0

FIDE 〈R2〉 0.777 0.936 0.657 0.936 0.991
〈D〉 0.477 0.2 0.188 0.2 0.141
σR2 0.0071 0.0053 0.0028 0.0054 0.0035
σD 0.0072 0.0048 0.0166 0.0048 0.0005
p 0.0 0.0 0.0 0.0 0.0

OWGR 〈R2〉 0.631 0.981 0.943 0.982 0.97
〈D〉 0.316 0.046 0.088 0.043 0.088
σR2 0.0264 0.0388 0.0138 0.0381 0.0391
σD 0.1292 0.0165 0.0192 0.0152 0.0104
p 0.0 0.92 0.0 0.89 0.0

GPI 〈R2〉 0.791 0.978 0.937 0.978 0.985
〈D〉 0.531 0.201 0.149 0.201 0.202
σR2 0.01029 0.0115 0.0044 0.0115 0.0459
σD 0.01612 0.0039 0.0048 0.0039 0.00533
p 0.0 0.0 0.0 0.0 0.0

FCWR 〈R2〉 0.727 0.986 0.981 0.997 0.947
〈D〉 0.295 0.115 0.057 0.055 0.172
σR2 0.0186 0.0183 0.0098 0.0112 0.0268
σD 0.02833 0.0046 0.0052 0.00128 0.0104
p 0.0 0.0 0.0 0.0 0.0

FIFA 〈R2〉 0.833 0.993 0.981 0.996 0.979
〈D〉 0.387 0.076 0.071 0.041 0.155
σR2 0.0277 0.0324 0.0135 0.0114 0.0413
σD 0.02888 0.004 0.007 0.002 0.0147
p 0.0 0.99 0.0 0.99 0.02

Table listing mean values 〈R2〉 and 〈D〉 (and their associated standard deviations σD and σ
R2

), averaged over all time slices
available, for the fitting process between the six sports and five theoretical rank distributions used here. We also include
values of the Kolmogorov-Smirnov index p for the single time slice of Figure 1. Higher 〈R2〉 and lower 〈D〉 imply better fits.
Since σD and σ

R2 are small, the fits shown in Figure 1 are representative of the entire datasets. The best fits for each sport are
shown in bold.

of the models are a good fit for all sports and games, although m and m are the most
appropriate (in terms of R). However, in three cases (FIDE, GPI, and FCWR) we have
p =  for model m, and no model fits well, meaning that the theoretical distribution is
not followed by the data. We stress again that Zipf ’s law (m) is the worst fit among all
considered, except for FIDE. It is interesting to notice that R and p lead to different criteria
of what is a ‘good’ or a ‘bad’ model. This is due to both the amount of available data and
the number of parameters in the model. The larger the data, the easier it is to distinguish
the best available model from a good (but not accurate enough) approximation. On the
other hand, the more parameters the model has, the easier it is to fit any data. Both of
these aspects are taken into account in the definition of p, but not in R.

4 Rank diversity in sports and games
The previous analysis of the functional form of the rank distribution in several sporting
activities (even when the goodness of fit has been averaged over time) is restricted by the
fact that the rank distribution is inherently an instantaneous measure, in the sense that it
captures ranking at a given point in time and does not take into account the dynamics of
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Figure 2 Temporal evolution of player and team rankings. Plot showing the change in rank k across time
t of all players/teams in each sport and game considered in this study: ATP, FIDE, OWGR, FIFA, FCWR, and GPI
(clockwise, starting from upper left corner). For clarity, only some of the first 50 ranks (at all available time
slices) are shown. Notice that players/teams in lower ranks tend to change less than in higher ones, even
when rankings across activities change at varying rates and the associated time resolution moves from weeks
to months (see Table 1).

players and teams changing rank as time goes by. In order to overcome this issue, here we
contribute to the analysis of ranking in sports and games by computing the rank diversity,
a measure of the number of elements occupying a given rank over a length of time. From
previous [] and current work, it appears that rank diversity has the same functional form,
not only for sports but also for other complex systems, such as countries classified by their
economic complexity, the  leading enterprises ranked by Fortune magazine, or a set of
millions of words in six Indo-European languages.

The rank diversity d(k) is defined as the number of distinct elements in a complex system
that occupy the rank k at some point during a given length of time. In other words, we
choose to focus on the time dependence of ranks, rather than on the static (i.e. defined
for a single time) rank distribution f (k). An example of the change of ranks in time for the
sports and games studied here can be seen in Figure . These so-called ‘spaghetti’ curves
show how elements - individuals or teams - change their rank in time. The rank diversity
d(k) is simply the normalized number of different elements (curves) that spend at least
one time interval at a given rank k. The rank diversity for the various sports and games
considered here is shown in Figure .

We should stress that d(k) and f (k) measure different aspects of the hierarchical struc-
ture of a complex system. First of all, the rank diversity includes information on how ele-
ments change rank throughout time in a single function, while the rank distribution cap-
tures the hierarchy in the system for a single time interval. Secondly, the rank diversity
disregards any information on the scores of elements beyond their order, and thus the
same d(k) may be obtained for several shapes of f (k) (power-law, Gamma, Beta, etc.). As
an example, consider any transformation in time of the scores of elements in the system,
such that their ranking order stays the same; then f (k) could interpolate between differ-
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Figure 3 Rank diversity of sports and games. Plot showing the rank diversity d(k) for all datasets (blue
dots), as well as the fit � (red lines). We include the values of μ, σ , maximum rank diversity dmax, and R2 as
well.

ent functional shapes as time goes on, while d(k) would stay constant. The inverse case
is also possible, and any rank distribution may produce a wide variety of rank diversities.
For example, we could construct several dynamics of scores that keep the number of ele-
ments with a given score constant, but that change the amount of time an element holds
certain score, thus keeping f (k) fixed and changing d(k). Overall, both d(k) and f (k) mea-
sure some aspects of the structure and dynamics of hierarchy in a complex system, but
only the rank diversity captures the way elements change their positions in the hierarchy,
beyond minor changes in scores that could be attributed, for example, to different ways of
measuring performance.

From Figure  we see that the empirical curves for rank diversity are (roughly) mono-
tonic and have a single shoulder. The cumulative of a square-integrable function with a
single bump would have these properties, and a Gaussian is arguably the simplest choice.
Moreover, an analytical argument (see Appendix B) suggests that this may be an appropri-
ate ansatz under very general conditions, at least qualitatively. In a large variety of physical
systems composed of alike elements with similar interactions between them, the macro-
scopic response of the system is usually determined by general laws such as equations of
state. However, in different empirical realisations of the same dynamics there may be dif-
ferences associated to the law of the large numbers or the central limit theorem. These dif-
ferences across realisations follow a normal Gaussian distribution, according to the Gaus-
sian theory of errors. However, for complex systems with competitive dynamics, there may
be generic features described by the Gamma (m) and Beta (m) distributions [, ], and
there may also be differences across realisations that follow a multiplicative dynamics. This
is indeed the case for several Indo-European languages [] and for the games and sports
datasets considered here (See Figure ). In Appendix B we introduce the non-trivial idea
that there are two different dynamics associated with so-called generic and contingent fea-
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Figure 4 Similarity in the normalized rank diversity across sports and games. Plot showing a
comparison of the rank diversity d(k) for all activities considered. With the values of μ and σ we obtained
from the fit �, we have rescaled the abscissa. As reference we include the basic form of Eq. (5) (thick red line),
with μ = 0 and σ = 1. These results indicate that all activities have the same functional shape of rank diversity.

tures, which may be described in terms of a one-step Markovian, Gaussian process. This
allows us to establish an explicit relation between the diversity d(k) and the cumulative of
the rank distribution, S(t).

In fact, studying d(k) for six Indo-European languages [], we found that the observed
rank diversity closely follows the cumulative of a Gaussian (i.e. a sigmoid)

�μ,σ (log k) =
maxi d(ki)
σ
√

π

∫ log k

–∞
exp

(

–
(y – μ)

σ 

)

dy. ()

The mean value μ is set as the smallest k for which d(k) = maxi d(ki)
 , while the width σ is

fitted and gives the scale for which d(k) gets close to its extreme values. If k± are given by
log k± = μ ± σ , the bulk of the changes in the values of diversity lies between k– and
k+. In Figure  we show the fit � for all sports and games considered here (R values for
the � curves are shown there as well). We do not consider neither D nor p, since these
measures are only meaningful for distributions, which d(k) is not. To compare different
rank diversity curves, their rank can be normalised to log(k)–μ

σ
, as shown in Figure . Since

all the cases considered can be fitted with the sigmoid curve of Eq. (), we argue that the
rank diversity of sports seems to have a generic shape.

4.1 A random walk model
From Figure  and Figure  we see that players and teams with low ranks change very
slowly or not at all, while those with higher k have a larger rank variation in time. This
intuition is clear from recent experience in sports like tennis and football: According to
the analysed datasets, Hewitt, Nadal, Roddick, Ferrero, Agassi and Federer have been the
only number one tennis players from May  till December . The same holds for
football clubs: Real Madrid, Atlético Madrid, Barcelona, and Bayern München have been
the best-ranked teams from January  till December . In other words, players and
teams with small k tend to have a small rank diversity.

In what follows we propose a simple model [] that captures such intuition (i.e. a varia-
tion approximately proportional to the current rank), and whose rank diversity resembles
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Figure 5 Comparison between empirical and simulated rank diversities. Plot showing the rank diversity
d(k) of the empirical data (blue shaded area) and of simulated data from our random walk model (yellow
shaded area), as well as the fit � (red/green lines for empirical/simulated data, respectively). We also include
the values of μ, σ , and maximum rank diversity dmax for the simulated data. The random walk model
manages to qualitatively reproduce the rank diversity seen in all sports and games considered here, although
clear differences reveal that the model is insufficient for a full quantitative agreement.

the data presented here. We call this model a scale-invariant random Gaussian walk, since
a member with rank kt , at the discrete time t, is converted to rank kt+ according to the
following procedure: We define an auxiliary variable lt+, which we call pre-rank, at time
t +  by the relation

lt+ = kt + G(ktσ̂ ), ()

where G(ktσ̂ ) is a Gaussian-distributed random number with standard deviation ktσ̂ and
mean . This means that the random variable lt+ has a width distribution proportional
to kt , and thus will, for small kt , have small changes as well. Once the values of the pre-
ranks lt+ for all members are obtained, we order them according to their magnitude. This
new order gives new rankings, i.e. the k values at time t + . The only parameter left in
the model is the relative width σ̂ , which we fit by using a least-squares method over a
smoothed version of the empirical rank diversity. In Figure  we show the rank diversity
for systems with the same number of elements as those of Figure , but generated with the
random model. We see that these two sets of plots are qualitative similar, although clear
differences reveal that the model is insufficient for a full quantitative agreement. The fact
that both the empirical and simulated rank diversities have a sigmoid shape suggests that
rank changes in real systems may be the result of a large number of multiplicative pro-
cesses. We discuss some analytical ideas supporting this insight in Appendix B. However,
the mismatch between model and data seen in Figure  shows that not all characterizing
features of the empirical process are captured by our model, and further investigation is
needed.
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5 Discussion and conclusions
Competition and heterogeneous performance are characteristic of the elements of many
complex systems in biological, social and economic settings. Despite the fact that these
systems show a large variation in the definitions of their constituents and in the relevant
interactions between them, it remains to be seen whether the emergence of hierarchi-
cal structure is mostly determined by the particularities of each phenomenon, or if there
are mechanisms of stratification common to the temporal evolution of many systems. We
have explored this notion by considering a set of relatively controlled and simplified sys-
tems driven by competition: Human sports and games, where the rules of engagement
and measures of performance are well defined, in contrast to, say, the ranking of physi-
cists (the question of whom is the ‘best’ physicist would have an ambiguous answer, to
say the least). This allows us to characterise the emergence of hierarchical heterogeneity
by comparing the temporal features of rankings of individuals and teams across activi-
ties in a clear way. Explicitly, we analysed the statistical properties of rank distributions
in six sports and games, each with different number of members and rules for calculating
scores (and, therefore, ranks). By comparing rank distributions with several ranking mod-
els, we find that the Zipf law (model m) does not provide a suitable fit for the empirical
data. Even if the more generic ranking model m (a combination of the Gamma and Beta
distributions) tends to offer good fits, it is not always the best.

Furthermore, we studied the temporal features of rankings explicitly by calculating the
rank diversity d(k), a measure of the number of individuals or teams occupying a given
rank over a length of time. We found that d(k) has the same sigmoid-like functional form,
even for relatively small systems like FIFA (with only  elements per time slice). Cou-
pled to the fact that a sigmoid rank diversity has also been found in the way vocabulary
changes in time [], our results suggest that the emergence of hierarchical complexity -
as measured by d(k) - may have traits common to many systems. This claim is underlined
by the fact that a simple model (the scale-invariant random Gaussian walk) can reproduce
the diversity of the sports and games studied here, and also of languages []. One could
initially suspect that rank changes depend on the intrinsic strength or qualities of players
and teams. However, given the fact that our random walk model reproduces relatively well
the rank dynamics of several sports and games, it seems that rank change can instead be
characterised as a random process. This does not imply that rank change is random, but
that the specific mechanisms associated with each activity and ranking system are irrele-
vant for the calculation of rank diversity.

A natural direction to follow in the near future is to study the behaviour of rank di-
versity in other competitive phenomena beyond sporting activities and language, such as
physical, social and economic processes of stratification. If indeed a certain universality in
the temporal features of rankings is present in other complex settings, it would indicate
that hierarchical phenomena may be driven by the same underlying mechanisms of rank
formation, regardless of the nature of their components. Potentially, we may exploit such
regularities to predict lifetimes of rank occupancy, thus increasing our ability to forecast
stratification in the presence of competition.

Appendix A: Explicit calculation of Kolmogorov-Smirnov p-value
The Kolmogorov-Smirnov p-value is a way to quantify the goodness of fit of some theoret-
ical distribution to the empirical distribution of a dataset. For a given dataset {s, s, . . . , sN },
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the corresponding empirical distribution is defined as

Mdata(s) =

N

∑

j

θ (s – sj), ()

where θ is a step function and the variable s represents scores. The goodness of fit is ob-
tained via such empirical distribution and a theoretical cumulative distribution (CCD).
Thus, we need to define the rank distribution in terms of a CCD in order to use this crite-
rion. Ref. [] shows that there is an equivalence between an empirical rank-value distri-
bution and the empirical cumulative distribution of scores (or frequencies) available from
the data. The formula that relates these two functions is

Mi(mi) =
N +  – k(mi)

N + 
, ()

where mi is the value of the theoretical rank distribution, and k the rank related to score s.
So, to obtain the corresponding CCD of a rank distribution mi, it is enough to apply Eq. ().
Note that k = k(mi), i.e. k is the inverse function of mi. The p-value will then measure
how good Mi(mi) fits the empirical distribution of scores. Indirectly, we are obtaining
a measure of goodness of fit of mi to the empirical rank-value distribution, due to the
equivalence stated in Eq. (). In our case, the theoretical mi is given by Eq. () and Eq. ().

Next we define the Kolmogorov statistic D as the maximum distance between the em-
pirical distribution of scores and the theoretical cumulative distribution,

D = sup
s

∣
∣Mi(mi) – Mdata(s)

∣
∣. ()

We stress that when we talk about mi, value means a score in the system.
Finally, we describe the process used to calculate the p-value:
. Compute the parameters of fit mi for the empirical rank-value distribution (scores).
. Obtain the empirical distribution of scores and the Mi(s) with Eq. () and Eq. ().
. Calculate the Kolmogorov statistic D between Mi and Mdata.
. Generate (e.g. ,) artificial datasets of scores, distributed according to the fitted

Mi. For each of them, fit to an artificial Mi,art in order to obtain a value Dart.
. Count how many of the , Dart values are larger than the D value of the real

dataset and divide it by ,. The result is the p-value.

Appendix B: Diversity and cumulative distribution
In previous work we have shown that, under very general conditions in which dynamic
competition exists between positive and negative mechanisms, like birth and death pro-
cesses, the rank distribution is given by the ratio of two power laws []. In this Appendix
we analyse the difference between the data associated with different realisations of such
competitive dynamics and the adjustments to real data in terms of stochastic models such
as m(k), m(k), and m(k) given by Eq. (). Specifically, we adopt the more general point
of view that the data (obtained for Indo-European languages [] and several sports and
games) may be represented by a one-step Markovian stochastic process for the allocation
of ranks.
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The difference between the data associated with several realisations of the competitive
dynamics and the adjustments to the real data may be analysed by treating k as a con-
tinuous variable. In this case, the time evolution of the probability density distribution of
ranks P(k, t) is described by a Fokker-Planck equation (FPE),

∂

∂t
P(k, t) = –

∂

∂k
[
A(k)P

]
+

∂

∂k

[
B(k)P

]
, ()

where A(k) and B(k) are rank-dependent drift and diffusion coefficients, respectively.
Note that in Figures ,  and  the abscissa is not the rank k, but x = log k. In other words,

the systems exhibit a simpler behaviour in terms of the variable x, a fact that suggests a
multiplicative behaviour and, in turn, a log-normal process. This process is the statistical
realisation of the multiplicative product of many independent positive random variables, a
feature that is justified by considering the central limit theorem in the logarithmic domain,
and thus obeys the log-normal distribution. As a consequence, P(k, t) can be expressed in
the general form

P(x, t) = Pst(x) + P(x, t), ()

with x = log k. The explicit form of the stationary distribution Pst(x) is well known [, ],
and the time dependent solution P(x, t) may be determined as follows. We first note that
Eq. () may be rewritten as

∂

∂t
P(x, t) =

∂

∂x
[
B(x)Px

]
+ αPx + βP, ()

where α = –A + Bx, β = –Ax + Bxx, and each subscript •x denotes a partial derivative with
respect to x. This equation can be further simplified by introducing the variable v(x, t) ≡
B(x)P(x, t). Moreover, in order to simplify the discussion and the resulting equations, we
consider the particular case where the drift and diffusion coefficients A(x) and B(x) are
proportional to the same function g(x), i.e., A(x) = λAg(x) and B(x) = λBg(x). If τ ≡ B(x)t,
then Eq. () reduces to

∂

∂τ
v(x, τ ) = –�

∂v
∂x

+
∂v
∂x , ()

with � ≡ λA/λB. Let us now introduce the multiplicative character mentioned above by
introducing u(x, τ ) through the following change of variables,

log
v(x, τ )
u(x, τ )

= �x –
�


τ . ()

As a result Eq. () reduces to the diffusion equation

∂

∂τ
u(x, τ ) =

∂u
∂x , ()

whose formal solution is a Gaussian,

u(x, τ ) =
√

πτ

∫ +∞

–∞
e–(x–x′)/τ u

(
x′, 

)
dx′. ()
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Starting from some initial state x, the distribution of the amount of time required for a
stochastic process to encounter a threshold for the first time is known as the first passage
time distribution (FPTD). We will now exhibit the relation between the diversity and the
diffusion equation (). To this end and to simplify the notation, in what follows we shall
again use the symbol t to denote τ .

Consider the absorbing boundary u(xc, t) = , where the subscript c identifies the ab-
sorption point xc, and let u(x, t; x, xc) denote the probability density satisfying this bound-
ary condition for x < xc. The survival probability S(t, xc) that the particle has remained at
a position x < xc for all times up to t, is given by

S(t, xc) ≡
∫ xc

–∞
u(x, t; x, xc) dx, ()

which is also the cumulative distribution of x at time t. Let the probability that a particle
has reached the absorption point between times t and t + dt be h(t) dt = S(t) – S(t + dt). If
we use a first order Taylor approximation, the first passage time distribution h(t) is then
given by

h(t) = –
∂S(t)
∂t

, ()

and the relation between the cumulative distribution S(t) and the FPTD (between two
arbitrary times t and t) is [, ]

S(t) – S(t) =
∫ t

t

h
(
t′)dt′. ()

Clearly, as shown in Figure , the diversity d(k) (that counts events having achieved rank k
in a fixed time window) may be identified with the right hand side of Eq. (). This equation
shows, firstly, the relation between diversity and the diffusion equation (). Secondly,
since there is a relation between the solutions of the diffusion equation and random walks,
there is also one between d(k) and the random walk model given by Eq. (). We have
already studied a particular case of these models in [].
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