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Abstract. The purpose of this note is to point out analogies between causal analysis in
statistics and the correlation-response theory in statistical physics. It is further shown that
for some systems the dynamic cavity offers a way to compute the stationary state of a
non-equilibrium process effectively, which could then be taken an alternative starting point
of causal analysis.

1. Causality in Philosophy, Physics and Statistics
Causality formalizes the universal human experience of agents (causes) taking actions leading
to results (effects) 1. In the Western Philosophical tradition Aristotle postulated four kinds of
causes: the material, the formal, the efficient and the final, out of which Bacon later retained
the material and the efficient. The Third Law of Newton [1] however states that in Nature
there is no separation between cause and effect in the Aristotelian or Baconian sense; Physics
fundamentally knows only interactions, and these are always mutual, a state of affairs unchanged
since that time and the replacement of the Classical Physics by Quantum Physics. This objection
to philosophical causality was alluded to by Russell [2] as

“[Hume] supposes the law to state that there are propositions ’A causes B’ where A
and B are classes of events; the fact that such laws do not appear in any well-developed
science appears unknown to philosophers.”

“History of Western Philosophy”, chapter “Hume”, page 638

We note that when term causal is used to describe an interaction in modern high-energy Physics
it means only that the influence cannot propagate faster than light so that object A at time tA
only depends on what happened at object B at times tB early enough that a signal from B can
reach A at time tA, and vice versa [5].

The everyday and the philosophical notions of causality are in Physics instead intertwined
with reversibility and irreversibility; Nature’s laws are time-reversal invariant on the fundamental

1 The literature on this topic is too vast and variegated to be meaningfully referenced; two classic studies from
the perspective of belief systems in traditional societies can be found in [3] and [4].
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level, but most ordinarily encountered processes are overwhelmingly likely to only flow in one
direction [6, 7]. We say that dropping a glass vase on the floor is the cause of it breaking because
it is exceedingly unlikely that the glass pieces would jump back together and fuse into a vase.
Similarly, we say an enzyme causes a chemical reaction in one direction when the concentrations
of the reactants are such that the opposite reaction is very unlikely. Although the details of
this complex process are not fully known, we can also say that smoking causes cancer because
the DNA in living cells is mostly that of one and the same genome for each individual – an
extremely small subset of all possible DNA sequences of the same length – and cancerogenes in
tobacco smoke therefore almost always lead to mutations away from the healthy genotype and
into one out of very many deficient genotypes. In Nature cause-effect relationships are thus but
abbreviations for processes in physical systems so strongly driven out of thermal equilibrium
that they mostly only go one way.

Nevertheless, causal analysis is an important branch of statistics, describing the effects
of interventions and answering questions of the “if-so-then-what?” character [8, 9, 10].
Interventions are then taken to be outside Nature, typically ascribed to a human agent, and
causality is thus distinct from statistical association studies. If person X is holding a glass
vase and person Y trips him over, then person X is quite likely to fall and break the vase.
However, we cannot know this for sure without observing the event as person X might for
instance be much larger and stronger than Y . Likewise, if we can deactivate enzyme E then
we can observe that a catalyzed reaction S1 → S2 ceases, while if we can over-activate E then
the catalyzed reaction goes faster. This is the paradigm for how molecular biologists identify
interactions experimentally; good research practice and common sense hold that observing such
direct responses is a more reliable means to acquire knowledge than observing the variations of
E and the speed of the reaction S1 → S2 in natural undisturbed conditions. For example, the
catalyzed reaction may be one in a series of reactions S1 → S2 → S3 → S4 → · · · , catalyzed by
enzymes E,E2, E3, . . . and the living cell may regulate the production of all these enzymes by
the availability of the first substrate S1 [11]. In this case E,E2, E3, . . . would all vary positively
with the speed of the reaction S1 → S2 and only a direct experiment can determine which of
them actually does the job.

The first purpose of this paper is to show that there is a conceptual parallelism between
causal analysis in statistics and long-time response functions in physics. A main difference
is interventions in causal analysis are assumed to have an immediate effect while response
acts only over time. This means that causal analysis is (comparatively) easier to work with,
but is also further removed from physical reality. We point out that various computational
methods in statistical physics give access to physical response, and which can therefore serve
as basis for alternatives to causal analysis. The second purpose is to show how the tools of
message-passing/Belief Propagation, developed to analyze complex static interdependence, have
been generalized to describe dynamics with complex interactions, and then known as dynamic
cavity. Under suitable assumptions the dynamic cavity simplifies considerably the determination
long-time responses, which can hence be considered one specific alternative starting point of a
causal analysis. The paper is organized as follows. In Section 2 we describe in simple terms
causal analysis, following mainly [12]. In Section 3 we give a short summary of response theory
using Markov chains (synchronously updated spin systems) as our main example, and show the
parallelism to causal analysis. In Section 4 we describe dynamic cavity as a generalization of
message-passing/Belief Propagation to dynamic phenomena, and show that it can be used to
turn correlation-response into an alternative to causal analysis, for some systems. In Section 5
we sum up and discuss our results.
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2. Causal analysis
Statistical physicists are nowadays conversant with graphical models to describe probability
distributions [13, 14]. To explain causal analysis we will start with two very simple Bayesian
belief networks

(a) lA← lB → lC and (b) lA→ lB → lC (1)

where by lA → lB we mean that random variable B is dependent on random variable A in
the ordinary sense of probability, and also that A (somehow) causes B. The dependency is
encoded in conditional probabilities PA|B(a|b) where a and b are values of A and B. The joint
probabilities of the three variables are in the two cases

Case (a) PB(b)PA|B(a|b)PC|B(c|b) =
PA,B(a, b)PC,B(c, b)

PB(b)

Case (b) PA(a)PB|A(b|a)PC|B(c|b) =
PA,B(a, b)PC,B(c, b)

PB(b)

where PB(b) is the marginal probability of variable B to take value b while PA,B(a, b) is the
marginal probability of the pair of variables A and B to take values a and b, and so on. We
assume for simplicity that P (b) is different from zero for all values b of B. Both Bayesian belief
networks encode the same joint probability; we cannot distinguish by co-variation whether A
causes B or B causes A. In the language of factor graphs this joint probability can alternatively
be described by a factor graph [15] lA f lB g lC

h

(2)

with factors

f(a, b) = P (A = a,B = b) g(c, b) = P (C = c,B = b) h(b) = (P (B = b))−1 (3)

and

PA,B,C(a, b, c) =
1

Z
f(a, b)g(c, b)h(b) (4)

The partition function Z is determined by the interactions encoded by the factors of the factor
graph, and is in general difficult to compute for large models, but in the simple example
considered here it is obviously equal to one.

In both cases described above the joint probability of A and C conditioned on B is then

PA,C|B(a, c|see(B = b)) =
PA,B(a, b)PC,B(c, b)

(PB(b))2
= PA|B(a|b)PC|B(c|b) (5)

where we have introduced Pearl’s “see” notation [12]. To avoid confusion, let us note again that

PA|B(a|b) in above has its ordinary probabilistic meaning of
∑

c PA,B,C(a,b,c)∑
a,c PA,B,C(a,b,c) and is the same in

both models.
If we intervene on B and set its value to b the two Belief networks lead to new joint

probabilities on the two remaining variables (A and C). In both cases A and C become
independent with probabilities depending parametrically on the set value b, which we can call

P
(B)
A (a; b) (“the probability distribution of random variable A in the modified model where

variable B has been set to constant b”) and P
(B)
C (c; b) (“the probability distribution of random

variable C in the modified model where variable B has been set to constant b”). Introducing
Pearl’s “do” notation [12] we then have

PA,C(a, c|do(B = b)) = P
(B)
A (a; b)P

(B)
C (c; b) (6)
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and the dependencies can be illustrated as a (trivial) Bayesian networklA lC (7)

or as an (equally trivial) factor graph lA
e

lC
d

(8)

The two probability distributions are however not the same in the two cases.

In case (a) we have as numerical values P
(B)
A (a; b) = PA|B(a|b) and P

(B)
C (c; b) = PC|B(c|b),

because A and C are then both assumed to be caused by B; the factors in the factor graph
(8) are e = PA|B(a|b) and d = PC|B(c|b). For this case (5) and (6) hence describe the same
distribution.

In case (b) we also have P
(B)
C (c; b) = PC|B(c|b), but for the other probability instead

P
(B)
A (a; b) = PA(a) corresponding to a factor e = PA(a) in (8). This difference is ultimately

what it means to interpret the arrows in (1) as causes: if A is a cause and B is an effect
then A should be unaffected by B, and in particular unaffected by any outside intervention
on B. Therefore, whether or not there is any intervention on B, in case (b) the marginal
probability of A is and remains PA(a) and the “do” (6) is different from the “see” (5).
Expanding on the same point, in case (b) the “do-probability” PA,C(a, c|do(B = b)) can be
expressed in terms of probabilities observable before the intervention, namely as PA(a)PC|B(c|b),
but is not the same as the “see-probability” PA,C(a, c|see(B = b)) which is, for both cases,
PA|B(a|b)PC|B(c|b). The Kullback-Leibler distance between the two is (for this simple example)

KL(see(B = b)|do(B = b)) =
∑

a PA|B(a|b) log
PA|B(a|b)
PA(a) , which generally is not zero.

We will now raise the abstraction level and following [12] define a general causal model M ,
also known as Structural Equation Model, as a set of exogenous variables U , a set of endogenous
variables V1, . . . , VN , located in nodes 1, . . . , N in a graph G, for each node i a set of parent
nodes PAi ⊂ {{1, . . . , N}\ i} and conditional probabilities Fi(Vi|VPAi , U). The structure of G is
determined by there being a link i→ j iff i ∈ PAj . Additionally one may include in the model
specifications a distribution P (U) over the exogenous variables [12]. Each such model defines a
joint probability distribution of the endogenous variables as

PM (V1, . . . , VN |U) =
1

ZM (U)

∏
i

Fi(Vi|VPAi , U) (9)

If G is a Directed Acyclic Graph (DAG), so that dependencies cannot propagate in a loop,
clearly ZM (U) = 1. The do operator is introduced by Pearl as:

Interventions and counterfactuals are defined through a mathematical operator called
do(x), which simulates physical interventions by deleting certain functions from the
model, replacing them with a constant X = x, while keeping the rest of the model
unchanged. The resulting model is denoted Mx. The post-intervention distribution
resulting from the action do(X = x) is given by the equation

PM (y|do(x)) = PMx(y)

Judea Pearl, “The Do-Calculus Revisited” (2012) [12]

It is useful to compare and contrast the do operation with the cavity method to be discussed in
more detail below in Section 4. Both modify a probabilistic model by eliminating one or more
variables, figuratively opening a hole (or cavity) in the factor graph. A first difference is that
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in the cavity method the variable and all its interactions are eliminated as if they were never
there, while in a do operation the variable is set to a constant and the value of that constant
matters. Instead of (9) we thus have, taking X = Vk for some k,

PMvk
=

1

ZMvk
(U)

∏
i6=k

k 6∈VPAi

Fi(Vi|VPAi , U)
∏
i6=k

k∈VPAi

F Vk=vk
i (Vi|{VPAi} \ Vk, U) (10)

where ZMvk
is a new normalization constant and F Vk=vk

i is a new function obtained from Fi by
setting the variable Vk to the constant vk. Hence we can express the “see” and the “do” as

P (Vi|see(Vk = vk)) =
PM (Vi, Vk)

PM (Vk)
P (Vi|do(Vk = vk)) = PMvk

(Vi) (11)

which again shows how and why the two concepts differ. A graphical illustration of the do
operation is given in Fig. 1.

X

Y

Z
W

O J

K

Y

Z
W

O J

K

X = x

Figure 1. Illustration of the do operation. Left panel: a Bayesian belief network with a central node containing
variable X. Right panel: reduced Bayesian belief network after intervening on variable X setting it to value x.
Node containing X and outgoing links are indicated by dashed lines symbolizing that (10) depends parametrically
on x. Ingoing links to node containing X are eliminated together with random variable X which does not appear
in (10).

A second and more important difference is that the do operation is formulated for Bayesian
belief networks of which (as we have seen) there can be many corresponding to the same joint
probability distribution. Under the operations do(X) for different X, each Bayesian belief
network (i.e. each direction of the arrows in Eq. (1)) hence specifies a different set of changes
of the joint probability distribution encoded in a factor graph.

An important question in causal analysis has been whether probabilities after an intervention,
i.e. PM (y|do(x)), y standing for any subset of the endogenous variables, can be determined from
observations before the intervention, i.e. from the set PM (z), z standing for some other subset.
When this is so one says that a causal effect query is identifiable because it can be decided
(the probability PM (y|do(x)) estimated) from data obtained before an intervention. In both
the simple examples above this was the case, only the PM (y|do(x))’s were not the same. More
generally, a causal effect query is always identifiable from passively observed PM (z), provided
that all variables in M are observed and G is known [10]. In less technical terms this last
statement means nothing else than given sufficient data one can in principle estimate conditional
probabilities, and given a direction of the arrows in a Bayesian belief network one can translate
this information into what the conditional probabilities will be in a modified model; the situation
is more complicated when some variables are unobserved (un-measured). The Do-Calculus of
Pearl consists of three rules for deciding identifiability when G is known and is a DAG, and some
of the variables are unobserved. The Do-Calculus can hence be used to determine (in perhaps
quite complex settings) whether a separate experiment is necessary, or if an hypothetical question
can be answered with the data already at hand.
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3. Response Theory
At the basis of scientific mathematical philosophy is the idea that the regularities of the world are
best expressed by how it changes in time, famously stated by Newton to Leibniz as the anagram
6accdae13eff7i319n4o4qrr4s8t12ux [16]. As discussed in Introduction, cause-effect relationships
in Physics are only short-hand descriptions of situations where some object or process A partly
(or wholly) determines the (deterministic or probabilistic) rate of change of some other object or
process B. Such time-ordered relationships are often assumed in Econometrics and then (given
quite strong technical restrictions) referred to as Granger-causation or G-causation [17]. They
also appear in informal discussions of causal analysis as e.g. in “the current causes the voltage
to drop across the resistor” – in physical terms the current is a response to a non-equilibrium
initial state (a voltage difference across a capacitor) and the rate of change of the voltage is
proportional to the current, the proportionality being the capacitance. A bit more abstractly
one can say “reckless driving causes accidents” if one takes accidents to be random events the
frequency of which depend positively on “recklessness”; when that changes over time one expects
the aggregate number of accidents to follow, with some delay. Other phrases expressing causality
such as “you will fail this course because of your laziness” have a clear time separation in their
grammatical structure indicating that the effect is understood to come after the cause 2.

Let us therefore substitute the Bayesian belief network in Section 2 by a minimal model
encoding the same dependencies as a probabilistic evolution law:

P (V1(t), . . . , VN (t)) =
N∏
i=1

Fi(Vi(t)|VPAi(t− 1))P (V1(t− 1), . . . , VN (t− 1)) (12)

The notation is here the same as in (9) except that the variables are now indexed by time (t)
and a possible dependence on exogenous variables has been suppressed. Up to the technical
simplification of synchronous dynamics, (12) is a prototype for a physically realistic mutual
dependency. It could be realized in a biological regulatory system, say in a signal transduction
network, where the cause-effect relationship between PAi and Vi would have the underlying
mechanistic interpretation of PAi being the kinases, phosphatases and other enzymes catalyzing
the phosphorylation, de-phosphorylation and other modifications to unit i. The endogenous
variables U are then concentrations of molecules at constant concentrations, which could be
sugars and other carbon sources for bacteria, or hormones and other signaling molecules in
multi-cellular organisms. For long times the probability distribution in (12) would then reach
stationary state which we will denote

P ∗(V1, . . . , VN |U) = lim
t→∞

P (V1(t), . . . , VN (t)|U) (13)

Since P ∗ in (12) is at least as realistic as P in (9) as a representation of how the endogenous
variables depend on the exogenous variables we could also use it to define an analogy of the do
operation. We can thus set

P ∗
M (y|do(x = X)) = P ∗

Mx
(y) (14)

where the right-hand side is interpreted as the long-time response of the system to intervention
on X.

In Physics a response function related to a generic quantity Vi(t) is normally defined in the
linear regime as Rij(t, t

′) = 〈∂Vi(t)/∂Hj(t
′)〉 where Hj(t

′) is a general parameter which can be
varied within the system. An example, in ferromagnetic systems, is the susceptibility function
χij(t, t

′) = 〈∂Mi(t)/∂Hj(t
′)〉 which gives the change in the local magnetization Mi(t) on site i at

2 All these three example phrases are taken from the introduction to [8], one of the first modern papers on causal
analysis in statistics.
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time t due to an impulse change of an external field Hj(t
′) acting on a different site j at an earlier

time t′. The response is then proportional to the (small) change ∆Hj(t
′), the proportionality

being the response kernel K(t, t′). One may also consider the response to a finite step-like
change [18] and the do operation defined by (14) is clearly of this more general type.

We can therefore now state the first result of this paper: any means to efficiently solve for
the stationary state of (12), before and after intervention, can be the basis for an alternative to
standard causal analysis. We will below in Section 4 highlight the possibilities recently opened
by dynamic cavity, but the statement is more general. Monte Carlo methods [19, 20], mean-field
methods [21], exact results on the SSEP model and analogous systems [22], macroscopic
fluctuation theory [23], generating functions expansions [24], and any other general or specialized
method to analyze (12) can be used as building blocks for a causal reasoning which includes the
notion of time and time delays, and which is thus more natural from the physical point of view,
and closer to common sense.

We end by noting that a great deal is known about response functions for systems
near thermodynamic equilibrium where they are related to correlation functions through the
Fluctuation-Dissipation-Theorem, which generically takes the form [25, 26]

1

T
[C(τ = 0)− C(τ)] =

∫ τ

0
R(τ ′)dτ ′ (15)

where τ = t − t′, time translational invariance is assumed, and T is temperature. The
left-hand side of above is measured in the unperturbed system and the right hand side in the
perturbed system. Causal effect queries are therefore always identifiable in systems at or near
thermodynamic equilibrium from observing no more than the correlation between the variable
which is set and the variable one wants to predict. This relation between correlation and response
has been used to improve network inference [27]. A formula analogous to (15) also exists far
from equilibrium [18] but as it requires as input the gradient of the stationary state with respect
to the parameter it is only useful when that stationary state can be determined.

4. Dynamic cavity
In this section we describe how the techniques now generally called message-passing or Belief
Propagation can be generalized to analyze evolution laws like (12). Message-passing techniques
have been invented independently in different fields [13, 15]. In Physics they are also known
as the cavity method [14], and usually traced back to [28]. Their purpose is to compute
marginal probabilities over some (usually small) subset of variables in a probabilistic model
described by a factor graph which is done by storing partial computations in nodes representing
the variables and then forwarding such partial results to neighbors in the graph for further
processing. Message-passing converges and is exact if the underlying graph is a tree but also
often converges and is a very good approximation if the underlying graph has only long loops,
a fact that has many theoretical and practical applications in coding theory and elsewhere [14].
The fixed points of the algorithms correspond to stationary points under variation of the Bethe
approximation to the free energy in the corresponding statistical mechanics problem [13, 14].
Situations where the message-passing equations have more than one fixed point are outside the
scope of this brief presentation and their analogues have (to our knowledge) not been studied
for the dynamic cavity described below.

Our point of departure is now the observation that the dynamics (12) naturally leads to a
probability distribution on variable histories

P (X1, . . . , XN ) = P (V1(0), . . . , VN (0))

T∏
t=1

N∏
i=1

Fi(Vi(t)|VPAi(t− 1)) (16)
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where Xi = {Vi(0), . . . , Vi(T )} for i = 1, . . . , N . Before continuing, let us note that if the
variables are Boolean and take values {−1, 1} (“spins”) then (12) specifies a dynamics of
a spin system under synchronous updates, and if further all the transition probabilities of

the type Fi(Vi(t)|VPAi(t − 1)) ∝ exp
(
Vi(t)

(
hi +

∑
j JijVj(t− 1)

))
are known as the Kinetic

Ising model [29]. The parent set VPAi is then comprised of the variables Vj for which Jij is
non-zero. When Jij = Jji for all pairs (i, j) the system has a stationary state P (V1, . . . , VN ) ∝
exp

(∑
i hiVi +

∑
ij JijViVj

)
and (12) then simulates a system in thermal equilibrium, albeit

under the somewhat unphysical synchronous update rule. In the more general case when
Jij 6= Jji, and in particular for fully asymmetric models where Jij can only be non-zero when
Jji equals to zero, (12) on the other hand simulates a non-equilibrium system. The stationary
probability distribution of such a physical system naturally depends on the exact update rule;
we will briefly comment on this issue in Section 5 below.

The first result on reducing the complexity of (16) dates back almost thirty years [30] and
pertains to fully asymmetric models. For these an influence Xj → Xi must traverse a loop in
G to get back to Xj , and when there are no loops, or when these can otherwise be disregarded,
the marginal probability of Xj is independent of Xi. This leads to simple equation for the
marginalization over a single variable and and single time, namely

Pi(Vi, t) =
∑

Vj∈PAi

Fi(Vi|VPAi)
∏
j

Pj(Vj , t− 1) (Fully asymmetric) (17)

We now generalize a bit and assume that the dependency graph G has the property associated
with the effectiveness of standard message-passing i.e. that it is a tree, or at least locally tree-like.
That is, we assume that one cannot form circular dependency chains i → j → k → · · · → i
where Vi ∈ PAj , Vj ∈ PAk, . . . ∈ PAi unless either somewhere the chain backtracks as
· · · j → k → j → · · · or the chain is long, on the order of the graph diameter of G. The
term “dynamic cavity” was introduced in [31] for such situations where it was used to obtain
rigorous bounds on the consensus threshold for the majority dynamics. Methods have later
been developed to treat, in principle exactly, such problems when the dynamical law is modified
to only allow transitions in one direction [32, 33]. An important step was taken in [34] where
marginals in a stationary state were computed approximately based on an ansatz, recently
extended to also cover transient phenomena [35, 36]. The main problem is then that even when
the dependency graph G of the dynamics in (12) is locally tree-like this is not the case for
dependencies in (16) due to “loops-in-time”. These dependencies have been resolved by a graph
expansion technique [32, 33, 35] as we will now explain.

First, as for the Kinetic Ising model it is often convenient to define transition functions only
up to a normalization Fi(Vi|VPAi) ∝ exp (ri(Vi, VPAi)). The normalization constant is then
Ni(VPAi) =

∑
Vi
exp (ri(Vi, VPAi)), a function that does not depend explicitly on Vi. Assuming

further for simplicity that interaction functions ri are only pair-wise the dependency graph can
be illustrated as in Fig. 2. The model defined on variable histories, (16), now has short-loop
dependencies even if the graph G itself does not. This can be seen by tracing the dependency
of one of these variable, say Xi = {Vi(0), . . . , Vi(T )}. Pick a time t and note that Vi(t) depends
on Vj(t− 1) for all j ∈ PAi. Then pick two of these variables Xj and Xk such that i ∈ PAj and
i ∈ PAk, then Vj(t− 1) and Vk(t− 1) both depend on Vi(t− 2). At the same time Vj(t− 1) and
Vk(t− 1) are however also dependent through the normalization Ni(VPAi), and Xi, Xj and Xk

are therefore connected in a dependency loop of length three.
While there are many approaches to get rid of loops in factor graphs we will use one which is

well adapted to the dynamics. For every pair i and j such that Vi ∈ PAj (whether or not also

Vj ∈ PAi) we introduce a new compound variable (X
(ij)
i , X

(ij)
j ) interpreted as “variable X

(ij)
i of
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Figure 2. A tree-like dependency graph with the normalization constants in the transition functions split off as
separate factor nodes (boxes). It has been assumed that the dependencies are not fully asymmetric so that when
node i depends on node j, node j in general also depends on node i. Dependencies between nodes (in general
mutual) are indicated by (undirected) lines. In the kinetic model loops emerge from variables at different times
in (16).

type Xi belonging to link (i, j) and X
(ij)
j of type Xj also belonging to link (i, j)” 3. Introducing

now the consistency requirement that the variables X
(ij)
i take the same value for all the links

(i, j) where this type of variable is found we can rewrite (16) as

P ({X(ij)
i , X

(ij)
j }) = Pinit ·

T∏
t=1

∏
i

Fi(Vi(t)|{V (ij)
j (t− 1)}j∈PAi)

·
T∏
t=1

∏
i

1
V

(ij1)
i (t)=V

(ij2)
i (t)=...

(18)

where Pinit is the probability distribution on the initial conditions translated to the new

variables, V
(ij)
j (t) are the restrictions of the variables X

(ij)
j to a single time t and Vi(t) is any

suitable average of the V
(ij)
i (t) for different j [35]. The graph expansion is illustrated in Fig. 3.

Introducing messages in the standard way and summing out the consistency conditions we thus
arrive at [35]

mi→(ij)(X
(ij)
i , X

(ij)
j ) ∝

∑
{X(ik)

k }

Φi(X
(ij)
i , X

(ij)
j , {X(ik)

k })
∏

k∈∂i\j

mk→(ik)(X
(ik)
k , X

(ij)
i ) (19)

where Φi(Xi, Xj , {Xk}) =
∏T

t=1 Fi(Vi(t)|Vj(t − 1), {Vk(t − 1)}k∈PAi\j). Equation (19) are
the dynamic cavity update equations corresponding to the ordinary cavity update equations
applied to the model (16) on variable histories. A trace of the dynamic origin remains

3 To be precise the two parts of the compound variable are distinguished by their index (i or j) and not by
their order in the pair. When a message is to be transmitted from i to j they are naturally read in the order
(X

(ij)
i , X

(ij)
j ) while if the message is transmitted in the opposite direction the natural order is (X

(ij)
j , X

(ij)
i ).
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Figure 3. Auxiliary graph obtained from a part of Fig. 2 where loops have been removed by a graph expansion
procedure. The new variable nodes contain histories of two variables that were neighbors in the original graph
while new factor nodes (one per each old variable node) contain both the transition functions and the consistency
conditions.

in that the probability mi→(ij)(X
(ij)
i , X

(ij)
j ) can be taken to depend on the full history

X
(ij)
i = {V (ij)

i (0), . . . , V
(ij)
i (T )} of the first argument, but only a one unit shorter history

X
(ij)′
j = {V (ij)

j (0), . . . , V
(ij)
j (T − 1)} of the second argument. For a discussion as well as a

description of the analogous dynamic cavity output equations, see [35]. To make (19) practical
further assumptions are needed, to close the iterations in a low-dimensional subspace of the

functions mi→(ij)(X
(ij)
i , X

(ij)
j ). In [35] good results were reported based on closure in the class

of 1-step Markov processes, leading to schemes not much more complicated than (17) while
in [36] even better results were reported from a more involved procedure. The field is in active
development and likely even better approximations will appear in the near future.

We will now take the point of view that the probabilities P ∗ and P ∗
Mx

in (13) and (14)
are efficiently computable and ask what are the implications for causal analysis. First, the
assumption of synchronous updates is unrealistic in most natural systems but certainly no more
than the assumption of instantaneous dependence made in (9). In most problems where an
underlying mechanistic explanation is conceivable “causes” are ultimately to be interpreted as
variables influencing transition rates, and the simplest example of such dynamics is (12). In
stationary state an underlying explanation, which one could call “mechanistic causes”, leads
to a joint probability distribution P ∗ with generally many more dependencies. That is, there
will be one (directed) dependency graph G describing the probabilistic evolution law (12) and
another (undirected) factor graph F describing the probability P ∗ in (13), and F will almost
always be (much) larger and (much) richer than G. For a worked-out example of such an effect,
in the relaxation towards equilibrium of the Kinetic Ising model on a 1D lattice [29], see [37].

5. Summary and discussion
We have given a brief introduction to causal analysis and discussed how it extends the tools of
factor graphs and probabilistic models to describe outside interventions that change the models
themselves. We have compared and contrasted causal analysis to the analysis of dynamic
processes by physical response theory and pointed out the possibilities recently opened up
through dynamic cavity.

Causal analysis considers causal relationships to be the fundamental building blocks of
reality [10] and aims to discover which are these casual dependencies in the system under
investigation (usually DAG networks). Although this certainly is a fascinating goal, it is at odds
with physical theory which does not admit causes and effects in the philosophical sense on the
fundamental level, but only for macroscopic (irreversible) processes. For such processes the flow
of time is however essential, and causes are thus naturally understood as variables influencing
transition rates between various states in a system. The stationary states of such processes
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are normally quite complicated reflecting not only dependencies in the transition rates, but
also chains of such dependencies of arbitrary length, the only major exception being systems
in thermodynamic equilibrium. Therefore, great caution is called for when interpreting the
results of causal analysis as causes in an everyday sense. The mechanisms identified by causal
analysis include (except in thermal equilibrium) both underlying direct effects and many kinds
of indirect effects where the setting of one variable influences the behavior of another at a later
time through one or many intermediaries.

The major advantage of causal analysis is instead in its relative simplicity of its basic ansatz.
Up to recent times few methods except Monte Carlo were available to analyze the dynamics
of non-equilibrium systems, and determining their stationary states was therefore laborious.
Several techniques may however now give access to non-equilibrium stationary states including
improved Monte Carlo harnessing advances in algorithms and hardware, and mean-field methods
and other analytical or semi-analytical methods as discussed above. We have discussed that
when the interactions are arranged on a tree, but are not strictly one-way, the dynamic cavity
method has emerged as a new alternative yielding quite accurate estimates at comparatively
low computational costs. Many major issues however remain to be solved in that approach,
the most important one perhaps being how to extend the dynamic cavity (if this is possible) to
continuous-time processes.
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[32] Lokhov A Y, Mézard M and Zdeborová L 2015 Dynamic message-passing equations for models with

unidirectional dynamics Phys. Rev. E 91 012811
[33] Altarelli F, Braunstein A, Dall’Asta L, Ingrosso A and Zecchina R 2014 The zero-patient problem with noisy

observations J. Stat. Mech. P10016
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