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Abstract—Existence of the line-of-sight (LoS) in a radio link
is an important feature determining radio link and localization
performance. This study explores relationship between multi-
dimensional nature of radio channel properties such as delay and
angular spreads and link pathloss with the LoS existence along
with the relative antenna geometry of the two communicating
devices in an attempt to predict the LoS existence. A non-
linear classification method of the decision tree is trained by
extensive wideband double-directional channel sounding data
in a microcellular environment. It was found that the BS-MS
link distance and link pathloss were most influential features in
predicting the LOS existence. While the use of less influential
features of delay and angular spreads led to 75 % accuracy due
to not being able to find the exact pattern across different MS
routes. We thereby demonstrate the usefulness of incorporating
geometrical knowledge of the link to predict the LoS state, despite
not using a map of the cellular site, in addition to using channel
parameters.

I. INTRODUCTION

Radio channel modeling is an essential technical element in
developing modern wireless communications. Complexity of
channel modeling increases as the cellular generation evolves
because knowledge of new dimensions of radio channels is
required for improved link performance. Time/Doppler, de-
lay/frequency, angle/space and the wave polarizations are most
notable dimensions to consider in channel models [1]. Charac-
teristics of channels in these dimensions are possibly related to
service, environmental and geometrical conditions of the radio
link such as cell types, link distances and base station (BS)
antenna heights. Possible simplification of channel modeling
is therefore relevant by finding relations and dependencies
between different dimensions of radio channel properties and
with environmental and geometrical conditions of links. It
is known that a unique relation exists between for example
the Doppler frequency, a velocity of mobile station (MS)
and the angle-of-arrival power profile of a downlink channel,
while existence of such relation between condensed channel
parameters such as the pathloss, delay and angular spreads
and that with the environmental and geometrical conditions of
links would lead to too complex mathematical formulas. This
paper therefore resorts to a machine learning (ML) algorithm
to analyze statistical relation between condensed parameters
of multi-dimensional mobile radio channels and geometrical
link condition. As an example, we study microcellular street
canyon environment and relate the existence of line-of-sight
(LoS) to other geometrical link conditions and condensed
parameters using the decision tree [2]–[5]. Figure 1 shows
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Fig. 1. Condensed parameters, highlighted in red color, of cellular downlink
wave propagation channels that we concern in this paper.

the parameters of multi-dimensional channel model and geo-
metrical conditions we aim at relating: pathloss, delay spread,
angular spread at the BS and MS and finally three-dimensional
BS-MS link distance.

The use of ML algorithms to predict channel parameters
has been a popular topic for research, e.g., [6], Section II-
A as exhaustive summary and hence references therein. Most
closely-related work to this paper is [7] where the channel
properties from vehicular scenarios are related to each other
through various ML algorithms. However, the studies were
mostly based on channel sounding campaigns with the use of
a handful of the mentioned condensed parameters and/or link
geometries. Sensitivity of the ML algorithms on inherent pat-
terns of multi-dimensional data is therefore not fully explored.
In contrast, this paper studies data-driven ML modeling of
channels based on 34000 fully polarimetric double-directional
wideband outdoor microcellular channel sounding at 5.3 GHz,
obtained by former colleagues of the authors of the present
paper in the same research group. This is the largest dataset
of measured mobile channels that have been used for training
an ML algorithm, to the best of the authors’ knowledge. We
analyze statistical inter-dependence between LoS existence
and mentioned multi-dimensional channel and geometrical
link features using an ML algorithm, decision tree. It will
be shown that the BS-MS link distance and link pathloss are
the most influential features in predicting the LOS existence



in radio links. When predicting the LoS existence using the
condensed parameters without the link distance and pathloss,
the decision tree was unable to learn the exact pattern of
datasets coming from different measurements of radio links,
leading to limited prediction accuracy.

The rest of the paper is organized as follows: Section II
denotes an analytical relationship between channel model
parameters of interests that we would like to analyze the inter-
(in)dependence. Section III describes a decision tree and its
application to LoS state prediction based on multipath channel
parameters. Section IV introduces our extensive wideband
double-directional channel sounding in an urban microcellular
site 5.3 GHz. Section V explains the LoS state prediction
model established from the extensive measurement data, and
their possible applicability to different urban microcellular
sites. Finally, Section VI summarizes our work.

II. RIGOROUS RELATIONS

This section introduces the rigorous relation between the
parameters in our study, i.e., 1) a link pathloss on a decibel
scale PLdB, 2) azimuth and polar angular spreads Sφ and
Sθ, 3) delay spread Sτ , 4) relative coordinates of the MS in
reference to BS pMS = [x y z] and 5) LoS existence in the
channel. A channel impulse response h of a link l is defined
by [1]

hl(pMS) =

N∑
n=0

gHMS(Ω
MS
n )αngBS(Ω

BS
n )×

δ(ΩBS −ΩBS
n )δ(ΩMS −ΩMS

n )δ(τ − τn)(1)

for a static MS and hence the Doppler frequency is zero. In (1),
0 ≤ n ≤ N denotes indices of the number of plane wave
propagation paths, where n = 0 is assigned to a LoS path
while 1 ≤ n ≤ N are allocated for any other propagation paths
undergoing reflection, diffraction, transmission and scattering.
Furthermore, δ(·) is a dirac delta function, Ω = [φ θ] is a
vector of azimuth and polar angles of a path observed at
link ends, τ is a propagation delay time of the path from
the BS to MS antennas; g ∈ C2 is a row vector of complex
polarimetric antenna transfer function at link ends; α ∈ C2×2

is a complex polarimetric path amplitude matrix, and finally ·H
denotes the Hermitian transpose. The formula (1) represents
an LoS channel when α0 6= 0 while it is an NLoS channel
if α0 = 0. The following defines the five parameters of our
main interests in multi-dimensional channel models that can
be determined using symbols introduced in (1).

• Omni-directional pathloss of a link on decibel-scale
PLdB is given by

PLdB = −10 log10
N∑
n=0

|αn|2. (2)

• Azimuth spread Sφ of a link is given by [1]

Sφ =

√√√√∑N
n=0(e

jφn − µφ)2|αn|2∑N
n=0 |αn|2

, (3)

where

µφ =

√√√√∑N
n=0 e

jφ|αn|2∑N
n=0 |αn|2

, (4)

is the mean azimuth angle. The polar angular spread Sθ
can also be derived in the same manner by replacing φ
by θ.

• Delay spread Sτ of a link is given by [1]

Sτ =

√√√√∑N
n=0 τ

2
n|αn|2∑N

n=0 |αn|2
− Tm, (5)

where µθ is the mean delay defined as

Tm =

∑N
n=0 τl|αn|2∑N
n=0 |αn|2

. (6)

Other than the pathloss, the above parameters are referred to
as condensed parameters. They are essential inputs to multi-
dimensional channel models such as ITU-R IMT-2020 [8].
It is clear that rigorous relationships between pathloss and
condensed parameters do not reveal unique mathematical
relationship and hence inter-(in)dependence between them.
A data-driven approach to analyze the relationships between
them would therefore be the more feasible analysis method.

Fig. 2. Decision Tree Layout [9].

III. DECISION TREE

This section introduces the principle of decision tree and
the reasoning for using it for the LoS state identification.
Classification And Regression Tree (CART) is a collective
name for two separate machine learning approaches; numerical
target labels such as condensed parameters in this study are
represented by a regression tree, whereas categorical or binary
target labels such as the LoS existence for each BS-MS link
is represented by a classification tree. A decision tree is a
flowchart-like structure consisting of the following parts.

• Root Node: The top-level node symbolizes the overall
goal or major decision to make.

• Decision Node: A node below the root node represent-
ing a test for classification and regression based on an
attribute of the target label.



• Branches: The options, regression and classification out-
comes, or courses of action that are available in relation
to the test in the decision node are represented by the
branches that grow from the nodes. They are usually de-
noted by an arrow line and frequently include associated
costs as well as the chance of occurrence.

• Leaf Node: Each action’s alternative outcomes are repre-
sented by the leaf nodes or terminal nodes, which are
attached at the ends of the branches. Leaf nodes are
divided into two types: decision nodes, which signal the
need for further decision, and leaf nodes, which represent
a chance occurrence or undetermined consequence. The
leaf nodes indicate different classes.

Each decision node indicates a splitting rule for a
value/category of the target label based on its attribute. For
example, a radio link may be classified into LoS or NLoS
condition at an decision node having a splitting rule related
to the delay spread of the link. The link state is the target
label, while its state of LoS or NLoS is is an binary attribute
of the target label in this case. The rule separates the target
value/state into different classes for classification, and for re-
gression, each resulting class has a reduced error after split by
the rule. New decision nodes are created until user-set figure-
of-merits are fulfilled for regression or classification based on
the test data for training. The figure-of-merits to define the
optimum regression or classification can be of different types
such as gain ratio, information gain, accuracy, Gini index and
least square errors. A numerical value estimate of the target
label in a class is obtained by averaging the classified values in
the corresponding leaf node, while a forecast of the target label
is given as one of the classes and corresponding numerical
value estimate. An attribute of a class is determined based on
the majority of examples that reached this leaf during training.
The most widely utilized method for predicting and classifying
future events is decision trees [9]–[11].Building and trimming
are the two primary processes in developing such trees. During
the first phase, the training data set is recursively partitioned
until the majority of the entries in each partition have the same
value. After that, the second phase removes some branches
that contain erroneous classification or those with the largest
estimated error rate in the regression to keep the tree compact.
Decision trees are frequently criticized for failing to capture
complicated and non-linear relationships between target labels.
Despite this, research reveals that decision trees have a high
level of accuracy given the training data requirements [9]–[11].

Because decision trees are non-linear, they are more flexible
to explore, prepare, and predict multiple alternative conse-
quences for decisions to make. Furthermore, by displaying
a simplified view of cause-and-effect links, decision trees
efficiently express complicated processes. Finally, they allow
thorough validation of intuition about relationship between a
target label and attributes before detailed analysis of the same
through, e.g., physical and analytical models.

IV. WIDEBAND MIMO CHANNEL SOUNDING

As an alternative to the mathematical model based approach
to analyze inter-dependence of pathloss, LoS existence and

TABLE I
GEOMETRICAL SETTINGS OF THE MIMO CHANNEL SOUNDING AT

5.3 GHZ IN DOWNTOWN HELSINKI

Route MS travel # of BS-MS LoS/ BS height
length [m] links L NLoS zBS [m]

s03 42.3 1766 NLoS 10
s04 61.6 4712 Both 10
s05 28.3 3285 NLoS 10
s06 89.7 5997 both 10
s07 41.1 3129 both 10
s08 65.1 4574 LoS 10
s09 46.5 4263 LoS 10
s10 0 1031 NLoS 16-40
s11 70.8 4508 NLoS 40
s13 0 1181 NLoS 16-40

Fig. 3. Dynamic MIMO channel sounding at 5.3 GHz in a downtown
Helsinki. A location of the BS along with MS routes s03–s11 are overlaid.

condensed parameters, a data based modeling approach of the
same is tested. This section introduces the data and channel
sounding campaign from which the data originate. Since the
data have never been presented in papers, we describe them
here briefly for complete understanding of the present work.

A large campaign of dynamic multiple-input multiple-
output (MIMO) channel sounding was performed in downtown
Helsinki at 5.3 GHz by former colleagues of one of the
authors in the same research group using the channel sounder
introduced in [12]. The BS is fixed at one of streets with
elevated height using a crane. Several routes of a mobile
station are illustrated in Fig. 3. The routes have varying length,
the number of MIMO channel transfer functions L and the BS
heights as summarized in Table I. Existence of the optical LoS
is also indicated in the same table. Routes s10 and s13 were
performed while the MS antenna is static. Instead, the BS
antenna height changes between 16 and 40 m continuously.
For route s13, about 60 links at the lowest BS antenna height
were outage where no meaningful signal was observed during
channel sounding. Routes s04, s06 and s07 include both LOS
and NLOS conditions depending on the location of the MS.

The BS was equipped with a planar array of 32 dual-
polarized patch antennas, while the mobile station was with
a spherical antenna array consisting of 32-element dual-
polarized patch antennas. The mobile was on a trolley at
the lowest height of 1.6 m above the ground to measure
MIMO radio channel responses on 10 MS routes stretching



over 445 m. Since the channel response was acquired ev-
ery quarter- wavelength, we have obtained a total of about
34, 000 MIMO channel responses. From the measured MIMO
channel responses, a set of parameters was estimated for a
propagation path, i.e., 1) angle-of-departure (azimuth/polar)
at the BS ΩBS, 2) angle-of-arrival (azimuth/polar) at the
MS ΩMS, 3) normalized propagation delays to the shortest
delayed path in the link τ̂ln = τln − minl (τln) and 4)
polarimetric complex amplitude α, using a high-resolution
algorithm [12]. The high-resolution algorithm compensates for
the radiation characteristics of the arrays at link ends using
the knowledge of complex multi-polarized antenna patterns.
Condensed parameters defined in Section II were derived for
each link using the set of propagation path parameters.

Fig. 4. The decision tree defined by influential features, i.e., pathloss [dB] and
BS-MS link distance [m], to predict LoS existence of MIMO microcellular
mobile links.

TABLE II
CONFUSION MATRIX FOR PERFORMANCE EVALUATION

Prediction Actual LoS NLoS Precision
LoS 3072 55 90.2%
NLoS 5673 14076 70.9%
Recall 34.7% 99.6%

V. APPLICATION OF DECISION TREE TO LOS STATE
PREDICTION

A. Setup
The condensed parameters of MIMO links derived from

the extensive channel sounding were split into training and
testing subsets. Feature selection and parameter tuning for
the training set was performed first. Among the CART, the
classification tree is used in this study to predict existence of
LoS of a link, given its condensed parameters. In general, ML
algorithms help extract significant features from the data for
insightful predictions. The decision tree was validated using
test dataset to empower prediction strengths of the LoS/NLoS
identification without knowing the specificity of data.

B. Results and Discussions
Figure 4 illustrates the decision tree with most influential

features, i.e., the link pathloss and BS-MS link distance, to

predict the LoS existence in cellular mobile links with 100 %
accuracy. When correlation is analyzed between the LOS
existence and other target labels, the link gain has a higher
score of 0.6 than the others, which have a normal range from
0.0 to 0.5.

If the influential features are different for multiple MS
routes, the decision tree will have to be retrained for a new
route. Furthermore, it is possible that the attribute distribution
is not identical for different MS routes, implying that using
multiple datasets from different MS routes may not yield
improved predictions of the target label. Since every training
of the decision tree based on datasets from different MS routes
may not lead to the exact pattern prediction of the target
label, some degrees of inaccuracies are expected. For example,
Figure 5 illustrates a decision tree without the link pathloss or
BS-MS link distance as target labels. Each decision node has
two branches depending on the attribute of delay and angular
spreads. The leaf node is existence of the LoS or NLoS.
Table II depicts a confusion matrix that compares classification
outcomes with actual observations. There are four potential
outcomes here:

• True Positive (TP) means that the decision tree predicts
that the link has a LoS, which is actually true; 3072 links
fell into this case.

• False Positive (FP) is LoS prediction but actual link
condition is NLoS; 55 links were classified to this case.

• False Negative (FN) refers to NLoS prediction while
actually the link was LoS; 5673 cases observed.

• True Negative (TN) cases are correct prediction of the
NLoS condition; 14076 links fell into this case.

In our balanced dataset with the similar number of LoS and
NLoS link states in the measurement, the accuracy of 75 %
was achieved with the decision tree. The prediction perfor-
mance shows some rooms for improvement using optimizing
parameters to extract and learn more patterns for the model.
The current studies were based on datasets of condensed
parameters from extensive MIMO channel sounding with 2
LoS, 5 NLoS and 3 mixed LoS/NLoS MS routes. However,
the number of datasets were still limited to extract meaningful
patterns using the decision tree. More BSs and cellular sites,
leading to extended MS measurement routes, may help find
more meaningful patterns of the condensed parameters. The
inter-relationships between condensed parameters are as such
complex as elaborated in Section II, making it hard to find
commonalities or dissimilarities in the present data sets from
extensive MIMO channel sounding. Relating the condensed
parameters with the geometry-related target labels like the
user’s location, heights, position and density, among others
may lead to finding more meaningful patterns.

VI. CONCLUDING REMARKS

This paper presented the use of the decision tree to find
inherent patterns of various condensed parameters of radio
channels and geometrical radio link setup to relate them with
the LoS existence of the same link. Fully data-driven modeling
approach is studied because of complicated and non-unique



Fig. 5. The decision tree explained by all the condensed channel parameters but the pathloss and BS-MS link distance. The prediction accuracy of the
LoS existence in MIMO microcellular mobile links was 75 % by this tree. In the figure, the delay spread is defined by a number of taps, where each tap
corresponds to a delay width of 16.6 ns equivalent to 5 m in a path length.

mathematical relationship between the mentioned parameters
and setups. The radio channel and geometrical link data
were obtained from extensive wideband polarimetric double-
directional channel sounding in a city center of Helsinki at
5.3 GHz, featuring about 34000 links. It was found that the
BS-MS link distance and link pathloss were most influential
features in predicting the LOS existence. While the use of
less influential features of condensed parameters led to 75 %
accuracy in predicting the target label due to not being able to
find the exact pattern across different MS routes. The use of
geometric link setups, with only relative positions of the BS
and MS, in addition to condensed channel parameters seems
promising way forward when predicting one/some of them.
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