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ABSTRACT: Detection of UV light has traditionally been a major
challenge for Si photodiodes due to reflectance losses and junction
recombination. Here we overcome these problems by combining a
nanostructured surface with an optimized implanted junction and
compare the obtained performance to state-of-the-art commercial
counterparts. We achieve a significant improvement in responsivity,
reaching near ideal values at wavelengths all the way from 200 to
1000 nm. Dark current, detectivity, and rise time are in turn shown
to be on a similar level. The presented detector design allows a
highly sensitive operation over a wide wavelength range without
making major compromises regarding the simplicity of the fabrication or other figures of merit relevant to photodiodes.
KEYWORDS: photodiode, UV detection, black silicon, ion implantation, responsivity

■ INTRODUCTION
Doped pn junction Si photodiodes occupy a major share of the
photodiode market due to several of their unrivaled properties.
Their low noise, high speed, easy and well-known processing
techniques, compact sizes, and low cost often make them the
preferred option for light detection in various applications such
as optical communication systems,1 astronomical experi-
ments,2 and medical imaging instruments.3 However, one
area where doped pn junction photodiodes still struggle is the
detection of UV light. Responsivity of the detectors has so far
been limited by reflectance, whose impact is pronounced with
shorter wavelengths.4,5 In fact, the commercial doped junction
UV photodiodes still yield similar responsivity (e.g., ∼0.13 A/
W at 250 nm, which corresponds to ∼65% quantum
efficiency4) as they did already decades ago.

In solar cells, the reflectance losses have been eliminated by
using a silicon surface with micro/nanostructures or so-called
black silicon (b-Si),6 which in combination with effective
surface passivation is already in industrial use. However, due to
an increased surface area, external doping of b-Si leads to a
high concentration of dopants inside the nanostructures, which
in turn causes high Auger recombination.7−9 This is especially
highlighted in the UV wavelengths, since UV photons are
absorbed very close to the Si surface (within ∼100 nm) and
need to diffuse to the depletion region without recombining in
order to be collected.4,5 Recently, the increased recombination
in nanostructured solar cells has been solved by developing
recombination-free implanted10 and diffused11 pn junctions. As
a result of these inventions, the external quantum efficiency

(EQE) of the doped junction Si solar cells has been pushed to
record values over a wide wavelength range. Since photodiodes
are operationally very close to solar cells, this raises an
interesting question if these methods could be applied to
photodiodes, too.

In this Article, our aim is to employ some of the above
approaches, i.e., nanostructures with an optimized implanted
pn junction, in PIN photodiodes and study the resulting
performance. We compare the photoresponsivity of our
detector with that of the market leader diffused junction Si
detectors, especially focusing on near and middle UV
wavelengths of 200−400 nm. Furthermore, we systematically
report and discuss the dark current, detectivity, and rise time.

■ METHODS
In this work, the starting wafers were 4-in. lightly doped n-type
FloatZone Si with a resistivity of >10 kOhm cm, a 350 μm
thickness, and (111) orientation. A high-quality substrate with
a minimal number of intrinsic impurities was chosen to allow
the fabrication of a PIN photodiode with low bulk
recombination and dark current. Figure 1a presents the
cross-section of the final device. The circular active area of
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the chips is limited inside the anode ring and has a radius of 2.5
mm. The detection area is insulated from the surroundings by
a circular guard ring, which prevents the outside leakage
current from reaching the anode and thus helps to reduce the
dark current.

Fabrication started by growing a thick (650 nm) silicon
oxide on the front side of the wafer at 1000 °C in an H2O
atmosphere to serve as a mask material during the following
processes, but also as a passivation film outside of the active
area on the final device (Figure 1a). Next, the oxide was
patterned with photolithography to form the openings for the
active areas. Cryogenic inductively coupled plasma−reactive
ion etching (ICP−RIE) was employed to form the b-Si to the
openings using a process described elsewhere.12 After b-Si
formation, the oxide was again selectively etched to form the
openings for guard rings. Next, the low recombination front
junction was formed by applying boron implantation (10 keV
implantation energy and 3 × 1015 cm−2 dose) and annealing
parameters previously used in high-efficiency b-Si solar
cells.10,13 Boron was also implanted outside the active area
and phosphorus on the rear side of the photodiode to enable
the formation of Ohmic contacts for the guard ring and the
rear contact, respectively (see Figure 1a). Implantation was
followed by a 20 min drive-in anneal at 1050 °C in an O2
atmosphere, after which the resulting thin oxide was removed
from the implanted areas.

In ion implantation, the amount and depth of dopants is not
dependent on the surface area, which makes it possible to
create junctions with a low dopant concentration within the b-
Si nanostructures. Conversely, employing a traditionally used
diffusion doping technique would result in a high concen-
tration of dopants inside the nanostructures and consequently
vastly increase Auger recombination. The applied combination
of front junction boron implantation and annealing parameters
has indeed been shown to result in a low recombination
junction with b-Si,13 which is the key for efficient UV light
detection. A junction depth of ∼1.5 μm has been measured
from a planar sample with a similar implantation to our
device,13 and we assume it to roughly apply to our b-Si
junction as well. Sheet resistance of the active area measured
from our device by four-point probe was 85 Ω/sq. The
nanostructured surface was then passivated by a 50 nm atomic
layer deposited (ALD) aluminum oxide (Al2O3) film grown at
200 °C with trimethylaluminum and water as the precursors.

The metal contacts were formed by sputtering 300 and 1000
nm Al layers on the front and the rear side, respectively.

Finally, the wafer was annealed in forming gas at 425 °C for 30
min. This final annealing served three purposes: (i) activation
of Al2O3 passivation, (ii) sintering of Al contacts, and (iii)
annealing of SiO2 with an Al layer on top (also known as Al-
nealing). Al-nealing is known to greatly enhance the
passivation performance of SiO2 on Si by creating atomic
hydrogen to neutralize interface defects.14,15 Before the final
annealing, Al film was removed from the top of the active area
since Al-nealing has instead been shown to decrease the
passivation performance of Al2O3.

16 At the end, aluminum was
etched off from the top of SiO2 to achieve the structure shown
in Figure 1a.

The most important photodiode parameters were charac-
terized from the finished devices. EQE was measured between
200 and 1100 nm with a 10 nm interval at zero bias, with
measurement details described in ref 17. Spectral responsivity
(Rλ) was calculated from the EQE with

=R
q
hc

EQE

where q is the elementary charge, λ is the wavelength of light, h
is the Planck constant, and c is the speed of light. I−V and C−
V characteristics of the photodiodes were determined with a
Hewlett-Packard Model 4145A Semiconductor Parameter
Analyzer and a Hewlett-Packard Model 4192A LF Impedance
Analyzer, respectively. A 100 kHz measurement frequency was
used in the C−V measurement. The speed of the photodiodes
was evaluated by a rise time measurement described in ref 18
and conducted under 405, 655, and 980 nm laser excitation
and 5 and 10 V reverse biases. Photoluminescence (PL)
imaging with a BT Imaging LIS-R2+ was utilized to
demonstrate the uniformity of the recombination activity
within the active area as well as outside it. Higher values
represent lower recombination, but areas with different
reflectances, i.e., active areas and surroundings, cannot be
directly compared with each other.19 Matching values across all
SiO2 areas show that good passivation can be achieved
between the anode and the guard ring as that obtained in the
areas outside the contact rings (Figure 1b). This is especially
important to mitigate the dark current. Finally, dark current
shot noise limited specific detectivity (D*) was calculated
with20,21

* =D
A R

qI2 D

Figure 1. (a) Cross-section of the B-implanted b-Si photodiode. (b) Measurement of the recombination activity of a single detector chip using PL
imaging. The units are arbitrary but demonstrate good uniformity on the active and surrounding areas.
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where A is the surface area of the detector and ID is the dark
current under specified reverse bias. We expect the dark
current to be the dominating noise source when the
photodiode is reverse biased. However, the calculation only
gives the fundamental maximum achievable value of D*, since
other noise sources, such as Johnson noise and 1/f (flicker)
noise are not considered.

■ RESULTS AND DISCUSSION
Figure 2a shows the responsivity of our photodiode between
200 and 1100 nm. It can immediately be seen that the
performance is near ideal over almost the whole wavelength
range. The fact that the responsivity closely follows the line
depicting the collection of one electron per each incoming
photon implies that the photodiode is nearly free of reflectance

Figure 2. (a) Responsivity of a boron-implanted b-Si detector over a wide wavelength range measured at 0 V bias. Dashed line represents one
collected electron per a photon. 1/e photon absorption limit for 1.5 μm junction is highlighted. (b) UV responsivity of market leader diffused Si
UV photodiodes23−25 compared to this work.

Figure 3. (a) Comparison of IV-characteristics in dark and under continuous room light illumination. (b) Measured dark current density (c) and
capacitance of the B-implanted b-Si photodiode as a function of reverse bias voltage. (d) Measured rise times with different biases and illumination
wavelengths.
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and recombination losses. Such an excellent performance is
achieved by mitigating the reflectance with b-Si and efficiently
passivating the nanostructured surface with ALD Al2O3.
Interestingly, responsivity remains high at wavelengths <550
nm, which correspond to absorption depths of <1.5 μm on the
Si surface. These depths are related to our estimated p+
implantation depth of 1.5 μm, and thus, the high responsivity
with these wavelengths proves that junction recombination is
also minimal and the device is able to collect charge carriers
generated at the very surface of it. This is also assisted by the
negative fixed charge in the Al2O3 film repelling minority
charge carriers away from the surface/implanted area.22

Figure 2b focuses specifically on UV responsivity (200−400
nm) and presents a comparison between our device and
commercial diffused Si UV photodiodes,23−25 hereafter
referred to as “Commercial UV photodiode 1/2/3”. Reference
devices with the highest UV responsivity to the best of our
knowledge were chosen. Interestingly, the commercial devices
exhibit rather poor performance and clearly fall below our
photodiode in that regard. Furthermore, the responsivity of the
commercial devices remains far from ideal outside UV, too
(not shown here). The combination of b-Si and optimized
implanted junction instead allows near-ideal responsivity in
UV, but also all the way up to near-infrared.

In addition to spectral responsivity, there are multiple other
figures of merit that determine the quality of a photodiode.
Figure 3a shows the I−V characteristics of our device in the
dark and under room light illumination. A significant difference
in current can be seen under these two conditions, indicating a
possibility for a highly sensitive operation. Figure 3b further
focuses on the dark current density (Jd) with increasing reverse
bias voltages. At 10 mV reverse voltage, Jd is 0.07 nA/cm2 and
remains below ∼0.3 nA/cm2 up to 3 V reverse bias. After that,
Jd steadily increases until 30 V, which is the depletion voltage
of the detector. The increase can be explained by the growth of
the depletion region, and consequently collection volume, until
full depletion is reached. Above 30 V Jd remains ∼1 nA/cm2

until 80 V bias at which the junction breakdown starts to take
place. These Jd values are comparable to the reference
photodiodes (e.g., ∼0.1 nA/cm2 at −1 V24,25) and further
demonstrate the good quality of the junction.

Specific detectivity describes the sensitivity of a detector, i.e.,
its capability to detect small light intensities. To reach the best
possible sensitivity, it is necessary to minimize noise in the
photodiode. In reverse biased detector, majority of the noise
consists of shot noise, which arises from statistical fluctuation
of the current in the detector.20,21 Considering the dark current
as the only noise source, in our devices the specific detectivities
at −3 V bias are 1.49 × 1013 and 7.30 × 1013 Jones for 200 and
1000 nm (λpeak, wavelength of peak responsivity), respectively.
The values are on the same level as the reference doped pn
detectors. For reference, commercial UV photodiode 1 has
detectivities of 8.79 × 1012 and 4.11 × 1013 Jones at 200 nm
and λpeak = 960 nm, respectively.23 Commercial UV photo-
diode 2 instead has detectivities of 1.82 × 1013 and 7.20 × 1013

Jones at 200 nm and λpeak = 970 nm, respectively.24 Note that
these values were calculated from zero bias Noise Equivalent
Power and responsivity curves given in the photodiode
datasheets.

Rise time is another important detector parameter, which is
defined as the time it takes for the output signal to rise from
10% to 90% of its final value. Rise time determines the speed of
the detector and is thus very important factor in certain high-

speed applications, such as telecommunication. Capacitance
directly impacts the RC time constant and consequently the
rise time of the detector.26 Capacitance of the B-implanted b-Si
photodiodes is 137 pF at zero bias and saturates to 9 pF at the
depletion voltage of 30 V (Figure 3c). Rise times of our device
are reported in Figure 3d and are ∼120 and ∼75 ns at 5 and 10
V reverse biases, respectively. By increasing the bias, we would
expect to further decrease the rise time. The detectors are
relatively fast already, but factors that limit the speed will be
further discussed later. Finally, the wavelength of the incoming
light does not seem to have a major impact on the rise times.

■ DISCUSSION
Boron-implanted b-Si detector provides a large improvement
in UV responsivity compared to conventionally doped planar
Si pn photodiodes. Minimal reflection from the nanostructured
surface combined with low-recombination junction and surface
allows near ideal performance at UV wavelengths 200−400 nm
as well as outside UV all the way up to 1000 nm. Additionally,
we expect the performance to improve even further below 200
nm due to carrier multiplication phenomenon. In fact, due to
this effect, the spectral responsivity of a truly ideal Si
photodiode would exceed one electron per photon at ∼350
nm and below.27−29 Thus, there still remains some room for
improvement in our photodiode. Nevertheless, the results
prove that the excellent EQE previously demonstrated with
solar cells10 can be achieved with photodiodes, too. The near
ideal responsivity over a wide wavelength range also makes the
boron-implanted b-Si photodiode a promising candidate for a
predictable quantum efficient detector.30

The biggest difference between our device and the
commercial doped junction photodiodes emerges from the
widely dissimilar reflectance. Each reference device has a planar
surface, which inevitably results in some reflected light,
although having been optimized for UV light detection.
Achieving high responsivity between 200 and 400 nm has
traditionally been complicated due to highly variable refractive
indices of Si, which makes optimizing antireflective coatings
difficult.31 Furthermore, outside UV, such coatings instead
hinder the performance. Hence, eliminating reflectance over a
wide wavelength range with AR coatings is extremely
challenging.

Another obstacle in UV light detection has been the shallow
penetration depth of the UV photons. Charge carriers created
near the surface are prone to surface recombination, while the
external dopant atoms forming the junction simultaneously
increase their probability for Auger recombination. Hence, it
has been desirable to move the charge collection region as
close to the detector surface as possible. Two methods for that
have traditionally been (i) fabrication of ultrashallow junction
photodiodes5,32,33 and (ii) induction of additional electric field
to the detector surface via gradient doping or charged films to
drive the charge carriers to the depletion region before
recombination.4,34 Such methods can solve the recombination
problem, but require additional techniques for reduction of
reflectance. Another challenge with shallow junctions is their
high sheet resistance (several kΩ/sq), which in turn limits the
speed of the detector.4,35 In our device, the junction is rather
deep (∼1.5 μm), resulting in sheet resistance of 85 Ω/sq,
which is low enough to not have an impact on the speed. Most
importantly, the junction causes no major recombination due
to low enough dopant densities throughout it. Recombination
is additionally suppressed by generating an additional electric
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field near the surface through negatively charged Al2O3
passivation film.

Another recent method for increasing responsivity in Si
photodiodes has been forming the junction by inducing an
inversion layer on the surface instead of introducing dopant
atoms to form the junction.23,36,37 This approach also allows
utilization of b-Si while minimizing the recombination and has
been shown to achieve excellent responsivity from 200 to 1000
nm, e.g., 0.21 A/W at 200 nm. The junction recombination in
an induced junction b-Si device has, in fact, been shown to be
smaller than in an implanted b-Si junction, similar to one in
this work (emitter saturation current of 3 vs 33 fA/cm2).10

However, an induced junction can lead to higher response
times due to high sheet resistance (∼9 kΩ/sq) as well as worse
linearity at high input powers.18,23 The high sheet resistance
creates an additional RC time component, which can create a
fundamental limit for an achievable rise time. Compared to a
doped pn junction photodiode, the increase would be ∼10 ns
at −10 V bias (calculated based on an empirical formula
presented in ref 18) in a device with similar dimensions to
ours. In this specific case, the difference is rather small, but in a
high-speed photodiode, the high resistivity layer could
dominate the rise time. In this work, we have shown that the
benefits of the induced junction photodiode, e.g., extremely
high responsivity and low junction recombination, can be
achieved with traditional doping methods while avoiding the
downsides of the induced junction. Furthermore, incorporating
B-implanted b-Si photodiodes into established processing lines
is simple, as their fabrication largely follows the processing
steps of a traditional photodiode. The only additional step is
the RIE etching of the b-Si.

In addition to high responsivity, the dark current of our
device is very low. Minimal dark current decreases the
magnitude of the lowest detectable light intensity, thus making
the detector more sensitive. There are multiple factors that
explain the low leakage current of our device. First, as
mentioned, recombination inside the junction and on the
surface of the active area is minimal due to optimized
implantation parameters and effective ALD Al2O3 surface
passivation, respectively. Second, Al-nealed SiO2 between the
anode and the guard ring provides good surface passivation
and induces a channel-stopper region between the contacts.
Third, the guard ring collects the unwanted currents
originating from outside of the active area. Finally, bulk
recombination is negligible due to high quality Si substrates
used in this work.

In this work, the goal was not to prepare ultrafast detectors.
Nevertheless, the rise times are relatively low already and the
detector could be made even faster by tuning its design. Our
detectors are rather large in area and thus have a high
capacitance, which slows down the detector. To minimize the
rise time, we could make the detectors smaller and thinner. A
smaller active area reduces the capacitance and dark current,
and with thinner detectors, it is easier to reach full depletion
and eliminate some time components that impact rise time. In
this case, the dominating time component would be drift time,
which is again tunable by using higher reverse voltages. Such
modifications should not impact the responsivity. Nevertheless,
based on the calculations made using a theoretical equation for
rise time,26 we would expect to achieve a below 20 ns rise time
with >40 V reverse biases with the current sized (⌀ 5 mm)
detectors, too. And as seen in Figure 3b, the leakage currents,
although increasing, remain moderate at high biases. Thus,

applying a high reverse bias should not impact the sensitivity
much either.

■ CONCLUSION
We have fabricated a high-performance Si PIN photodiode
utilizing b-Si and an optimized boron-implanted junction, a
design originally developed for solar cells. Near-ideal
responsivity was achieved from 200 to 1000 nm. More
specifically, we obtained responsivities of 0.15−0.30 A/W in
UV (200−400 nm), which is a sizable improvement (∼50% on
average) to commercial doped junction Si photodiodes.
Simultaneously, the dark current of our device remained low
(below ∼0.3 nA/cm2 up to 3 V reverse bias), allowing sensitive
detection. Indeed, the calculated specific detectivities at −3 V
bias voltage were 1.49 × 1013 and 7.30 × 1013 Jones for 200
and 1000 nm, respectively. Finally, unlike in shallow junction
photodiodes typically used for UV detection or induced
junction photodiodes known for their excellent responsivity
over a wide spectral range, the speed of our device is not
limited by its sheet resistance. Thus, by tuning the photodiode
dimensions and bulk resistivity, an even higher speed should be
attainable with this detector design. Our device demonstrates
that reaching high responsivities at wavelengths all the way
down to UV is possible with conventional photodiode
fabrication methods and without trade-offs in other perform-
ance characteristics.
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