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Abstract

Let Fn
q be a vector space of dimension n over the finite field Fq . A q-analog of a Steiner system

(also known as a q-Steiner system), denoted Sq(t,k,n), is a set S of k-dimensional subspaces of Fn
q

such that each t-dimensional subspace of Fn
q is contained in exactly one element of S . Presently,

q-Steiner systems are known only for t = 1, and in the trivial cases t = k and k= n. In this paper,
the first nontrivial q-Steiner systems with t > 2 are constructed. Specifically, several nonisomor-
phic q-Steiner systems S2(2, 3, 13) are found by requiring that their automorphism groups contain
the normalizer of a Singer subgroup of GL(13, 2). This approach leads to an instance of the exact
cover problem, which turns out to have many solutions.

2010 Mathematics Subject Classification: 51E10 (primary); 05E20 (secondary)

1. Introduction

Let V be a set with n elements. A t-(n, k, λ) combinatorial design (or t-design,
in brief) is a collection of k-subsets of V , called blocks, such that each t-subset
of V is contained in exactly λ blocks. A t-(n, k, λ) design with t = λ = 1 is

c© The Author(s) 2016. This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided
the original work is properly cited.
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M. Braun et al. 2

trivial: it is simply a partition of V into k-subsets, which exists if and only if
k divides n. A t-(n, k, 1) design with t > 2 is known as a Steiner system, and
usually denoted S(t, k, n). Steiner systems are among the most beautiful and
well-studied structures in combinatorics. Their history goes back to the work of
Plücker [41], Kirkman [31], Cayley [10], and Steiner [45] in the first half of
the 19th century. Today, the significance of Steiner systems extends well beyond
combinatorics—they have found applications in many areas, including group
theory, finite geometry, cryptography, and coding theory [5, 12, 17, 27]. For
example, a finite projective plane of order q can be characterized as a Steiner
system S(2, q + 1, q2

+ q + 1), with lines as blocks. As another example, the
Mathieu groups (which played an important role in the classification of finite
simple groups) are most naturally understood as automorphism groups of certain
Steiner systems.

It has been known since the celebrated result of Teirlinck [48] that nontrivial
t-designs exist for all t . As far as Steiner systems, there are several infinite
families with t 6 3 as well as numerous sporadic constructions with t = 4, 5;
see [12, Part II] for more details. A long-standing problem in design theory
asks whether nontrivial (meaning t < k < n) Steiner systems with t > 5
exist. Keevash recently announced a resolution of this problem: his breakthrough
paper [29] moreover shows that Steiner systems S(t, k, n) exist for all t < k and
all sufficiently large integers n that satisfy the necessary divisibility conditions.

The classical theory of q-analogs of mathematical objects and functions has
its beginnings in the work of Euler [19, 33]. In 1957, Tits [51] further suggested
that combinatorics of sets could be regarded as the limiting case q→ 1 of combi-
natorics of vector spaces over the finite field Fq . Indeed, there is a strong analogy
between subsets of a set and subspaces of a vector space, expounded by numer-
ous authors—see [11, 21, 52] and references therein. It is therefore natural to ask
which combinatorial structures can be generalized from sets (the q→ 1 case) to
vector spaces over Fq . For t-designs and Steiner systems, this question was first
studied by Cameron [8, 9] and Delsarte [14] in the early 1970s. Specifically, let
Fn

q be a vector space of dimension n over the finite field Fq . Then a t-(n, k, λ)
design over Fq is defined in [8, 9, 14] as a collection of k-dimensional subspaces
of Fn

q , called blocks, such that each t-dimensional subspace of Fn
q is contained

in exactly λ blocks. Such t-designs over Fq are the q-analogs of conventional
designs. By analogy with the q→ 1 case, a t-(n, k, 1) design over Fq is said to
be a q-Steiner system, and denoted Sq(t, k, n).

Remark. We observe that q-analogs of designs and Steiner systems are
not only of interest in their own right, but also arise naturally in other areas,
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Existence of q-analogs of Steiner systems 3

such as network coding. In conventional coding theory, a code is a collection
of elements of An (where A is a fixed set, called the alphabet) that are well
separated according to some metric, for example, the Hamming distance. Such
codes, however, are not appropriate for error correction in networks. In random
network coding [24, 54], a source of information injects into the network several
(say, k) vectors lying in some ambient space Fn

q . A network is simply a directed
acyclic graph; each node in the network performs a (random) linear operation
on the vectors incident on its incoming edges, propagating the result on its
outgoing edges. Clearly, the only information that is preserved and propagated
through the network in this manner is the vector space spanned by the source
vectors. The appropriate code in this case is a collection of subspaces of Fn

q that
are well separated according to a metric defined on the Grassmannian Gr(k,Fn

q ).
Consequently, a q-Steiner system Sq(t, k, n) can be thought of as an optimal
code for error correction in networks. For more details on this, see [17, 34].

Following the work of Cameron [8, 9] and Delsarte [14], the first examples of
nontrivial t-designs over Fq were found by Thomas [49] in 1987. Today, owing
to the efforts of many authors [7, 20, 30, 40, 42, 46, 47, 50], numerous such
examples are known.

However, the situation is very different for q-Steiner systems. They are known
to exist in the trivial cases t = k or k = n, and in the case where t = 1 and
k divides n. In the latter case, q-Steiner systems coincide with the classical
notion of spreads in projective geometry [38, Ch. 24]. Some 40 years ago,
Beutelspacher [6] asked whether nontrivial q-Steiner systems with t > 2 exist,
and this question has tantalized mathematicians ever since. The problem has
been studied by numerous authors [3, 18, 39, 44, 49, 50], without much progress
toward constructing such q-Steiner systems. In particular, Thomas [50] showed
in 1996 that certain kinds of S2(2, 3, 7) q-Steiner systems (the smallest possible
example) cannot exist. Three years later, Metsch [39] conjectured that nontrivial
q-Steiner systems with t > 2 do not exist in general. In contrast to this conjecture,
our main result is the following theorem.

THEOREM 1. There exist nontrivial q-Steiner systems with t > 2.

In fact, we have discovered over 500 nonisomorphic S2(2, 3, 13) q-Steiner
systems. For more on this, see Section 3; however, let us briefly outline our gen-
eral approach here. We begin by imposing a carefully chosen additional structure
on a putative S2(2,3,13) q-Steiner system S . Specifically, we construct a group
A6 GL(13,2) as the semidirect product of the Galois group Gal(F213/F2) and a
Singer subgroup Cα of GL(13, 2), and then insist that the automorphism group
Aut(S) contains A. Next, we make use of the well-known Kramer–Mesner
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M. Braun et al. 4

method, and consider the Kramer–Mesner incidence structure between the orbits
of 2-subspaces of F13

2 and the orbits of 3-subspaces of F13
2 under the action of A.

Given the corresponding Kramer–Mesner matrix MA with 105 rows and 30 705
columns, we reformulate the search for S as an instance of the exact cover
problem, which we solve using the dancing links algorithm of Knuth [32].

As corollaries to the existence of S2(2,3,13), we obtain a number of related
results. Starting with S2(2,3,13), we use [18, Theorem 3.2] to construct a Steiner
system S(3, 8, 8192). Steiner systems with these parameters were not known
previously [12]. An S2(2,3,13) q-Steiner system also leads to new diameter-per-
fect codes in the Grassmann graph [3, 44]. Finally, as explained earlier, q-Steiner
systems produce optimal codes for error correction in networks [17, 34]. Thus
we find that the maximum number of codewords in a subspace code over F13

2 of
constant dimension k = 3 and minimum subspace distance d = 4 is 1 597 245.

The rest of this paper is organized as follows. In Section 2, we consider
automorphisms of q-Steiner systems, and introduce the normalizer of a
Singer subgroup, which is the group of automorphisms we choose to impose
on S2(2, 3, 13). In Section 3, we briefly outline the Kramer–Mesner method,
and describe the computer search we have carried out based upon the results of
Section 2. We give an explicit set of 15 orbit representatives for the 1 597 245
subspaces of one S2(2, 3, 13) q-Steiner system, thereby proving Theorem 1.
We also present several negative results that establish nonexistence of q-Steiner
systems of certain kinds, extending the work of [16, 18, 35, 50]. We elaborate
upon the connection to difference sets in Section 4, and compile a number
of related results. In Section 5, we conclude with a brief discussion of open
problems, and formulate a specific conjecture regarding the existence of an
infinite family of q-Steiner systems.

2. Automorphisms of q-Steiner systems

Let G be the group of bijective incidence-preserving mappings from the set of
subspaces of Fn

q onto itself. We know from the fundamental theorem of projective
geometry [4, Ch. 3] that G is the general semilinear group 0L(n, q). This group
is isomorphic to the semidirect product of the general linear group GL(n, q) and
the Galois group Gal(Fq/Fp), where p is the characteristic of Fq . Unless stated
otherwise, we will henceforth assume that q is prime, in which case G reduces
to the general linear group GL(n, q). Basic familiarity with the main properties
of GL(n, q) is assumed; an in-depth treatment of GL(n, q) can be found, for
example, in [25].
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Existence of q-analogs of Steiner systems 5

The action of GL(n, q) on subspaces of Fn
q extends in the obvious way

to sets of subspaces, and thereby to q-Steiner systems. Given a set S of
subspaces of Fn

q and a group element g ∈ GL(n, q), we denote the image of
S under the action of g by Sg. We say that two sets of subspaces S1 and S2

are isomorphic if there exists an element g ∈ GL(n, q) such that S2 = Sg
1 . An

element g ∈ GL(n, q) for which Sg
= S is called an automorphism of S . The

automorphisms of a set S of subspaces form a group under composition, called
the automorphism group and denoted Aut(S). A subgroup of Aut(S) is called
a group of automorphisms. We note that, since GL(n, q) acts transitively on the
set of k-subspaces of Fn

q for any fixed k, the automorphism group of a nontrivial
q-Steiner system is necessarily a proper subgroup of GL(n, q).

A well-known approach to constructing combinatorial objects is to prescribe
a certain group of automorphisms A and then search only for those objects
whose automorphism group contains A. For an overview of the theory and
applications of this method to combinatorial designs, the reader is referred
to [27, Section 9.2]. Prescribing a group of automorphisms simplifies the
construction problem, sometimes rendering intractable problems tractable, but
choosing the right groups can be a challenge. We shall now discuss certain
apposite subgroups of GL(n, q).

A Singer cycle of GL(n, q) is an element of order qn
− 1. Singer cycles can

be constructed, for example, by identifying vectors in Fn
q with elements of

the finite field Fqn . Since multiplication by a primitive element α ∈ Fqn is
a linear operation, it corresponds to a Singer cycle in GL(n, q). In fact, there
is a one-to-one correspondence between Singer cycles in GL(n, q) and primitive
elements in Fqn . Given a primitive element α ∈ Fqn , the subgroup of GL(n, q)
generated by the corresponding Singer cycle is cyclic of order qn

− 1, and its
elements correspond to multiplication by αi for i = 0, 1, . . . , qn

− 2. We denote
such groups by Cα and call them the Singer subgroups of GL(n, q).

Another group of importance to us is generated by the Frobenius auto-
morphism φ : Fqn→Fqn , defined by φ(β)=βq for all β ∈Fqn . The Frobenius
automorphism φ is the canonical generator of the Galois group Gal(Fqn/Fq),
which is cyclic of order n.

The normalizer of a subgroup H 6 G is the set of elements of G that commute
with H as a whole. That is, NG(H) = {g ∈ G : gH = Hg}. The following well-
known result can be found, for example, in [25, pages 187–188].

THEOREM 2. Let Aα be the normalizer of a Singer subgroup Cα in GL(n, q).
Then Aα has order n(qn

− 1) and is isomorphic to the semidirect product of the
Galois group Gal(Fqn/Fq) and Cα.
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M. Braun et al. 6

The following theorem follows from a more general result by Kantor [26]. It
is stated explicitly in [15].

THEOREM 3. Let n be an odd prime. Then the normalizer of a Singer subgroup
is a maximal subgroup of GL(n, q).

In Section 3, we will search for q-Steiner systems S whose automorphism
group Aut(S) contains the normalizer of a Singer subgroup. We observe
that Singer subgroups and normalizers of Singer subgroups have been used when
prescribing automorphisms for various types of q-analog structures in [7, 17].

We already noted that Aut(S) < GL(n, q) for nontrivial designs over Fq . Thus
for odd primes n, it follows from Theorem 3 that if Aut(S) contains Aα, then
Aα is the full automorphism group of S . In turn, the fact that Aut(S) = Aα
makes it possible to say much more. In particular, we will show that distinct
nontrivial designs whose automorphism group contains Aα are necessarily
nonisomorphic. We point out that similar results have been already established
in various contexts—for example, see [37] and [43, Theorem 4.1]. Nevertheless,
we provide a self-contained proof. First, we need the following lemma.

LEMMA 4. The normalizer of a Singer subgroup is self-normalizing in GL(n, q).
That is, Aα = NGL(n,q)(Aα).

Proof. Let g ∈ NGL(n,q)(Aα). Then we have g−1Cαg 6 g−1 Aαg = Aα. The
conjugate of a Singer subgroup is also a Singer subgroup. On the other hand, it is
known [13, Proposition 2.5] that Aα contains a unique Singer subgroup. In
conjunction with g−1Cαg 6 Aα, this implies that g−1Cαg = Cα. This, in turn,
implies that g ∈ Aα, and therefore NGL(n,q)(Aα) = Aα.

THEOREM 5. Suppose that n > 3 and q are primes, and let Aα be the normalizer
of a Singer subgroup in GL(n, q). Then two distinct nontrivial q-Steiner systems
Sq(t, k, n) admitting Aα as a group of automorphisms are nonisomorphic.

Proof. Let S1 and S2 be two distinct Sq(t, k, n) q-Steiner systems, both
admitting Aα as a group of automorphisms. Then

Aut(S1) = Aut(S2) = Aα (1)

by Theorem 3. Now assume to the contrary that S1 and S2 are isomorphic, that
is Sg

1 = S2 for some g ∈ GL(n, q). Let a ∈ Aα. Then it follows from (1) that

Sg−1ag
2 = Sag

1 = Sg
1 = S2 (2)
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Existence of q-analogs of Steiner systems 7

and therefore g−1ag ∈ Aut(S2)= Aα. Since (2) holds for all a ∈ Aα, we conclude
that g must belong to the normalizer of Aα, which is Aα itself by Lemma 4. But
for g ∈ Aα, we have Sg

1 = S1 by (1). Hence S2 = S1, a contradiction.

We next show how to classify the subspaces of Fn
q into orbits under the action

of various groups. Fix a primitive element α of Fqn , and write a k-subspace X
of Fn

q as X = {0, αx1, αx2, . . . , αxm }, where m = qk
− 1 and x1, x2, . . . , xm ∈

Z/(qn
−1). For x ∈ Z/(qn

−1), let ρ(x) be the minimal cyclotomic representative
for x , that is ρ(x) = min{xq i mod (qn

− 1) : 0 6 i 6 n − 1}. We define:

invF(X)
def
= {ρ(xi) : 1 6 i 6 m},

invS(X)
def
= {xi − x j : 1 6 i, j 6 m with i 6= j}, (3)

invN (X)
def
= {ρ(xi − x j) : 1 6 i, j 6 m with i 6= j}.

The notation in (3) stems from invariance under the action of the various groups
of interest (to us), as explained in the following lemma.

LEMMA 6.

(1) If two k-subspaces X, Y of Fn
q are in the same orbit under the action of the

Galois group Gal(Fqn/Fq) then invF(X) = invF(Y ).

(2) If two k-subspaces X, Y of Fn
q are in the same orbit under the action of the

Singer subgroup Cα then invS(X) = invS(Y ).

(3) If two k-subspaces X, Y of Fn
q are in the same orbit under the action of the

normalizer Aα of the Singer subgroup Cα then invN (X) = invN (Y ).

Proof. Let X = {0, αx1, αx2, . . . , αxm } be a k-subspace of Fn
q , with x1, x2, . . . , xm

in Z/(qn
−1). The action of the generator of Cα on X increases x1, x2, . . . , xm by

one modulo qn
−1, thereby preserving the differences between them. The action

of the Frobenius automorphism φ on X multiplies each xi by q modulo qn
− 1,

thereby leaving it in the same cyclotomic coset.

3. Kramer–Mesner computer search

Constructing t-designs over Fq is equivalent to solving certain systems
of linear Diophantine equations. Let M be a {0, 1} matrix with rows and
columns indexed by the t-subspaces and the k-subspaces of Fn

q , respectively;
there is a 1 in row X and column Y of M if and only if t-subspace X is contained
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M. Braun et al. 8

in k-subspace Y . With this definition, a t-(n, k, λ) design over Fq is precisely
a {0, 1} solution to

M x = (λ, λ, . . . , λ)T . (4)

Unfortunately, for most parameters of interest, finding solutions to the resulting
large systems of equations is outside the realm of computational feasibility.

However, if we impose a prescribed group of automorphisms A on a putative
solution, thereby reducing the size of the problem, the situation can still be
described in terms of a system of linear equations. In this case, the rows
and columns of the matrix MA correspond to A-orbits of t-subspaces and
k-subspaces; the entries of MA are nonnegative integers, possibly greater than 1.
This is analogous to a well-known technique in design theory that is called the
Kramer–Mesner method after its developers [36]. For more details on appli-
cations of the Kramer–Mesner method in the context of designs over Fq , see [7].

There are several group-theoretic algorithms that, given a prescribed group A
acting on a set of finite structures, compute the orbits under A and produce the
corresponding Kramer–Mesner matrix. For more details, see [7, 43]. In our case,
the Kramer–Mesner matrix MA, where A is the normalizer of a Singer subgroup,
can be also computed directly using the invariants in Lemma 6.

In order to find a solution to (4) for a given Kramer–Mesner matrix MA, we
observe that when λ = 1, the system of equations in (4) reduces to an instance of
the exact cover problem [32]. That is, we wish to find a set S of columns of MA

such that for each row of MA, there is exactly one column of S containing 1 in
this row. The exact cover problem can be solved efficiently using the dancing
links algorithm of Knuth. For more on this, see [28, 32].

We now specialize the above to the case of the q-Steiner system S2(2, 3, 13).
At first, the matrix M in (4) has

[13
2

]
= 11 180 715 rows and

[13
3

]
= 3 269 560 515

columns, where
[n

k

]
is the q-binomial coefficient with q = 2. We need to find an

exact cover of the rows of M consisting of some

|S2(2, 3, 13)| =
[

13
2

] / [
3
2

]
= 1 597 245

columns. However, the resulting instance of the exact cover problem is well
beyond the domain of feasibility of existing algorithms. Instead, we prescribe the
normalizer Aα of a Singer subgroup of GL(13, 2) as a group of automorphisms.
Specifically, we have used the Singer subgroup generated by the primitive
element α ∈ F213 which is a root of the polynomial x13

+ x12
+ x10

+ x9
+ 1. We

note that the specific choice of the primitive element is unimportant, in the sense
that the set of Singer subgroups (and, thereby, also the set of their normalizers)
forms a conjugacy class of subgroups of GL(n, q). By Theorem 2, we have
|Aα| = 13(213

− 1) = 106 483. The orbits of 2-subspaces and 3-subspaces under
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Existence of q-analogs of Steiner systems 9

the action of Aα are all full length, resulting in a Kramer–Mesner matrix MAα

with
[13

2

]
/106 483 = 105 rows and

[13
3

]
/106 483 = 30 705 columns. Since all

the orbits have full length |Aα|, we need to find an exact cover consisting of
|S2(2, 3, 13)|/|Aα| = 15 columns of MAα . One such set of columns corresponds
to the 15 subspaces of F13

2 listed below:

{0,1,1249,5040,7258,7978,8105}, {0,7,1857,6681,7259,7381,7908},
{0,9,1144,1945,6771,7714,8102}, {0,11,209,1941,2926,3565,6579},
{0,12,2181,2519,3696,6673,6965}, {0,13,4821,5178,7823,8052,8110},
{0,17,291,1199,5132,6266,8057}, {0,20,1075,3939,3996,4776,7313},
{0,21,2900,4226,4915,6087,8008}, {0,27,1190,3572,4989,5199,6710},
{0,30,141,682,2024,6256,6406}, {0,31,814,1161,1243,4434,6254},
{0,37,258,2093,4703,5396,6469}, {0,115,949,1272,1580,4539,4873},

{0,119,490,5941,6670,6812,7312}.

(5)

Each 3-subspace {0,αx1,αx2, . . . ,αx7} is specified in (5) in terms of the exponents
{x1, x2, . . . , x7} of its nonzero elements. The Aα-orbits of the 15 subspaces in (5)
form a q-Steiner system S2(2, 3, 13), thereby proving Theorem 1.

The first solution to the exact cover problem instantiated by the Kramer–
Mesner matrix MAα was found in about two hours on a personal computer.
After about a month, we have found 512 distinct solutions. By Theorem 5,
these solutions give rise to 512 nonisomorphic S2(2, 3, 13) q-Steiner systems.
We note, however, that classifying all the solutions to the exact cover instance
specified by MAα does not appear to be computationally feasible.

Inspired by the positive results for S2(2, 3, 13), we have searched extensively
for other q-Steiner systems, with various parameters, while imposing certain
groups of automorphisms. We were able to resolve definitively the seven
cases listed below. Unfortunately, in all these cases the outcome was negative.
Our results show that q-Steiner systems with the following parameters and
automorphisms do not exist:

S2(2, 3, 7), Galois group Gal(F27/F2) (order 7)
S2(3, 4, 8), Singer subgroup (order 255)
S2(2, 4, 10), normalizer of Singer subgroup (order 10 230)
S2(2, 4, 13), normalizer of Singer subgroup (order 106 483)
S2(3, 4, 10), normalizer of Singer subgroup (order 10 230)
S3(2, 3, 7), Singer subgroup (order 2 186)
S5(2, 3, 7), normalizer of Singer subgroup (order 546 868).

(6)
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This extends upon the previous work on nonexistence of q-Steiner systems
[16, 18, 35, 50]. E.g., it was shown in [35] that a q-Steiner system S2(2, 3, 7)
admitting a Singer subgroup as a group of automorphisms does not exist.

4. Related results

Obviously, an S2(2, 3, 13) q-Steiner system gives rise to an S(2, 7, 8191)
Steiner system: simply represent each subspace of F13

2 by the characteristic
vector of the set of its nonzero elements. We observe that Steiner systems with
these parameters were already known [2, Table 3.3]. Notably, however, it follows
from [18, Theorem 3.2] that S2(2, 3, 13) also gives rise to an S(3, 8, 8192)
Steiner system. No S(3, 2k, 2n) Steiner systems with 2k > 8 were previously
known [12, 18]. The S(3, 8, 8192) Steiner system can be used in various
constructions (for example, those of [5, 12, 23]) to produce new S(3, 8, v)
Steiner systems for many other values of v.

Following [17, 34], we let Aq(n, d, k) denote the size of the largest subspace
code in Fn

q of constant dimension k and minimum subspace distance d . Then the
existence of S2(2, 3, 13) implies that A2(13, 4, 3) = 1 597 245 (the upper bound
A2(13, 4, 3) 6 1 597 245 follows from [17, Theorem 1]).

The new S2(2, 3, 13) q-Steiner systems found in Section 3 also produce
new diameter-perfect codes in the corresponding Grassmann graph. Precious
few examples of such codes are known. For more on the connection between
q-Steiner systems and diameter-perfect codes in a Grassmann graph, see [3, 44].

In the remainder of this section, we expound upon the connection between
q-Steiner systems and difference families. Recall from [1] that a (v, k, λ)
difference family over an additive group G of order v is a collection B1,B2, . . .,Bs

of k-subsets of G such that every nonidentity element of G occurs exactly λ times
in the multiset {a − b : a, b ∈ Bi , a 6= b, 1 6 i 6 s}.

THEOREM 7. Let k and n be coprime, and suppose there exists an S2(2, k, n)
q-Steiner system admitting a Singer subgroup Cα as a group of automorphisms.
Then there exists a (2n

−1, 2k
−1, 1) difference family over the group Z/(2n

−1).

Proof. Fix a primitive element α of F2n , and let ϕ be an isomorphism from
the multiplicative group of F2n to Z/(2n

−1) defined by ϕ(αi) = i . We extend
ϕ to subspaces X = {0, αx1, αx2, . . . , αxm } of Fn

2 in the obvious way, by defining

ϕ(X) def
= {x1, x2, . . . , xm} ⊆ Z/(2n

−1).

Now let S be an S2(2, k, n) q-Steiner system admitting Cα as a group of
automorphisms. Partition the subspaces of S into orbits under the action of Cα.
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Since k and n are coprime, 2k
− 1 and 2n

− 1 are also coprime, which implies
that all the orbits have full length |Cα| = 2n

− 1. It follows that the number of
orbits is given by

s =
|S2(2, k, n)|
|Cα|

=
2n−1
− 1

(2k − 1)(2k−1 − 1)
.

We choose (arbitrarily) one subspace from each orbit. Let X1, X2, . . . , Xs be the
resulting set of orbit representatives. We claim that ϕ(X1), ϕ(X2), . . . , ϕ(Xs) is
a (2n
− 1, 2k

− 1, 1) difference family over Z/(2n
−1).

Indeed, consider an arbitrary nonzero element a ∈Z/(2n
−1). Observe that a

can be obtained as a difference of two group elements in exactly 2n
− 1 ways:

(a+i)−i for i = 0,1, . . . ,2n
−2. To each such pair {a+i, i}, there corresponds a

2-subspace {0,αi ,αa+i ,αi
+αa+i

}, and to each such 2-subspace, there corresponds
a unique k-subspace of S . All such k-subspaces of S are in the same orbit under
the action of Cα, and every k-subspace in this orbit contains {0,α j,αa+ j,α j

+αa+ j
}

for some j . It follows that a occurs at least once as a difference of two elements
of ϕ(X), where X is the representative of the corresponding orbit. But the total
number of differences in the set {a − b : a, b ∈ ϕ(X i), a 6= b, 1 6 i 6 s} is
given by s(2k

− 1)(2k
− 2) = 2n

− 2, which completes the proof.

We observe that, in fact, the following more general result is true: if k and n are
coprime, then an Sq(2, k, n) q-Steiner system that admits a Singer subgroup as
a group of automorphisms gives rise to a ((qn

−1)/(q−1), (qk
−1)/(q−1), 1)

difference family over Z/((qn
−1)/(q −1)). We omit the proof, which is similar

to the proof of Theorem 7.
In order to obtain an (8191,7,1) difference family from the 15 sets in (5),

first adjoin to each such set {x1, x2, . . . , x7} the sets {2i x1,2i x2, . . . ,2i x7}modulo
8191, for i = 1, 2, . . . , 12 (thereby accounting for the action of the Galois group).
It is easy to verify that the resulting 15 ·13= 195 sets indeed form an (8191,7,1)
difference family over Z/(8191). We note that (8191, 7, 1) difference families
over Z/(8191) were already known. They were obtained by Greig [22] using a
modification of a construction method due to Wilson [53].

5. Discussion and open problems

There is no good reason to believe that many q-Steiner systems, other than
S2(2, 3, 13), would not exist. In particular, we conjecture as follows.

CONJECTURE 8. If n > 13 is a prime such that n ≡ 1 (mod 6) then there exists
a q-Steiner system S2(2, 3, n).
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The apparent large number of isomorphism classes of S2(2, 3, 13) q-Steiner
systems suggests that an S2(3, 4, 14) q-Steiner system might exist. A more
general open question is whether nontrivial q-Steiner systems Sq(t, k, n) exist
for parameters other than q = 2, t = 2, and k = 3.

In fact, in light of our results, the main question is no longer whether q-Steiner
systems exist but rather how they can be found. Not only should computer-aided
searches be carried out, but one should also consider algebraic and combinatorial
constructions of either specific q-Steiner systems or even infinite families of
q-Steiner systems (for example, in the framework of difference sets).
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