
This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail.

Powered by TCPDF (www.tcpdf.org)

This material is protected by copyright and other intellectual property rights, and duplication or sale of all or
part of any of the repository collections is not permitted, except that material may be duplicated by you for
your research use or educational purposes in electronic or print form. You must obtain permission for any
other use. Electronic or print copies may not be offered, whether for sale or otherwise to anyone who is not
an authorised user.

Hyytiä, Esa; Aalto, Samuli
On Round-Robin routing with FCFS and LCFS scheduling

Published in:
Performance Evaluation

DOI:
10.1016/j.peva.2016.01.002

Published: 01/03/2016

Document Version
Publisher's PDF, also known as Version of record

Published under the following license:
CC BY

Please cite the original version:
Hyytiä, E., & Aalto, S. (2016). On Round-Robin routing with FCFS and LCFS scheduling. Performance
Evaluation, 97, 83-103. https://doi.org/10.1016/j.peva.2016.01.002

https://doi.org/10.1016/j.peva.2016.01.002
https://doi.org/10.1016/j.peva.2016.01.002

Performance Evaluation 97 (2016) 83–103

Contents lists available at ScienceDirect

Performance Evaluation

journal homepage: www.elsevier.com/locate/peva

On Round-Robin routing with FCFS and LCFS scheduling
Esa Hyytiä a,b,∗, Samuli Aalto b

a Department of Computer Science, University of Iceland, Reykjavík, Iceland
b Department of Communications and Networking, Aalto University, Finland

a r t i c l e i n f o

Article history:
Available online 2 February 2016

Keywords:
Round-Robin
M/G/m-RR-system
Erl/G/1-queue
Task assignment
FCFS
LCFS

a b s t r a c t

We study the Round-Robin (RR) routing to a system of parallel queues, which serve jobs
according to FCFS or preemptive LCFS scheduling disciplines. The cost structure comprises
two components: a service fee and a queueing delay related component. With Poisson
arrivals, the inter-arrival time to each queue obeys the Erlang distribution. This allows
us to study the mean and transient behavior of the queues separately. The service fee is
independent of the scheduling and queueing, and we obtain the corresponding mean cost
rate and value function in closed forms. With respect to queueing delay, we first derive
integral expressions enabling efficient computation of the corresponding size-aware value
functions. By decomposition, these yield also the value function for the whole system of
m parallel queues fed by RR. Given the value function, one can carry out the first policy
iteration stepwith arbitrary holding cost rates (e.g., delay, slowdown, etc.) yielding efficient
size-, cost- and state-aware policies. Moreover, the mean waiting and sojourn times in
the corresponding systems get resolved at the same time. The results are demonstrated in
the numerical examples, where we compute near optimal job routing policies for sample
systems.
© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

In task assignment (or routing) problems, one chooses a server out of m parallel servers for each new job immediately
upon the arrival. The objective is to minimize the mean response time, slowdown, energy consumption, or some other
performance quantity of interest. Within each queue, the First-Come-First-Served (FCFS) scheduling is usually assumed, but
other scheduling disciplines can also be considered. The preemptive Last-Come-First-Served (LCFS) is one such candidate
possessing several insensitivity properties [1]. Even though task assignment problems have been studied extensively in the
literature, only a few optimality results are known, and these generally require homogeneous servers.

The Join-the-Shortest-Queue (JSQ) policy assigns a new job to the server with the fewest tasks. Assuming exponentially
distributed inter-arrival times and job sizes, and homogeneous servers, Winston [2] showed that JSQ, followed by FCFS,
minimizes the mean delay. Since then the optimality of JSQ has been shown in many other settings [3–9]. Similarly,
Round-Robin (RR), followed by FCFS, has been shown to be the optimal policy when it is only known that the queues were
initially in the same state, and the routing history is available [4,10,11]. For RR combined with the Shortest-Remaining-
Process-Time (SRPT) scheduling, see [12]. With a Poisson arrival process and RR, the inter-arrival times to each queue obey
the Erl(m, λ) distribution, where m denotes the number of servers and λ the arrival rate [13]. This enables the analysis of
the RR system by studying a single queue at a time [14]. The Least-Work-Left (LWL) policy assigns a new job to the queue

∗ Corresponding author at: Department of Communications and Networking, Aalto University, Finland.
E-mail addresses: esa@hi.is (E. Hyytiä), samuli.aalto@aalto.fi (S. Aalto).

http://dx.doi.org/10.1016/j.peva.2016.01.002
0166-5316/© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/
4.0/).

http://dx.doi.org/10.1016/j.peva.2016.01.002
http://www.elsevier.com/locate/peva
http://www.elsevier.com/locate/peva
http://crossmark.crossref.org/dialog/?doi=10.1016/j.peva.2016.01.002&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
mailto:esa@hi.is
mailto:samuli.aalto@aalto.fi
http://dx.doi.org/10.1016/j.peva.2016.01.002
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

84 E. Hyytiä, S. Aalto / Performance Evaluation 97 (2016) 83–103

Fig. 1. Round-Robin routing tom FCFS and/or LCFS servers.

with the least amount of unfinished work. LWL is equivalent to M/G/mwith a shared queue [15,13], and thus it makes sure
no server is idle when there are jobs in the queue. Interestingly, with constant service times and FCFS scheduling, LWL, JSQ
and RR make equivalent decisions as in M/D/m (with a shared queue), which can also be shown to be optimal with respect
to the mean delay.

TheMyopic task assignment policy chooses the server that minimizes the objective function assuming that no other jobs
arrive later on. With identical LCFS servers, JSQ minimizes the immediate additional delay caused to the present jobs, and
thus it is the myopic policy with respect to sojourn time. Similarly, LWL minimizes the sojourn time of the new job in a
system of identical FCFS servers, making it the myopic policy in this sense. In some cases, the myopic policy is optimal, but
in general this is not the case. Instead, the optimal policy has to take into account also the anticipated new arrivals.

The M/G/m system (with FCFS) is non-trivial to analyze. More results are available for M/D/m. The first analytical result
for the distribution of waiting time in M/D/m is by Franx [16]. Numerically much more stable expressions are given by
Crommelin [17], who has also analyzed its transient behavior in [18]. In particular, [17] gives the waiting time distribution
as a function of the queue length distribution, allowing also the determination of the mean waiting and sojourn times. For
extensive surveys on the topic we refer to [19,20].

Value functions for single server queues with Poisson arrivals have been derived in [21–24], which form the basis also
for value functions for task assignment systems operating under a state-independent policy such as the Bernoulli-split.
With state-dependent policies, such as RR and LWL, the queues are coupled and the analysis gets more complicated. In this
paper, we derive a set of integral equations that enable efficient computation of the value function with respect to arbitrary
holding cost based cost structure in a size-aware task assignment system subject to RR routing policy, and the FCFS or LCFS
scheduling disciplines. Jobs arrive according to a Poisson process with rate λ and the servers are assumed to be identical.1
As an interesting and useful side product, these expressions also provide a new approach to determine the mean waiting
time (queueing delay) in the system of parallel FCFS or LCFS servers fed by RR. In particular, with identical FCFS servers,
one obtains an M/G/m-RR system. We note that the results given in [17] yield the mean waiting time for M/D/m-RR, but
require the determination of the queue length distribution as an intermediate result.

The value functions enable the policy improvement step, yielding a new routing policy. Pastwork has successfully utilized
the Bernoulli-split as the starting policy, whereas our new results enable the same for RR, which is generally a better routing
policy. Somewhat surprisingly, the performance of the routing policies based on Bernoulli and RR can be quite similar (see
the example cases in Section 5).

The rest of the paper is organized as follows. First, in Section 2, we introduce our notation and analyze the service fees.
In Section 3, we analyze a single Erl(m, λ)/G/1-FCFS queue and derive both differential and integral expressions for the
value function, whereas Section 4 provides the corresponding results for Erl(m, λ)/G/1-LCFS. Due to the decomposition,
the value functions for the systems of parallel FCFS and LCFS queues fed by RR, including M/G/m-RR, are also obtained.
Section 5 discusses the task assignment problem and policy iteration, and gives some numerical examples. Section 6 sheds
light on possible more elaborate applications, and Section 7 concludes the paper.

2. Preliminaries

In this section, we first describe the model and derive some preliminary results for the Round-Robin routing policy
illustrated in Fig. 1. With Poisson arrivals, each queue is an Erl(m, λ)/G/1 system, which facilitates the analysis.

2.1. Model and cost structure

We consider a system of m parallel servers to which jobs arrive according to a Poisson process with rate λ. The service
time of job j is denoted by Xj and they are i.i.d., Xj ∼ X . For stability, we require that

λ E[X] < m.

1 In fact, the analysis does not depend on this and the results hold with very minor modifications also for heterogeneous systems. However, the Round-
Robin policy is not an ideal candidate if the service rates are highly asymmetric.

E. Hyytiä, S. Aalto / Performance Evaluation 97 (2016) 83–103 85

The cost structure comprises two components. First, each job pays a server-specific service fee of Sk upon entering a queue
k, k = 1, . . . ,m. Second, job j incurs costs at a job-specific holding cost rate Hj while in the system, Hj ∼ H . Hence, e.g., the
mean cost per job is

k

pkSk + E[HT],

where pk is the fraction of jobs routed to server k, and T denotes the sojourn time.
With Round-Robin (RR), the corresponding system is M/G/m-RR as illustrated in Fig. 1. With a Poisson arrival process,

each queue behaves according to an Erl(m, λ)/G/1 queue, where the inter-arrival time in each queue is a sum of m
independent and exponentially distributed time-intervals, i.e., phases, with the mean durations of 1/λ. Jobs arrive at the
end of phase m, after which a new phase 1 starts. The evolution of the queues is naturally coupled as they see the same
Poisson process, while each of them is in a different phase (1, . . . ,m).

As a remark, we note that one can also assume that the service time X , the service fee S and the holding cost rate H all
may depend on both the job and also on the queue the job is assigned to. In this case, job j is defined by triples (Xj,k,Hj,k, Sj,k),
where j corresponds to the job and k the queue. The varying service times could be due to different service rates, Xj,k = νkXj.
The service fee could be, e.g., a function of service time, Sj,k = gk(Xj,k) (e.g., per bit charging in mobile networks, energy
consumption, etc.). Also in this case, it is convenient to assume that jobs are still i.i.d.,

(Xj,Hj, Sj) ∼ (X,H, S),

while the different variables of a single job may depend on each other (e.g., the service fee can be equal to the service
time). The stability condition depends on the internal structure of the service times. For RR, the necessary and sufficient
stability condition is λ < m/E[Xj,k] for all k. Similarly, the necessary stability condition for any size-unaware routing policy
is λ <

k(E[Xj,k])

−1.
We note that most of the results given in this paper hold immediately or with a minor additional notation also for this

more general cost structure. However, RR is a natural choice only with identical servers, and thus in the rest of this paper
we assume the basic cost structure with job-specific holding costs, server-specific service fees and equally fast servers. As
RR assigns the jobs sequentially, independently of their holding cost rates and service fees, this cost structure is already
unnecessarily complicated. Later in Section 5, we consider also routing policies that take into account the job- and server-
specific characteristics, and hence the notation.

2.2. Service fees with Round-Robin

Let us first consider the service fees each Erl(m, λ)/G/1 queue incurs. Note that this is only relevant to the routing
problem if some server(s) have unequal service fees. In addition, the scheduling discipline does not play any role here.
Let Sj ∼ S denote the service fee of the jth job assigned to a given queue. Then let i denote the current phase in the arrival
process, i = 1, . . . ,m, such that at the end of phasem a job arrives and a cost of Sj is incurred.

A sufficient state description with respect to service fees is the current phase of the arrival process. Consequently, the
corresponding value function depends also only on the current phase, and it is defined as the expected difference between a
system initially in phase i and a system initially in equilibrium,

vi , lim
t→∞

E[Vi(t)− rst], (1)

where Vi(t) denotes the service fees incurred during (0, t) when initially in phase i, and rs is the mean rate at which service
fees are incurred in each queue,

rs =
λ E[S]
m

.

Proposition 1. The value function with respect to service fees for an Erl(m, λ)/G/1 queue is

vi =
2i−m− 1

2m
E[S] (2)

where i denotes the current phase of the arrival process, i = 1, . . . ,m, and E[S] is the mean service fee.

Proof. The value function, as defined in (1), measures the expected difference in the cumulative costs from the given initial
phase i to the mean cost rate. For an arbitrary phase i, the so-called Howard’s equation is [25]

vi =
m− i+ 1

λ
(0− rs)+ E[S] + v1.

The first term corresponds to the time interval before the next arrival. During this time no service fees are collected and the
difference to the mean cost rate is 0− rs. The factor (m− i+ 1)/λ corresponds to the mean time duration.

86 E. Hyytiä, S. Aalto / Performance Evaluation 97 (2016) 83–103

The second term is themean immediate cost due to the following arrival, afterwhich the arrival process enters to phase 1.
Themean difference in costs between phase 1 and themean cost rate is v1 by definition, i.e., v1 takes care of the future costs
from that point onwards (recall the Markov property). Consequently,

vi − v1 =
i− 1
m

E[S]. (3)

As each phase is equally likely, we have

i vi = 0. Taking a sum of (3) over i gives v1, which in turn yields (2). �

Consider next the whole system of m parallel queues and let S(k) denote the service fee in Queue k. As only the phase
matters, a sufficient state description is

z = (q1, . . . , qm),

where qi is the index of the queue currently in phase i. Due to the decomposition, we have the following result:

Corollary 1. The total value function w.r.t. service fees for theM/G/m-RR system in state z = (q1, . . . , qm) is

v(z) =
1
2m

m
i=1

(2i−m− 1)E[S(qi)]. (4)

Note that the value function is insensitive to the arrival rate λ and depends only on the phases (i.e., the RR sequence) and the
mean service fees. In fact, the constant offset in the value functions is irrelevant for our primary application, task assignment
(see Section 5), and we can equally use

v(z) =
1
m

m
i=1

i E[S(qi)], (5)

from which it is obvious that the Round-Robin sequence assigning the jobs (initially) in the increasing order of the mean
service fee so that E[S(qi)] ≥ E[S(qi+1)] incurs the least costs, as expected.

3. FCFS and Round-Robin

In this section,we focus on the First-Come-First-Served scheduling discipline.We are interested in the (remaining) sojourn
times. In particular,we assume that each jobwill incur costs at a certain job-specific holding cost rate, and derive expressions
for the value functions, the mean sojourn time and the mean cost rate. We start by considering the so-called virtual waiting
time, i.e., thewaiting time an arriving customerwould see.With Poisson arrivals, this quantity is directly related to the actual
waiting and sojourn times (Section 3.2).

3.1. Virtual waiting time

With FCFS, the virtual waiting time in the system is equal to the backlog of the queue receiving the next customer.
Therefore, in this section,we define the cost rate of the system to be equal to the backlog of the queue in phasem. Considering
an individual Erl(m, λ)/G/1-FCFS queue, it thus incurs costs at the rate equal to the backlog only during phasem, at the end
of which a new job arrives. This is illustrated in Fig. 2. Due to the PASTA property, the virtual waiting time is directly related
to the waiting time the jobs arriving to the M/G/m-RR system see. Let r̃ denote the mean cost rate in a single queue and r
in the whole system, r = E[W]. With identical servers, we have the elementary relationship

r̃ = r/m.

In general, the service times may be heterogeneous across servers. LetW (k) denote the waiting time in server k. Then
r = E[W] = (1/m)

k

E[W (k)
]

r =

k

r̃ (k) ⇒ E[W (k)
] = m r̃ (k).

3.1.1. Single Erl(m, λ)/G/1-FCFS Queue
Consider next a single Erl(m, λ)/G/1-FCFS queue, and let F(x) denote the cdf of the service time X . Let It(i) and Ut(i, u)

denote the phase of the arrival process and the backlog in the queue at time t , where (i, u) denotes the initial phase and
backlog, I0(i) = i and U0(i, u) = u. In this RR-specific cost structure, the queue incurs costs at rate

Ct(i, u) , 1(It(i) = m) · Ut(i, u).

E. Hyytiä, S. Aalto / Performance Evaluation 97 (2016) 83–103 87

Fig. 2. Sample path withm = 3 queues.

Let vi(u) denote the value function, where i is the initial phase and u the initial backlog. Formally,

vi(u) , lim
t→∞

E[Vi(u, t)− r̃ t],

where Vi(u, t) denotes the costs a queue initially in state (i, u) incurs during time t ,

Vi(u, t) ,

 t

0
Cs(i, u) ds.

Proposition 2. The size-aware value function of an Erl(m, λ)/G/1-FCFS queue with respect to the virtual waiting time satisfies
the following system of integro-differential equations,

v′i(u) = −r̃ + λ(vi+1(u)− vi(u)), i = 1, . . . ,m− 1
v′m(u) = u− r̃ + λ (E[v1(u+ X)] − vm(u)) ,

(6)

with

r̃ = λ(vi+1(0)− vi(0)), i = 1, . . . ,m− 1,
r̃ = λ (E[v1(X)] − vm(0)) .

(7)

Proof. For u > 0, small δ > 0, and for phases i = 1, . . . ,m− 1

vi(u) = (0− r̃)δ + (1− λδ) vi(u− δ)+ λδ vi+1(u− δ)+ o(δ).

The first term corresponds to the difference between the current cost rate (zero for phases i ≠ m) and the mean cost rate
r̃ multiplied by the time-interval δ. With probability (1 − λδ), the phase remains the same and vi(u − δ) gives the future
contribution, and with probability λδ, the arrival process moves to the next phase i + 1, the value of which is given by
vi+1(u− δ). In contrast, at the end of last phasem a new job arrives, and thus for vm(u) we have

vm(u) = (u− r̃)δ + (1− λδ) vm(u− δ)+ λδ E[v1(u+ X)] + o(δ),

where E[v1(u+X)] =

∞

0 v1(u−δ+s) dF(s). By dividing by δ and letting δ→ 0, the above yields (6). Similarly, considering
an empty system with u = 0 gives (7). �

Note that (6) does not have a unique solution, but a constant term can be added to every vi(u) without affecting (6).
However, the constant term is (typically) immaterial and neglected. Apart from that, the solution is unique. Combining (6)
and (7) gives,

v′i(0) = 0, i = 1, . . . ,m,
v′′i (0) = 0, i = 1, . . . ,m− 1. (8)

Adding the Eqs. (7) together gives

mr̃ = λ(E[v1(X)] − v1(0)). (9)

88 E. Hyytiä, S. Aalto / Performance Evaluation 97 (2016) 83–103

Similarly, we have for all i = 1, . . . ,m− 1

vi+1(0)− v1(0) =
ir̃
λ

. (10)

That is, initially the value functions vi(u) at u = 0 differ by a constant amount of r̃/λ.
Note that both (6) and (7) are insensitive to a constant term in the vi(u). The constant offset in the value functions indeed

is generally superfluous and we can set, e.g., v1(0) = 0. Unfortunately, (6) and (7) are difficult to solve even numerically. If
the mean cost rate r̃ were available in a closed form, (7) would give the initial values vi(0) also for i = 2, . . . ,m. Moreover,
even if the initial values were available, v′m(u) still depends on the v1(u+ s), s > 0, and therefore the standard Runge–Kutta
method could not be applied to compute the vi(u) for u > 0. However, one could solve the vi(u) numerically backwards
for u < u∗ given the vi(u∗) were available for some u∗ > 0. We describe an elegant approach to solve for vi(u) and r̃ in
Section 3.1.5.

Finally, we note that with m = 1 the Erl(m, λ)/G/1-FCFS queue reduces to M/G/1-FCFS, for which the exact size-aware
value function is available [24],

v(u)− v(0) =
u2

2(1− ρ)
. (11)

It is easy to see that (11) satisfies (6), and applying (7) gives, as expected, the Pollaczek–Khinchine formula for the mean
waiting time.

3.1.2. Constant service time ∆

The constant service time∆ is an interesting special case for which the above results have somewhatmore simple forms.
In this case, the latter equation in (6) reads

v′m(u) = u− r̃ + λ(v1(u+∆)− vm(u)),

and we have a first-order system of differential equations. Similarly, the latter equation in (7) reads

r̃ = λ(v1(∆)− vm(0)).

Finally, (9) reduces to

r = mr̃ = λ(v1(∆)− v1(0)).

3.1.3. M/G/m-RR/FCFS system
Consider next the whole M/G/m-RR/FCFS system. If all servers are identical then the state of the Round-Robin system

with FCFS for jobs arriving later can be described by anm-tuple,

z = (u1, . . . , um),

where ui denotes the backlog in the queue currently in phase i. In general, the state of the system can be described by

z = ((q1, u1), . . . , (qm, um)),

where (qi, ui) denotes the server that is currently in phase i and its backlog. Therefore, (q1, . . . , qm) is some permutation of
(1, . . . ,m), whereas ui ≥ 0 for all i. In the general case, the servers may be heterogeneous and the value functions have to
be determined separately for each of them. Let vk,i(u) denote the value function of Queue k currently in phase i. Due to the
decomposition tom parallel Erl(m, λ)/G/1-FCFS queues, we again have:

Corollary 2. The value function w.r.t. virtual waiting time for M/G/m-RR in state z = ((q1, u1), . . . , (qm, um)) is

v(z) = vq1,1(u1)+ · · · + vqm,m(um). (12)

If the service times Xj,k are identical for every queue k, then

v(z) = v1(u1)+ · · · + vm(um).

3.1.4. Asymptotic behavior
Let us next argue that, with relatively broad assumptions, the asymptotic behavior of the value function of theG/G/1-FCFS

queue is quadratic. For large u, the backlog decreases with an average rate of 1 − ρ ′, where ρ ′ denotes the queue specific

E. Hyytiä, S. Aalto / Performance Evaluation 97 (2016) 83–103 89

offered load. The virtual waiting time incurred during the remaining busy period corresponds to a trianglewith initial height
u and base (= duration) u/(1− ρ ′). Therefore,

v(u) ≈
u2

2(1− ρ ′)
−

u
1− ρ ′

· r + v(0),

where the first term corresponds to the costs incurred during the remaining busy period, the second term to the mean cost
rate during the same time-interval, and the third term corresponds towhat happens after that. For large u, the first quadratic
term dominates.

With Erl(m, λ)/G/1, in the context of RR, the costs are accrued only in the final phase m as explained above (see also
Fig. 2). Let ρ denote the offered load to the whole system, ρ = λ E[X], so that ρ ′ = ρ/m. The costs accrued during the
remaining busy period are roughly 1/m of the ‘‘full triangle’’, i.e., for u≫ 1 we have,

vi(u) ≈
u2

2(m− ρ)
, and v′i(u) ≈

u
m− ρ

. (13)

3.1.5. Numerical solution for vi(u)
The Eqs. (6) that the value functions vi(u) must satisfy can be written in an integral form that is suitable for numerical

computations. Without loss of generality, we assume here that v1(0) = 0.

Proposition 3. For the Erl(m, λ)/G/1-FCFS queue, the value function vi(u) with respect to the virtual waiting time satisfies the
following system of integral equations,

vi(u) =

e−λu
−

1
i

vi+1(0)+ λ

 u

0
e−λ(u−s)vi+1(s) ds, i = 1, . . . ,m− 1,

vm(u) =

e−λu
−

1
m

∞

0
v1(s) dF(s)+

e−λu
+ λu− 1
λ2

+ λ

 u

0
e−λ(u−s)

∞

0
v1(s+ ℓ) dF(ℓ) ds.

(14)

Proof. For i = 1, . . . ,m− 1, multiplying both sides of (6) with eλu gives

eλuv′i(u)+ λeλuvi(u) = eλu(−r̃ + λvi+1(u)).

The left-hand side is equal to (d/du) eλuvi(u), yielding

eλuvi(u) =
 u

0
eλs(−r̃ + λvi+1(s)) ds+ vi(0),

vi(u) =
r̃
λ

(e−λu
− 1)+ e−λuvi(0)+ λ

 u

0
e−λ(u−s)vi+1(s) ds.

Similarly, for phasem one obtains

vm(u) =
r̃
λ

(e−λu
− 1)+ e−λuvm(0)+

e−λu
+ λu− 1
λ2

+ λ

 u

0
e−λ(u−s)

∞

0
v1(s+ ℓ) dF(ℓ) ds.

As we are generally interested in the differences between the relative values, we can set v1(0) = 0 so that by (10)

vi(0) =
(i− 1)r̃

λ
, for i = 1, . . . ,m,

and

r̃
λ
=

vi+1(0)

i
, for i = 1, . . . ,m− 1,

1
m

∞

0
v1(s) dF(s).

Substituting these into the above gives (14). �

Corollary 3. For a constant service time ∆, the latter equation in (14) reads

vm(u) =

e−λu
−

1
m

v1(∆)+

e−λu
+ λu− 1
λ2

+ λ

 u

0
e−λ(u−s)v1(s+∆) ds. (15)

Note that (14) expresses vi(u) as a function of vi+1(u) for i = 1, . . . ,m − 1, and vm(u) as a function of v1(u). Given an
initial guess for any vi(u), provided, e.g., by (13), the Eqs. (14) can be iterated until they converge.

90 E. Hyytiä, S. Aalto / Performance Evaluation 97 (2016) 83–103

Algorithm 1 shows the computation of the value functions for the Erl(m, λ)/D/1-FCFS queue with respect to the virtual
waiting time at a total of k possible backlog levels, uj = j∆u, j = 0, . . . , k−1, where∆u = x/n is the constant discretization
interval, x the fixed job size and n some positive integer number. That is, the value function is computed at m × k points,
vi(uj) = vi,j, where i = 1, . . . ,m and j = 0, . . . , k − 1. We use (13) for the initial values of vi,j, and then iterate (14) until
the vi,j converge. Note that it is important to use quadratic extrapolation for vi(u) when u > (k − 1)∆u. In our numerical
experiments, this iteration converged relatively fast making it computationally appealing.

Data: k = points of discretization, ∆u = discretization interval, x = n ·∆u = service time, and ρ = λ x
Result: Value function vi,j = vi(j ·∆u) for Erl(m, λ)/D/1-FCFS, where i = 1, . . . ,m and j = 0, . . . , k− 1. (uj = j ·∆u)
for j← 0 to k− 1 do

v1,j = (j ·∆u)
2/(2(m− ρ)); // Initial values for phase i = 1 using (13)

repeat
for i← m downto 1 do

if i = m then
i′ ← 1 and n′ ← n

else
i′ ← i+ 1 and n′ ← 0

c ← vi′,n′ and y1 ← c and I ← 0;
vi,0 ← c(i− 1)/i;
for j = 1 to k− 1 do

u← j ·∆u;
y0 ← y1;
y1 ← eλuvi′,n′+j ; // Use quadratic extrapolation for vi,j when n′ + j ≥ k

I ← I +
y0 + y1

2
·∆u ; // Trapezoidal rule for one interval

vi,j ← e−λu (λI + c)− c/i;
if i = m then

vi,j ← vi,j + (e−λu
+ λu− 1)/λ2

until the vi,j converge;
Algorithm 1: Numerical computation of the value function for the Erl(m, λ)/D/1-FCFS queue.

As a convenient side product of being able to determine the value functions efficiently using (14), also the mean waiting
time, r = E[W], is obtained directly from (7):

Corollary 4. The value functions give also the mean waiting time E[W] in the Erl(m, λ)/G/1-FCFS queue,

E[W] = λm (v2(0)− v1(0)). (16)

In order to compute E[W], we do not need to find the waiting time distribution first (which itself is non-trivial, [17]).
Form = 1, the insensitive solution (11) can be shown to satisfy (14). That is, for the M/G/1 queue we have,

v(u) =

e−λu
− 1

 ∞
0

v(s) dF(s)+
e−λu
+ λu− 1
λ2

+ λ

 u

0
e−λ(u−s)

∞

0
v(s+ ℓ) dF(ℓ) ds,

which the ‘‘trial’’

v(u) =
u2

2(1− ρ)

satisfies independently of the service time distribution.

3.1.6. Generalized Round-Robin (GRR)
RR is a special case of the Generalized Round-Robin policies defined by typically periodic sequences [26–28]. RR is optimal

under certain assumptions when the servers are identical. However, if some servers have different service rates, then the
even split of tasks that RR carries out may no longer make sense. In [26], Hajek proves the intuitive result that among a very
large class of arrival process, the onewith constant inter-arrival times is optimal for a single server queuewith exponentially
distributed service times. Then, in [27], he shows that the so-calledmost-regular-sequence is optimal for two, not necessarily
identical, servers when jobs again are exponentially distributed.

Suppose that the (external) sequence defining the task assignments is periodic withM denoting the length of the period.
Without lack of generality, we can consider Queue 1. With respect to service fees, both the mean rate and value function

E. Hyytiä, S. Aalto / Performance Evaluation 97 (2016) 83–103 91

are straightforward to deduce. We omit these for brevity. For the virtual waiting time, let vi(u) again denote its value
function with respect to the backlog, and where ai is an indicator for whether an arrival will be sent to queue 1 during
phase i. (Note that now we can have multiple phases with arrivals in the same period.) For notational convenience, we
define vi+M(u) , vi(u). As before, we have a system of differential equations,

v′i(u) =

−r̃ + λ(vi+1(u)− vi(u)), if ai ≠ 1,

u− r̃ + λ

(vi+1(u+ t)− vi(u)) dF(t), if ai = 1,

where the initial values are coupled,

v′i(0) =

−

r̃
λ
+ vi+1(0), if ai ≠ 1,

−
r̃
λ
+

vi+1(t) dF(t), if ai = 1.

That is, the generalized (periodic) RR can be analyzed essentially the same way as RR. Also probabilistic variants, where
subsequences are chosen with certain probabilities (for load-balancing reasons), are amenable to the same approach.

3.2. Waiting and sojourn time

The backlog based cost rate c(z) = um can be seen as a (linear) penalty for a long queue length. However, typically one
is interested in the actualwaiting or sojourn time, possibly weighted with arbitrary job-specific holding costs. Consequently,
next we considerM/G/m-RR/FCFSwith identical servers and job-specific holding costs (i.e., the holding costs do not depend
on the queue).

Let U(t) = Um(t) denote the virtual waiting time at time t . With FCFS, this is the waiting time an arriving customer sees,
W ∼ U . The mean cost rate w.r.t. waiting time is

rW = λ · r = λ · E[W], (17)
i.e., the rate at which the system incurs waiting time. For the sojourn time, rT = λ · (E[W] + E[X]) = E[N]. The state of
a queue does not affect the service time of a job, and this is the same for all servers, so the (relative) value function with
respect to waiting and sojourn times are the same:

Proposition 4. The size-aware value function for anM/G/m-RR/FCFS system with respect to waiting or sojourn time is

ṽ(z)− ṽ(0) = λ (v(z)− v(0)) , (18)

where v(z) is the value function w.r.t. virtual waiting time.
Proof. Let W1,W2, . . . denote the waiting times for future arrivals. Service times of the jobs arriving in the future are
independent of the state and thus do not show up in the value function. One can associate the costs in two equivalent
ways for these arrivals until the end of the current busy period (renewal point),

c̃1 , λ E
 Bz

0
Um(t) dt

,

c̃2 , E[W1 + · · · +WNz],

(19)

where Bz denotes the duration of the (remaining) busy period (having a finite mean), and Nz the number of jobs arriving
during it. Due to the PASTA property, c̃1 = c̃2. The first equation corresponds to the virtual waiting time based holding cost
c(z) = um multiplied by the arrival rate λ, and the latter to the actually incurred waiting time. Then,

ṽ(z)− ṽ(0) = E[W1 + · · · +WNz] − rW E[Bz].

According to (19),

E[W1 + · · · +WNz] = λ E
 Bz

0
Um(t)

,

and similarly, with (17), we obtain

rW E[Bz] = λ r E
 Bz

0
1 dt

= λ E

 Bz

0
r dt

.

Therefore,

ṽ(z)− ṽ(0) = λ E
 Bz

0
(Um(t)− r) dt

.

By definition, v(z) = E[
 Bz
0 (Um(t)− r) dt] + v(0), yielding (18). �

92 E. Hyytiä, S. Aalto / Performance Evaluation 97 (2016) 83–103

Fig. 3. Value function for M/D/2-RR/FCFS with respect to the virtual waiting time. The dotted curve in the lower graphs corresponds to (13).

3.3. General job-specific holding costs

Consider next the case with arbitrary job-specific holding costs. Let (Xj,Hj) denote the size and the holding cost of job
j, which are assumed to be i.i.d., (Xj,Hj) ∼ (X,H), while each Xj and Hj may still depend on each other. For example, the
slowdownmetric, defined as the ratio of the delay to the service time, is obtained with Hj = 1/Xj [29]. The difference in the
cumulative costs is incurred by later arriving jobs during their waiting time. Therefore:

Corollary 5. The size-aware value function w.r.t. general holding costs (associated with the waiting or sojourn time) for M/G/m-
RR/FCFS in state z = (u1, . . . , um) is

ṽ(z) = λ

i

vi(ui) E[H] = λ E[H] v(z). (20)

3.4. Examples

Next we give some numerical examples with the virtual waiting time. The service fee is included in the cost later in
Section 5.

3.4.1. M/D/2 w.r.t. virtual waiting time
Consider next the virtual waiting time in M/D/2-RR. Fig. 3 depicts the equivalue contours of the resulting value function

v(z) = v1(u1) + v2(u2) for the whole system (upper row) and its components (lower row) for ρ = 0.2, 1.0, 1.8. For the
upper row, we have included also states with u2 > u1 and u1 > u2 + 1, even though the normal state space2 of an initially
empty M/D/2-RR queue is the narrow strip constrained by 0 ≤ u2 ≤ u1 ≤ u2 + 1. That is, we allow an arbitrary initial
state. The value function becomes more symmetric as ρ increases. From the lower row, we observe that initially, at u = 0,
the slope of each vi(u) is zero in accordance with (8). The dotted line in the lower row corresponds to the approximation of
vi(u) given in Eq. (13).

3.4.2. Other distributions
Let D(x1, x2) denote the two point distribution on x1 < 1 < x2 with probabilities such that the mean is 1. Similarly, D(x)

denotes the deterministic distribution with one outcome x and U(x1, x2) the uniform distribution on interval (x1, x2). Fig. 4
illustrates the resulting value functions with D(0.5, 10), D(0.5, 5), U(0, 2) and D(1). In each case, the mean service time is 1

2 Later, in Section 5, the so-called FPI policy may deviate from RR and any state is in principle possible.

E. Hyytiä, S. Aalto / Performance Evaluation 97 (2016) 83–103 93

Fig. 4. Value function vi(u) for m = 2 phases (i = 1, 2) when service times obey D(0.5, 10), D(0.5, 5), U(0, 2) and D(1) with unit mean and λ = 1.6. For
both v1(u) and v2(u), service time distribution D(0.5, 10) corresponds to the highest curve and D(1) to the lowest (in the order of variability).

and arrival rate λ = 1.6. We can observe that the higher the variance in the service times is, the higher the initial difference
v2(0)− v1(0) is. The v1(u) behave rather similarly (note the initial choice v1(0) = 0). Consequently, we have the following
result:

Corollary 6. The size-aware value function for an Erl(m, λ)/G/1-FCFS queue w.r.t. waiting time (or delay) is not insensitive to
the job size distribution (for m > 1).

Wenote that this is in contrast to theM/G/1-FCFS queue, forwhich the size-aware value function is insensitive to the job size
distribution [24]. This implies that the value function of the corresponding Round-Robin system, due to the decomposition,
is also sensitive to the job size distribution, which again is not the case if the routing is by any state-independent (static)
policy such as the random Bernoulli-split.

4. LCFS with Round-Robin

In this section, we focus on the Last-Come-First-Served (LCFS) scheduling discipline, where preemption is assumed. LCFS
is a robust scheduling discipline and well understood in the context of M/G/1 queues. In particular, the mean sojourn time
inM/G/1-LCFS, as in M/G/1-PS, is insensitive to the service time distribution. Moreover, the value function of the size-aware
M/G/1-LCFS queue is insensitive [1,24].

Here we first consider a single Erl(m, λ)/G/1-LCFS queue, and then apply those results to an M/G/m-RR/LCFS multi-
server system. We note that with LCFS the current state of the system does not affect the sojourn times of the jobs arriving
in the future, whereas with FCFS the situation is quite the opposite as the jobs arriving in future do not affect the present
jobs. In particular, this means that the value function of an LCFS system with respect to holding costs depends solely on the
expected remaining sojourn times of the present jobs, which in turn depend on the current phase of the arrival process. We
start by considering the busy period in an arbitrary work-conserving Erl(m, λ)/G/1 queue.

4.1. Busy period in an Erl(m, λ)/G/1 queue

We are interested in the expected remaining busy period, bi(u), in an arbitrary work-conserving Erl(m, λ)/G/1 queue
when the arrival process is initially in phase i and the backlog in the queue is u. By its definition, for λ E[X] < m,

lim
u→0

bi(u) = 0, ∀ i. (21)

For an arbitrary u > 0 we have the following result:

Proposition 5. The expected remaining busy period bi(u) in an Erl(m, λ)/G/1 queue in phase i with backlog u satisfies the
following set of differential equations:

b′i(u) = 1+ λ(bi+1(u)− bi(u)), i = 1, . . . , (m− 1),
b′m(u) = 1+ λ(E[b1(u+ X)] − bm(u)), i = m.

(22)

Proof. For i < m, u > 0 and small time-interval δ, we can write

bi(u) = δ + λδ · bi+1(u− δ)+ (1− λδ) · bi(u− δ)+ o(δ),

which in the limit as δ→ 0 gives

b′i(u) = 1+ λ(bi+1(u)− bi(u)).

94 E. Hyytiä, S. Aalto / Performance Evaluation 97 (2016) 83–103

Similarly, for i = m and u > 0 we have

bm(u) = δ + λδ · E[b1(u− δ + X)] + (1− λδ) · bi(u− δ)+ o(δ),

where X denotes the service time of the job arriving next (by conditioning). This gives in the limit as δ→ 0

b′m(u) = 1+ λ(E[b1(u+ X)] − bm(u)),

which completes the proof. �

With m = 1, the system reduces to an M/G/1 queue and b(u) = u/(1 − ρ), which satisfies (21) and (22). The solution
form > 1 is unfortunately more complex:

Corollary 7. The expected remaining busy periods bi(u) in an Erl(m, λ)/G/1 queue with m > 1 are nonlinear functions of the
initial backlog u.

Proof. We prove this by contradiction. Suppose that for some i < m and ϵ > 0,

bi(u) = aiu, u ∈ [0, ϵ].

Substituting this into (22) gives

b′i(u) = 1+ λ(bi+1(u)− bi(u))⇒ ai = 1+ λ(bi+1(u)− aiu).

First the above means that also bi+1(u), . . . , bm(u) are all linear with the same constant factor ai. Second, in the limit as
u → 0, we have bi(u) → 0 and therefore ai = 1. In particular, bm(u) = u for u ∈ [0, ϵ]. On the other hand, for u ∈ [0, ϵ]
we also have, by (22),

b′m(u) = 1+ λ(E[b1(u+ X)] − bm(u))⇒ 1 = 1+ λ(E[b1(u+ X)] − u),

and again as u→ 0, we obtain

1 = 1+ λ E[b1(X)] ⇒ E[b1(X)] = 0,

which is a contradiction. Therefore no bi(u)with i < m can be linear in [0, ϵ]. The case i = m follows directly from the latter
part. �

Corollary 8. The expected remaining busy periods bi(u) in an Erl(m, λ)/G/1 queue are sensitive to the shape of the service time
distribution.

Proof. We prove by contradiction. Consider two service time distributions with the same mean x: (i) with a fixed value x,
and (ii) with two values x−∆1 and x+∆2 obtained with probabilities p1 and p2. Then we utilize (22),

b′m(u) = 1+ λ(E[b1(u+ X)] − bm(u)),

in the limit as u→ 0, which gives

b′m(0) = 1+ λ E[b1(X)].

If b(1)
i (u) and b(2)

i (u) were insensitive, then the above would hold for both distributions and

b1(x) = p1 b1(x−∆1)+ p2 b1(x+∆2).

For the same mean, p1 = ∆2/(∆1 +∆2) and p2 = ∆1/(∆1 +∆2), and we have

b1(x) =
∆2

∆1 +∆2
b1(x−∆1)+

∆1

∆1 +∆2
b1(x+∆2).

The above holds for every choice of (∆1, ∆2) only if b1(u) is linear. However, in the proof of Corollary 7 we showed that the
bi(u) are nonlinear for u ∈ [0, ϵ], which leads to a contradiction. �

As with FCFS, the bi(u) can be solved numerically by transforming (22) to an integral form:

Corollary 9. The expected remaining busy periods bi(u) in an Erl(m, λ)/G/1 queue initially in phase i with backlog u satisfy the
following set of integral equations:

bi(u) =
1− e−λu

λ
+ λ

 u

0
e−λ(u−s) bi+1(s) ds, i = 1, . . . , (m− 1)

bm(u) =
1− e−λu

λ
+ λ

 u

0
e−λ(u−s) E[b1(s+ X)] ds.

(23)

E. Hyytiä, S. Aalto / Performance Evaluation 97 (2016) 83–103 95

Proof. Multiplying both sides of (22) by eλu gives

eλub′i(u)+ λ eλubi(u) = eλu
+ λeλubi+1(u), i = 1, . . . , (m− 1),

eλub′m(u)+ λ eλubm(u) = eλu
+ λeλuE[b1(u+ X)], i = m.

Hence,

∂

∂u
eλubi(u) = eλu

+ λeλubi+1(u), i = 1, . . . , (m− 1),
∂

∂u
eλubm(u) = eλu

+ λeλuE[b1(u+ X)], i = m.

Integrating both sides from 0 to u (see Section 3.1.5) then gives (23). �

A numerical solution for bi(u) can be obtained by iterating (23) until the functions converge. An initial solution is provided,
e.g., by the mean remaining busy period in an equivalent M/G/1 queue [30], giving

b(0)
i (u) =

u
1− λ E[X]/m

.

Corollary 10. For a constant service time ∆, the latter equation in (23) reads

bm(u) =
1− e−λu

λ
+ λ

 u

0
e−λ(u−s) b1(s+∆) ds. (24)

Asymptotically, for u≫ E[X], it is easy to show that

bi(u) ≈
u

1− ρ
,

and moreover,

b1(u)− bi(u)→
(i− 1) E[X]
m(1− ρ)

.

4.2. Single Erl(m, λ)/G/1-LCFS queue

Next we will apply the previous results to the Erl(m, λ)/G/1-LCFS queue. With LCFS, the current state of the queue does
not affect the sojourn time of the arriving job that will preempt a job currently receiving service, if any. This means that the
arriving jobs see the system as if it were empty. Therefore, we have an elementary relationship between the sojourn times
and busy periods:

Lemma 1. The mean conditional sojourn time of a job with service time x in an Erl(m, λ)/G/1-LCFS queue is

E[T | x] = b1(x), (25)

and the mean sojourn time is E[T] = E[b1(X)].

Similarly, bi(u) gives the expected sojourn time of a job that sees a backlog of u in front (including the job’s own service
time) when the phase of the arrival process is i. Note that according to Little’s result, the term λ E[b1(X)], that appeared
frequently in the previous section, corresponds to the mean number in the queue, E[N].

We can also write the size-aware value function for Erl(m, λ)/G/1-LCFS in terms of bi(u). Let z denote the state of the
queue, z = (i; (h1, x1), . . . , (hn, xn)), where i denotes the current phase of the arrival process, and (hj, xj) are the holding
cost rate and the (remaining) service time of job j. Job 1 (if there are any jobs present) is currently receiving service (if any),
and the last job n sees an effective backlog equal to x1 + · · · + xn.

Corollary 11. The size-aware value function of the Erl(m, λ)/G/1-LCFS queue in phase i with respect to job-specific holding costs
hj (associated with the waiting or sojourn time) satisfies

vi(z)− vi(0) =
n

j=1

hj · bi

j

k=1

xk

,

where vi(0) = v1(0)+ (i− 1)E[N]/λ and E[N] is the mean queue length.

That is, the value function is equal to the costs the present n jobs will incur on average before they depart the system, i.e., the
sum of their holding cost hj multiplied by the expected remaining sojourn time bi(·).

96 E. Hyytiä, S. Aalto / Performance Evaluation 97 (2016) 83–103

(a) Remaining busy period in Erl(m, λ)/D/1. (b) Mean sojourn time with LCFS.

Fig. 5. (a) The expected remaining busy period (or sojourn time) in an Erl(2, λ)/D/1-LCFS queue with λ = 1 and ρ = 0.5, and (b) a comparison of the
mean sojourn time in different LCFS queues.

4.3. M/G/m-RR/LCFS multi-server system

Let us next consider the corresponding multi-server system, M/G/m-RR/LCFS queue. We recall that jobs arrive according
to a Poisson process with rate λ, and are routed in Round-Robin fashion to m available servers so that each server
receives jobs with Erl(m, λ) distributed time-intervals. The state of the system is defined by z = (z1, . . . , zm), where
zi = ((hi,1, xi,1), . . . , (hi,ni , xi,ni)) denotes the jobs in the server that is currently in phase i. Then, as with FCFS, the system
decomposes (in terms of average behavior) and we have:

Corollary 12. The size-aware value function of M/G/m-RR/LCFS system is

v(z) =
m
i=1

vi(zi). (26)

4.3.1. Generalized Round-Robin (GRR)
As in Section 3.1.6, we can consider a generalized Round-Robin sequence with periodicity of M in the context of LCFS

servers. Without loss of generality, we can focus on Server 1 and let ai indicate if a job is assigned to Server 1 at the end of
phase i, i = 1, . . . ,M . Then, for the expected remaining busy period bi(u), it holds that

bi(u) =

1− e−λu

λ
+ λ

 u

0
e−λ(u−s) bi+1(s) ds, if ai ≠ 1,

1− e−λu

λ
+ λ

 u

0
e−λ(u−s) E[b1(s+ X)] ds, if ai = 1,

where for the notational simplicity we have bi+M(u) = bi(u).

4.4. Examples with LCFS

Next we will illustrate the analytical results obtained for LCFS. Fig. 5(a) depicts the expected remaining busy period bi(u)
in an Erl(m, λ)/D/1 queue with λ = 1, m = 2, and constant service times, X ≡ 1, so that ρ = 0.5. We recall that the bi(u)
also give the expected remaining sojourn times under LCFS.

The asymptotic linear behavior with slope (1− ρ)−1 = 2 is self-evident already when the backlog is u > 2, as indicated
with the dotted lines. Fig. 5(b) depicts the mean sojourn time in Erl(m, λ)/D/1-LCFS with m = 1, 2, 4,∞, where the case
m = ∞ corresponds to a D/D/1 queue without any queueing. We can see that a more regular arrival pattern decreases the
mean sojourn time also with LCFS.

5. Task assignment problem

In this section, we consider the routing (task assignment) problem in the system of m parallel servers with job- and
server-specific service fees and holding costs. As reference routing policies, we consider the following:

RR: Round-Robin assigns jobs using a predefined sequence of servers: s1, . . . , sm, s1, . . . where si ≠ sj for i ≠ j.
RND: Bernoulli-split assigns jobs randomly and independently using probabilities p1, . . . , pm.
JSQ: Join-the-shortest-queue assigns a new job to queue with the least number of jobs.

E. Hyytiä, S. Aalto / Performance Evaluation 97 (2016) 83–103 97

LWL: Least-work-left assigns a new job to the queue with the shortest backlog.
Myopic chooses the queue that minimizes the costs assuming no other jobs arrive in future.

Ties are broken in favor of the queue with a smaller index.

5.1. Policy iteration

Policy iteration is a standard technique of the MDP framework to improve a given policy based on a value function
[31,25,32]. In layman’s terms, at every state, it chooses the action a for which the sum of the immediate cost and the change
in the future cumulative costs for the given policy is the smallest. Here we carry out the first policy iteration round, and let
FPI denote the resulting policy.

When the basic policy is a static policy such as RND, the action a simply defines the server for job j. However, if the basic
policy is RR, then an action can define two things:

1. The queue for the new job.
2. The future RR sequence (the phases for queues).

The latter decision is fictitious and made for evaluation purposes only as the next job will be eventually assigned by FPI, not
by RR.

Let us first consider the service fees, which are independent of the scheduling discipline. The value function for basic
policy RR is given by (5), which depends on the phases of the queues. The total service fee cost of action a is

cS(a) = saj + vS(z⊕ a)− vS(z),

where saj is the service fee of the current job, z is the current state of the system, and z⊕ a the state after action a. Note that
we have made it explicit that the service fee may depend on the chosen queue. In contrast, with any static (basic) policy
such as RND, the state of the system does not affect how the system incurs service fees in the future, and the corresponding
value function is a constant and can be omitted. In this case, one considers only the immediate cost, cS(a) = saj .

With FCFS, no later arriving job affects the sojourn time of the present jobs, and the waiting time wa
j of job j gets fixed

at the task assignment by action a. For this reason, the value function (20) of the holding costs has been defined to consider
only the jobs arriving in the future, whereas the holding cost of the current job j is taken care of by the immediate cost,
(wa

j + xaj) · hj. In this section, we assume that the service time is independent of the server, xaj = xj, (i.e., the servers are
equally fast) and thus xj · hj is a constant term for all actions and can be ignored. Utilizing (20) gives the expected increase
in the holding costs due to action a is

cF(a) = wa
j · hj + vF(z⊕ a)− vF(z),

where z is the current state of the system, z⊕ a the state after action a, and vF(z) = ṽ(z) is the value function with respect
to the waiting time (18).

With LCFS, the sojourn time of each job depends on the later arriving jobs and the value function (26) includes also the
holding costs the present jobs incur. Therefore, there is no immediate holding cost and the expected increase in the holding
costs due to action a is

cL(a) = vL(z⊕ a)− vL(z),

where vL(z) = v(z) given by (26).
The improved policy α′ according to the policy iteration algorithm chooses the action that minimizes the expected

increase in the total costs,

α′(j, z) = argmin
a∈A

(cS(a)+ cW(a)) (27)

where A denotes the set of possible actions and cW(a) is either cF(a) or cL(a) depending on the scheduling discipline in the
given queue. We will utilize (27) in the following numerical examples repeatedly to derive efficient state- and cost-aware
FPI policies in different settings.

5.2. Numerical examples with FCFS

5.2.1. Two policy iteration steps for FCFS servers with constant service
As RR/LWL is optimal with respect to the mean delay for M/D/m, let us consider the same system but with arbitrary

job-specific holding cost rates. Let ∆ denote the constant service time of all job and h the holding cost rate of the new job. If
h > E[H], the intuition suggests that the new job should be assigned to the shorter queue according to RR/LWL. However,
if h < E[H], it may be beneficial to assign the new job to the longer queue, thus keeping the other queue shorter for later
arriving, possibly more important, jobs. The potential pitfall is that no such ‘‘important’’ job arrives and one of the servers
is unnecessarily idle (which never happens with RR/LWL). For policy improvement, it is more convenient to consider the
waiting time based cost structure and (27).

98 E. Hyytiä, S. Aalto / Performance Evaluation 97 (2016) 83–103

Fig. 6. States in the diagonal where SPI suggests assigning the new job with holding cost h < E[H] = 1 to the longer queue.

Let us start with the static Bernoulli-split policy (RND). With two identical FCFS servers, this policy assigns the new job to
Server 1 with probability of 0.5, and otherwise to Server 2. The value function of the whole system is [24]

ṽRND(u1, u2) =
λ′ E[H]

2(1− ρ ′)
(u2

1 + u2
2),

where λ′ is the queue-specific arrival rate, λ′ = λ/2, and ρ ′ the queue-specific load, ρ ′ = λ/2 · ∆. The mean difference in
the expected costs between assigning the new job with holding cost h to Server 1 and Server 2 is

1c = h(u1 − u2)+ ṽRND(u1 +∆, u2)− ṽRND(u1, u2 +∆)

=

h+

λ∆ E[H]
2− λ∆

· (u1 − u2),

i.e., 1c is negative when u1 < u2, and vice versa. This means that the first policy iteration (FPI) step (27), choosing the action
with the lowest expected overall cost if the consecutive decisions are according the basic policy (Bernoulli-split), yields LWL.
Moreover, we recall that LWL was equivalent to RR with a constant service time ∆.

As the first policy iteration step yielded RR, the value function of which we can now compute, we can proceed further
and carry out the second policy iteration step (SPI) for the M/D/m-RND/FCFS system,

RND PI
=⇒ LWL PI

=⇒ SPI.

Fig. 6 illustrates the regions in the state space where SPI chooses the alternative action, i.e., assigns the new job with
h < E[H] = 1 to the longer queue. The arrival rate λ was chosen to be 0.5. We note that SPI changes the FPI policy (RR) only
near the diagonal where both queues have roughly equal unfinished work. The closer the holding cost is to the mean, the
higher the backlogs must be before the change, on average, pays off. Jobs with h ≥ E[H] are categorically assigned to the
shorter queue.

5.2.2. FCFS servers with constant service times and varying service fees
Let us next consider a server system with a primary and secondary server with fixed-size jobs illustrated in Fig. 7. The

servers are equally fast, i.e., the service time of a job is the same in both queues. The cost structure is

H = 1, and S1 = 1, S2 = 4,

i.e., the secondary server has a four times higher service fee. Note that with identical service fees, LWL/RR/JSQ minimize the
mean waiting and sojourn times.

With two servers, both LWL and Myopic belong to the class of the so-called switch-over policies, which are defined by a
curve f (u1) such that a new job is routed to Queue 2 if u2 < f (u1), and otherwise to Queue 1. It turns out that also the FPI
policies based on RND and RR yield a switch-over policy. Fig. 7(b) illustrates the switch-over curves for λ = 0.8. RNDopt uses
the optimal splitting probabilities, and RNDu splits the jobs equally, p1 = p2 = 0.5. We note that the curves for FPI-RND

E. Hyytiä, S. Aalto / Performance Evaluation 97 (2016) 83–103 99

(a) System with FCFS servers. (b) Routing policies.

Fig. 7. (a) Primary and secondary servers with unit holding cost H = 1 and service fees S1 = 1 and S2 = 4 processing jobs with constant service time. (b)
Dynamic switch-over policies illustrated for a system with a constant service time, and two equally fast servers with service fees S1 = 1 and S2 = 4. Each
policy assigns a new job to Queue 1 when the current state is above the corresponding curve, and otherwise to Queue 2.

(a) Absolute performance. (b) Relative performance.

Fig. 8. Mean holding costs in the elementary example setting with two identical servers. FPI-RR(*) achieves clearly the lowest cost rate.

policies are straight lines, while the FPI-RR switch-over curve is a slowly turning curve. Simulating the system gives the
mean costs per job:

LWL: 2.20 FPI-RNDopt : 1.92 FPI-RR: 1.88
Myopic: 2.12 FPI-RNDu: 1.91

We observe that FPI-RR achieves the lowest mean cost rate, closely followed by the other two FPI policies. Numerically
experimenting one can see that when λ approaches 2 (the stability bound for this system), all FPI policies converge to LWL.
Similarly, when λ→ 0, Myopic is optimal and all three FPI policies reduce to it.

5.2.3. FCFS servers with random service times and holding costs
Let us now consider an elementary system comprising two identical servers with random service times. Jobs arrive

according to a Poisson process with rate λ. Job sizes and holding costs are i.i.d. random variables. The job size is 1 with
probability of 0.9, and otherwise 91, so that E[X] = 10 and V[X] = 629. The holding costs are assumed to obey an
exponential distribution with unit mean, H ∼ Exp(1). With identical servers, the optimal RND policy splits the jobs equally,
pk = 1/m. LWL minimizes the holding cost of the current job, i.e., it makes the same greedy decision as selfish users.
Moreover, both Myopic and FPI-RND reduce to LWL.

Simulation results are depicted in Fig. 8 for Bernoulli-split (RND), JSQ, RR, FPI-RND (i.e., LWL), FPI-RR, and FPI-RR(*) which
we will describe later. The offered load ρ is on the x-axis, and the y-axis corresponds to the mean costs incurred per job.
The left figure shows the absolute performance in logarithmic scale, and the right figure the performance relative to LWL,

100 E. Hyytiä, S. Aalto / Performance Evaluation 97 (2016) 83–103

(a) Sojourn time. (b) Holding costs.

Fig. 9. Mean holding costs in the elementary example setting with four identical servers. FPI-RR and FPI-RND are in practice identical to LWL, whereas
the heuristic FPI-RR(*) yields a significantly lower mean sojourn time (H ≡ 1) and cost rate (H ∼ Exp(1)).

E[HT]/E[HT | LWL]. The static RND and RR are the weakest routing policies. When ρ ≈ 0, both LWL and JSQ work well.
The task there is merely to avoid situations where two or more jobs are in one server while the other server is idle. As ρ
increases beyond about 0.1, the performance of JSQ starts to degrade. As ρ → 1, JSQ and LWL appear to converge to the
same point.

FPI-RR is as good as LWL (and FPI-RND). This is due to the fact that both RND and RR are blind to holding costs, and the
value of the state u is proportional to u2. Therefore, the decision of LWL (i) minimizes the costs the current job incurs, and
(ii) the expected increase in the costs incurred in the future. A closer inspection shows that FPI-RR is marginally better than
LWL and FPI-RND.

However, all the aforementioned routing policies are non-optimal as the new heuristic, FPI-RR(*), clearly achieves a
significantly lower mean cost rate. This heuristic policy was discovered while experimenting with the parameters of the
value function computation. Instead of the correct value function, FPI-RR(*) uses the value functions obtained with (i) a too
short interpolation interval (umax = 90) and (ii) linear extrapolation. As a consequence, a long backlog u is considered to be
less harmful for future arrivals than it would be if the later arriving jobs were actually assigned according to RR. At the same
time, FPI-RR(*), like FPI-RR, also makes a tentative decision as to where the next job will be assigned to. The performance of
FPI-RR(*) is surprisingly strong and it achieves over 50% reduction in the costs under a high load, relative to LWL.

Fig. 9 depicts the corresponding results with four servers. The heuristic FPI-RR(*) is again very good, whereas FPI-RND
and FPI-RR remain essentially equal to LWL. This suggests that FPI-RR(*) ‘‘understands’’ the situation better and the corre-
sponding ‘‘value function’’ can be expected to be closer to the one of the optimal routing policy. Why this happens and how
it can be utilized in this or other contexts is an interesting direction for future work.

5.3. Numerical examples with LCFS

Let us consider next systems of parallel LCFS servers, where the servers are again assumed to be equally fast. First we
note that, as with FCFS, it is possible to carry out two policy iteration steps when service times are constants:

RND PI
=⇒ JSQ

(ties)
=⇒ RR PI

=⇒ SPI, (28)

where SPI is the same as FPI-RR.
Let us consider next the performance of the different dispatching policies in a system of two parallel LCFS servers and

jobs arriving according to the Poisson process with rate λ. We consider two objectives: (a) minimizing the mean sojourn
time (H ≡ 1), and (b) minimizing the mean holding cost, when H ∼ Exp(1).

Suppose first that service times are constant. In this case, some of the routing policies become equivalent:

• RR and LWL, both ignoring the holding cost parameter, are equivalent, because the server that received the latest job has
never a shorter backlog than the other server.
• Also FPI-RND reduces to JSQ when minimizing the sojourn time (see Eq. (28)). These policies are also equivalent to the

Myopic routing policy that minimizes the cost under the condition that no other jobs arrive.

Recall that for FPI-RND, we consider all possible job assignments, which in this case is to Server 1 or Server 2. In contrast, for
FPI-RRwe consider all combinations of (i) possible job assignments and (ii) RR phases after the assignment (m! combinations
in general, two in our case). Hence, for each assignment, FPI-RR evaluates the value function (26) of the whole system in
2× 2 = 4 states, and chooses the action that corresponds to a state with the lowest (relative) value. Note that the decision
on phase essentially defines the server, where the job arriving next is (tentatively) assigned to.

Fig. 10(a) shows the mean sojourn time with different routing policies in comparison to RR. FPI-RR yields the lowest
mean sojourn time, followed by FPI-RND and JSQ. Fig. 10(b) depicts the corresponding results with the mean holding cost

E. Hyytiä, S. Aalto / Performance Evaluation 97 (2016) 83–103 101

(a) Sojourn time. (b) Holding costs.

Fig. 10. Two identical LCFS servers and constant job size: (a) Relative mean sojourn time, and (b) relative mean holding costs.

(a) Sojourn time. (b) Holding costs.

Fig. 11. Two LCFS servers and service time distribution D(0.5, 5.5): (a) Relative mean sojourn time, and (b) relative mean holding costs.

H ∼ Exp(1). In this case, FPI-RND is no longer identical to JSQ. Both FPI policies, being aware of the cost structure, incur
significantly less costs than other policies. Among them, FPI-RR is marginally better.

Consider next a non-constant service time distribution D(0.5, 5.5), so that E[X] = 1 and V[X] = 2. Fig. 11(a) depicts the
results when the objective is tominimize themean sojourn time. Also in this case, FPI-RND andMyopic reduce to JSQ as long
as the ties are resolved in the same way. On the other hand, LWL is no longer equivalent to RR and its performance in fact
deteriorates substantially when ρ increases. Otherwise the results are similar as with the fixed service time. The dynamic
JSQ/Myopic/FPI-RND policy does a rather good job, but FPI-RR yields an even lower mean sojourn time. Fig. 11(b) depicts
the corresponding results with the exponential holding cost distribution, H ∼ Exp(1). The results are similar as before and,
e.g., the performance of FPI-RND and FPI-RR are alike.

6. More advanced applications

The ability to determine a value function for Erl(m, λ)/G/1 queues enables the analysis of far more complex server
systems than the plain Round-Robin system. One example is illustrated in Fig. 12(a), where a multi-layer RR is constructed:
Queue 1 behaves according to Erl(2, λ)/G/1 and Queues 2 and 3 according to Erl(4, λ)/G/1. This type of arrangement can
be advantageous when the service rates and/or operating costs are asymmetric.

The main strength in RR comes from the fact that it reduces the variability in the inter-arrival times (see Sections 3.1.6
and 4.3.1). On the other hand, a high variability in the job sizes can be equally harmful (due to the second moment in
the Pollaczek–Khinchine formula for the mean waiting time). The so-called Size-Interval-Task-Assignment (SITA) policy
[33,15,34,35] seeks to reduces the variability in the job sizes by assigning jobs with a similar size to the same queue. To
this end, the support of the job sizes is divided intom non-overlapping intervals [ξi, ξi+1), i = 1, . . . ,m, and a job with size
x is assigned to Server i iff x ∈ [ξi, ξi+1).

Fig. 12(b) illustrates a server system which combines the useful features of SITA (variance reduction in service times)
and RR (which was the optimal policy w.r.t. delay for tasks with a constant service time). The arrival process to Queue 1 is a
Poisson process as SITA is a state-independent policy. Queues 2 and 3 behave according to Erl(2, λ′)/G/1, where the service
time of tasks can have a significantly smaller variance thanks to SITA. Moreover, dedicated jobs arriving according to some
other Poisson process can be directed to any point already receiving a Poisson process, such as Queue 1 and the second level

102 E. Hyytiä, S. Aalto / Performance Evaluation 97 (2016) 83–103

(a) Multi-layer RR. (b) Hybrid routing.

Fig. 12. (a) Multi-layer Round-Robin system feeds tasks to each queue with Erlang-distributed inter-arrival times. (b) In the hybrid system, Queue 1
behaves according to M/G/1 and Queues 2 and 3 according to Erl(2, λ′)/G/1 with reduced variance in the service times.

RR dispatcher in Fig. 12(b). Thus, the analysis of systems that hierarchically combine dispatchers remains tractable, their
value function can be determined, and the policy improvement step can be carried out.

7. Conclusions

We have analyzed the Round-Robin (RR) routing to a system of parallel queues. RR is a commonly used robust technique
to balance the load by assigning tasks to different servers sequentially. It decreases the burstiness in the arrival process to
each queue, which is important especially when the queues process the jobs in the FCFS order.

The availability of the value function for RR systemsunder FCFS and LCFS scheduling, via the corresponding value function
of Erl(m, λ)/G/1 queues, provides new insight to this mechanism itself (and to G/G/1 queues). The value functions that we
considered characterize the system statewith respect to the service fees and (virtual)waiting time, and also enable the policy
iteration stepwith respect to a very versatile cost structure defined by job- and server-specific service fees and holding costs,
yielding robust cost- and state-aware routing policies. Even though the value functions for RR systems are computationally
more demanding than the corresponding expressions for Bernoulli splitting, they can be evaluated numerically in online
fashion, thus facilitating efficient routing policies. Moreover, as a useful side-product, we obtain the mean waiting time in
the Round-Robin systems with FCFS and LCFS scheduling, which itself is a non-trivial result even for an M/D/m-RR queue.

Acknowledgments

This work was supported by the Academy of Finland in the TOP-Energy project (grant no. 268992) and FQ4BD project
(grant no. 296206).

References

[1] E. Hyytiä, R. Righter, S. Aalto, Energy-aware job assignment in server farms with setup delays under LCFS and PS, in: 26th International Teletraffic
Congress, ITC’26, Karlskrona, Sweden, 2014.

[2] W. Winston, Optimality of the shortest line discipline, J. Appl. Probab. 14 (1977) 181–189.
[3] R.R. Weber, On the optimal assignment of customers to parallel servers, J. Appl. Probab. 15 (2) (1978) 406–413.
[4] A. Ephremides, P. Varaiya, J. Walrand, A simple dynamic routing problem, IEEE Trans. Autom. Controlc 25 (4) (1980) 690–693.
[5] A. Hordijk, G. Koole, On the optimality of the generalised shortest queue policy, Probab. Engrg. Inform. Sci. 4 (1990) 477–487.
[6] D. Towsley, P. Sparaggis, C. Cassandras, Stochastic ordering properties and optimal routing control for a class of finite capacity queueing systems,

in: Proc. of the 29th IEEE Conference on Decision and Control, 1990, pp. 658–663.
[7] P.D. Sparaggis, D. Towsley, Optimal Routing and Scheduling of Customers with Deadlines, Probab. Engrg. Inform. Sci. 8 (1) (1994) 33–49.
[8] G. Koole, P.D. Sparaggis, D. Towsley, Minimizing response times and queue lengths in systems of parallel queues, J. Appl. Probab. 36 (4) (1999)

1185–1193.
[9] O. Akgun, R. Righter, R. Wolff, Multiple server system with flexible arrivals, Adv. Appl. Probab. 43 (2011) 985–1004.

[10] Z. Liu, D. Towsley, Optimality of the round-robin routing policy, J. Appl. Probab. 31 (2) (1994) 466–475.
[11] Z. Liu, R. Righter, Optimal load balancing on distributed homogeneous unreliable processors, Oper. Res. 46 (4) (1998) 563–573.
[12] D. Down, R. Wu, Multi-layered round robin routing for parallel servers, Queueing Syst. 53 (4) (2006) 177–188.
[13] M. Harchol-Balter, Performance Modeling and Design of Computer Systems: Queueing Theory in Action, Cambridge University Press, 2013.
[14] E. Hyytiä, S. Aalto, Round-robin routing policy: value functions and mean performance with job- and server-specific costs, in: 7th International

Conference on Performance Evaluation Methodologies and Tools, ValueTools, Torino, Italy, 2013.
[15] M. Harchol-Balter, M.E. Crovella, C.D.Murta, On choosing a task assignment policy for a distributed server system, J. Parallel Distrib. Comput. 59 (1999)

204–228.
[16] C.D. Crommelin, Delay probability formulas when the holding times are constant, Post Off. Electr. Eng. J. 25 (1932) 41–50.
[17] G.J. Franx, A simple solution for the M/D/c waiting time distribution, Oper. Res. Lett. 29 (5) (2001) 221–229.
[18] G.J. Franx, The transient M/D/c queueing system, 2002.
[19] H. Tijms, New and old results for the M/D/c queue, AEU-Int. J. Electron. Commun. 60 (2) (2006) 125–130.
[20] A.J.E.M. Janssen, J.S.H. Van Leeuwaarden, Back to the roots of the M/D/s queue and the works of Erlang, Crommelin and Pollaczek, Stat. Neerl. 62 (3)

(2008) 299–313.
[21] K.R. Krishnan, Joining the right queue: a state-dependent decision rule, IEEE Trans. Autom. Control 35 (1) (1990) 104–108.
[22] P.S. Ansell, K.D. Glazebrook, C. Kirkbride, Generalised ‘Join the Shortest Queue’ policies for the dynamic routing of jobs to multi-class queues, J. Oper.

Res. Soc. 54 (4) (2003) 379–389.
[23] S. Bhulai, On the value function of the M/Cox(r)/1 queue, J. Appl. Probab. 43 (2) (2006) 363–376.
[24] E.Hyytiä, A. Penttinen, S. Aalto, Size- and state-aware dispatchingproblemwith queue-specific job sizes, European J. Oper. Res. 217 (2) (2012) 357–370.
[25] R.A. Howard, Dynamic Probabilistic Systems, Volume II: Semi-Markov and Decision Processes, Wiley Interscience, 1971.
[26] B. Hajek, The proof of a folk theorem on queuing delay with applications to routing in networks, J. ACM 30 (4) (1983) 834–851.

http://refhub.elsevier.com/S0166-5316(16)00003-1/sbref2
http://refhub.elsevier.com/S0166-5316(16)00003-1/sbref3
http://refhub.elsevier.com/S0166-5316(16)00003-1/sbref4
http://refhub.elsevier.com/S0166-5316(16)00003-1/sbref5
http://refhub.elsevier.com/S0166-5316(16)00003-1/sbref7
http://refhub.elsevier.com/S0166-5316(16)00003-1/sbref8
http://refhub.elsevier.com/S0166-5316(16)00003-1/sbref9
http://refhub.elsevier.com/S0166-5316(16)00003-1/sbref10
http://refhub.elsevier.com/S0166-5316(16)00003-1/sbref11
http://refhub.elsevier.com/S0166-5316(16)00003-1/sbref12
http://refhub.elsevier.com/S0166-5316(16)00003-1/sbref13
http://refhub.elsevier.com/S0166-5316(16)00003-1/sbref15
http://refhub.elsevier.com/S0166-5316(16)00003-1/sbref16
http://refhub.elsevier.com/S0166-5316(16)00003-1/sbref17
http://refhub.elsevier.com/S0166-5316(16)00003-1/sbref19
http://refhub.elsevier.com/S0166-5316(16)00003-1/sbref20
http://refhub.elsevier.com/S0166-5316(16)00003-1/sbref21
http://refhub.elsevier.com/S0166-5316(16)00003-1/sbref22
http://refhub.elsevier.com/S0166-5316(16)00003-1/sbref23
http://refhub.elsevier.com/S0166-5316(16)00003-1/sbref24
http://refhub.elsevier.com/S0166-5316(16)00003-1/sbref25
http://refhub.elsevier.com/S0166-5316(16)00003-1/sbref26

E. Hyytiä, S. Aalto / Performance Evaluation 97 (2016) 83–103 103

[27] B. Hajek, Extremal splittings of point processes, Math. Oper. Res. 10 (4) (1985) 543–556.
[28] Y. Arian, Y. Levy, Algorithms for generalized round robin routing, Oper. Res. Lett. 12 (5) (1992) 313–319.
[29] E. Hyytiä, S. Aalto, A. Penttinen, Minimizing slowdown in heterogeneous size-aware dispatching systems, ACM SIGMETRICS Perform. Eval. Rev. 40

(2012) 29–40. (ACM SIGMETRICS/Performance conference).
[30] L. Kleinrock, Queueing Systems, Volume I: Theory, Wiley Interscience, 1975.
[31] R. Bellman, Dynamic Programming, Princeton University Press, 1957.
[32] M.L. Puterman, Markov Decision Processes: Discrete Stochastic Dynamic Programming, Wiley, 2005.
[33] M.E. Crovella, M. Harchol-Balter, C.D. Murta, Task assignment in a distributed system: Improving performance by unbalancing load, in: Proceedings

of SIGMETRICS ’98, Madison, Wisconsin, USA, 1998, pp. 268–269.
[34] H. Feng, V. Misra, D. Rubenstein, Optimal state-free, size-aware dispatching for heterogeneous M/G/-type systems, Perform. Eval. 62 (1–4) (2005)

475–492.
[35] M. Harchol-Balter, A. Scheller-Wolf, A.R. Young, Surprising results on task assignment in server farms with high-variability workloads, in: Proc. of

SIGMETRICS, ACM, New York, NY, USA, 2009, pp. 287–298.

Esa Hyytiä received the M.Sc. (Tech.) degree in engineering physics and Dr.Sc. (Tech.) degree in electrical engineering from
Helsinki University of Technology, in 1998 and 2004, respectively. In 2013, he was awarded a docentship in performance
analysis of communication networks at the Aalto University School of Electrical Engineering. In 1997, he joined the Laboratory
of Telecommunications of Helsinki University of Technology (TKK). From 2005 to 2006, he was with the Norwegian University
of Science and Technology (NTNU), Norway as a postdoc researcher, from 2005 to 2009, with the Telecommunication Research
Center Vienna (FTW), Austria, as a senior researcher, and from 2009 to 2015, with Aalto University, Finland, as a research fellow.
Currently he is working at the Department of Computer Science of the University of Iceland as an assistant professor. His research
interests include performance analysis, modelling and optimization of computer and communications systems.

Samuli Aalto received his M.Sc. and Ph.D. degrees in Mathematics from the University of Helsinki in 1984 and 1998, respectively.
From 1984 to 1997, Dr. Aalto worked as a Research Scientist at VTT Technical Research Center of Finland. Since 1997, he has
been with TKK Helsinki University of Technology, which is now part of Aalto University. Currently he acts as Senior Research
Fellow leading the Teletraffic and Performance Analysis Group in the Department of Communications and Networking. Dr. Aalto’s
research interests include queueing theory, teletraffic theory, and performance analysis of modern communications systems and
networks.

http://refhub.elsevier.com/S0166-5316(16)00003-1/sbref27
http://refhub.elsevier.com/S0166-5316(16)00003-1/sbref28
http://refhub.elsevier.com/S0166-5316(16)00003-1/sbref29
http://refhub.elsevier.com/S0166-5316(16)00003-1/sbref30
http://refhub.elsevier.com/S0166-5316(16)00003-1/sbref31
http://refhub.elsevier.com/S0166-5316(16)00003-1/sbref32
http://refhub.elsevier.com/S0166-5316(16)00003-1/sbref34
http://refhub.elsevier.com/S0166-5316(16)00003-1/sbref35

