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The operating principle of traveling-wave parametric amplifiers is typically understood in terms of the standard
coupled mode theory, which describes the evolution of forward propagating waves without any reflections, i.e.,
for perfect impedance matching. However, in practice, superconducting microwave amplifiers are unmatched
nonlinear finite-length devices, where the reflecting waves undergo complex parametric processes, not described
by the standard coupled mode theory. Here, we present an analytical solution for the TWPA gain, which includes
the interaction of reflected waves. These reflections result in corrections to the well-known results of the standard
coupled mode theory, which are obtained for both three-wave and four-wave mixing processes. Due to these
reflections, the gain is enhanced and unwanted nonlinear phase modulations are suppressed. Predictions of the
model are experimentally demonstrated on two types of unmatched TWPA, based on coplanar waveguides with
a central wire consisting of (i) a high kinetic inductance superconductor, and (ii) an array of 2000 Josephson
junctions.

DOI: 10.1103/PhysRevB.107.174520

I. INTRODUCTION

Modern microwave quantum engineering exploits efficient
detection of low power microwave signals [1,2] requiring
linear amplification with ultralow added noise. Nowadays,
superconducting parametric amplifiers, exhibiting quantum
limited sensitivity, have become the most favourable imple-
mentation in practical devices [3].

The superconducting parametric amplifiers that have been
demonstrated so far can be divided in two classes: the resonant
parametric amplifier [4–7] and the traveling wave parametric
amplifier (TWPA) [8–11]. A resonant parametric amplifier
works as a nonlinear resonator, which provides energy transfer
from a strong pump tone to the signal to be amplified [12]. The
finite interaction time of the waves providing amplification is
enhanced by a high quality factor of the nonlinear resonator,
which in turn limits the bandwidth. Typically, the required
nonlinearity is achieved by integrating the resonator with an
appropriate array of Josephson junctions (JJs) [13].

In a TWPA, the three-wave mixing (3WM) (in the presence
of DC bias) or the four-wave mixing (4WM) process occurs,
as waves propagate in a relatively long nonlinear transmission
line (TL) [14]. The performance of the TWPA is usually
described by coupled mode equations (CME) in the standard
form for three types of waves: pump, signal, and idler, analo-
gously to the fiber optics theory [15]. Standard CME predict
that the bandwidth is limited by nonlinear phase modulations
only. However, these modulations can be controlled by means
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of dispersion engineering. For instance, in Ref. [9], smoothed
broadband amplification from 4 to 8 GHz has been achieved
via 4WM and in Ref. [16] from 3.5 to 5.5 GHz under 3WM.

The analysis based on conventional CME, however, does
not take into account counter-propagating waves reflected at
the impedance mismatch between the nonlinear TL and stan-
dard 50 � circuitry. Despite the decade-long lasting effort,
the development of an impedance matched device is still a
challenge. In experiments, an impedance mismatch results in
modulation of the amplifier transmission (ripples) [17,18].
This modulation can be significant, even more than 5 dB
[8,9], which limits the applicability of these amplifiers. So
far, these ripples have been described as Fabry-Pérot-like
resonances [11,19] with the bandwidth inversely proportional
to the length of the waveguide. Despite having significant
influence on the amplifier transmission, the role of these res-
onances in parametric processes, to our best knowledge, has
not been described satisfactorily.

Modifications of CME, required for photonic crystal engi-
neering, account for reflections inside the photonic medium
composing the TWPA [20–22]. In this paper, we generalize
the conventional CME for both 3WM and 4WM processes,
by taking into account the reflections at the ends of un-
matched TWPA. This enables us to properly describe the
transmission of broadband TWPAs, including resonance ef-
fects, such as gain enhancement analogous to the high
quality resonant amplifiers. We have fabricated two copla-
nar waveguides, one made of high kinetic inductance (KI)
superconductor, one consisting of 2000 JJs, both connected
to 50 � input and output lines. They were tested in 3WM
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and 4WM regimes, respectively. A reasonable agreement
between theory and experiment is demonstrated. Due to
the impedance mismatch, both amplifiers operate in the
intermediate regime between the resonant and the traveling-
wave limits.

II. COUPLED MODE THEORY

Nonlinear media are commonly exploited for parametric
amplification. In our case, such medium is provided by the
middle wire of the TL, which is formed either by an array
of JJs [see Fig. 4(b)] or by a high kinetic inductance super-
conductor. Dependencies of voltage V (z, t ) and current I (z, t )
on the coordinate (z) and time (t) in the TL are described by
nonlinear telegrapher’s equations:

∂V (z, t )

∂t
= − 1

Cl

∂I (z, t )

∂z
, (1)

∂I (z, t )

∂t
= −(Ll (1 + I (z, t )2/I2

∗ ))−1 ∂V (z, t )

∂z
, (2)

where Ll and Cl denote the respective inductance and capaci-
tance per unit length of the TL. Here I∗ is scale of nonlinearity
and relates to the critical current Ic, as will be discussed below.
As the superconducting medium does not exhibit DC losses,
the DC bias current ID does not contribute to the voltage V ,
however, it alters the nonlinear inductance. Therefore, in the
presence of ID, Eq. (2) becomes

∂I (z, t )

∂t
= −(

LD
l (1 + εI (z, t ) + ξ I (z, t )2)

)−1 ∂V (z, t )

∂z
, (3)

where ε = 2ID/(I2
D + I2

∗ ), ξ = 1/(I2
D + I2

∗ ) [16] and the in-
ductance per unit length enhanced by the DC bias is LD

l =
Ll (1 + I2

D/I2
∗ ). In the following, I (z, t ) denotes only the RF

current and ID is fixed. Equivalently, Eqs. (1) and (3) can be
presented as

v2 ∂2I (z, t )

∂z2
− ∂2I (z, t )

∂t2
= ∂2

∂t2

(
1

2
εI (z, t )2 + 1

3
ξ I (z, t )3

)
,

(4)
where v = 1/

√
LD

l Cl is the phase velocity in the waveguide.
To extract the gain as a function of circuit parameters,

typically four planar waves

I (z, t ) =
∑
n∈{p,s,i3,i4}

1

2
(In(z)ei(knz−ωnt ) + c.c.) (5)

are substituted into Eq. (4). Here ωn is the circular frequency
and kn = ωn/v denotes the wave vector, where the index n
indicates the type of the wave, namely, n = p, s, i3, i4 stands
for pump, signal, and two idlers, respectively. The idler i3
entering the 3WM satisfies

ωp = ωs + ωi3 (6)

and 4WM idler i4 obeys

2ωp = ωs + ωi4 . (7)

Commonly, it is assumed that such waves propagate along
an ideally matched TL. In practice, however, impedance mis-
matches at interconnections of different parts of the TL are
present. This leads to partial reflection of the propagating

waves, characterized by the reflection coefficient �n deter-
mined by the impedance mismatch at the frequency ωn.
Taking such reflections at both ends of the nonlinear TL into
account (see Appendix A), the RF current in the TL can be
expressed as

I (z, t ) =
∑
n∈{p,s,i3,i4}

1

2
(In(z)tn(eiknz + �ne−iknz )e−iωnt + c.c.),

(8)

where tn = 1/(1 − �2
ne2iknl ) is the transmission amplitude at

the frequency ωn and l is the length of the TL. Therefore the
transmission coefficient can be expressed

Tn ≡ (
1 − �2

n

)2|tn|2 =
(
1 − �2

n

)2

1 + �4
n − 2�2

ncos(2knl )
. (9)

To reconstruct the functions Is(z), Ii3 (z), and Ii4 (z), the ex-
pression (8) is substituted into the wave equation (4). Here,
we emphasize that In(z) in the ansatz (8) can contain rapidly
oscillating terms and, therefore, the amplitudes of the re-
sulting forward and backward propagating modes of I (z, t )
could have a different spatial shape. However, utilizing the
averaging method, we extract only a slowly varying part of
the In(z) which mainly contributes to the forward propagation
(see Appendixes A and B). From now on, we denote by
symbol In(z) the slowly varying part of the aforementioned
amplitudes only. Differential equations for the spatial evolu-
tion of these slowly varying amplitudes describing signal gain
under 3WM and 4WM are obtained in an approximate form in
the limit � � 1 (see Appendix B). Finally, a solution formally
identical to the well-known equation for signal gain [15] is
obtained from (B7):

G j (l ) ≡
∣∣∣∣ Is(l )

Is(0)

∣∣∣∣
2

= cosh2(g jl ) + β2
j

4g2
j

sinh2(g jl ), (10)

where β j is the parameter of the phase mismatch and g j is
the gain factor and index j = 3 or 4 indicates 3WM or 4WM,
respectively. It is important to note that expression (10) is gen-
eralized to include reflections, which result in the following
correction to the phase mismatch β j and the gain factor g j .
The phase mismatch for 3WM process β3 takes the form

β3 = 	k3
(
1 + 2γ

(
1 + �2

p

)) − kpγ
(
1 − �2

p

)
, (11)

where 	k3 = kp − ks − ki3 is the mismatch of wave vectors
and

γ = |tpIp|2
8
(
I2
D + I2∗

) (12)

is the strength of the nonlinearity. Now, the phase matching
condition, i.e., β3 = 0, dictates

	k3 = kp

γ
(
1 − �2

p

)
1 + 2γ

(
1 + �2

p

) . (13)

Obviously, the presence of reflections suppresses the phase
mismatch caused by the nonlinearity. Moreover, g3 is in-
creased, compared to a perfectly impedance-matched system
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FIG. 1. Calculation of 4WM gain using standard CME (�p = 0)
for no dispersion engineering (orange curve) and for a perfect phase
matching (blue curve). Parameters are taken from [11]. The green
curve is prediction of modified theory [Eq. (17)] with �p = 0.45
without any dispersion engineering. The red curve is the modified
theory for 5 times shorter TL, no dispersion engineering and higher
reflection coefficient �p = 0.6. The gain of the short TL is compara-
ble to standard theory prediction of long TL without phase-matching
and the bandwith of each peak is ≈0.5 GHz.

with �p = 0:

g3 =
√

kski3γ
8I2

D(
I2
D + I2∗

)(
1 + �2

p

) − β2
3

4
. (14)

The 4WM is obtained for zero DC bias, thus all waves
participating in the mixing are partially reflected at the ends
of the TWPA. This leads to even more radical changes. The
phase mismatch β4 is

β4 = 	k4
(
1 + 2γ

(
1 + �2

p

)) − 2kpγ
(
1 − �2

p

)
, (15)

where 	k4 = 2kp − ks − ki is the mismatch of wave vectors
under 4WM. The enhancement of the gain factor for 4WM is

g4 =
√

kski4γ
2
(
1 + 4�2

p

) − β2
4

4
. (16)

Both current amplitudes—the amplified signal and the
pump entering the γ coefficient [Eq. (12)]—are modulated by
the Fabry-Pérot-like transmission amplitude tn. Therefore the
gain of the unmatched amplifier reads

Gj (l ) ≡
∣∣∣∣ Is(l )

Is(0)

∣∣∣∣
2

= G j (l )Ts, j = 3 and 4. (17)

To demonstrate the effect of reflections, we took the length
and phase velocity from Ref. [11] and plotted the gain curves
according to Eq. (17) in Fig. 1 for a demonstrative set of
parameters. The resulting curves for the standard CME (or
for �p = 0) with and without phase matching are blue and
orange, respectively. The green curve depicts the gain, accord-
ing to Eq. (17), with � = 0.45 without phase matching. Sharp
ripples appear and the gain is much higher in comparison to
the orange curve. A 5 times shorter waveguide would result in
much wider ripples and its gain (red curve) is comparable to
the standard theory at original length.

According to Eqs. (10)–(17) the gain of a TWPA increases
with the reflections occurring at the ends of the TL. Vice
versa, as is shown in Appendix C, the presence of ampli-
fication changes the current and voltage wave propagation
in such a way, that the reflections at the end of the TL are
increased, too. This positive feedback may result in very high
gain in the resonant peaks, whose quality is enhanced (ripples
are sharpened). These so-called gain ripples are observed by
many groups dealing with TWPA, even for nearly impedance-
matched devices (aiming for �n → 0) [11,18]. The effect is
not further studied here. In the presented experiment, this
effect is observed as well and for measurements with a strong
pump, a new value of �′ is introduced.

III. EXPERIMENT

A. Kinetic inductance TWPA

In order to investigate the validity of the model de-
scribed above, we fabricated the KI-TWPA device shown in
Fig. 2. The design represents a waveguide where an inductive
element—the central high-KI strip—is coupled to the ground
plane via fractalized capacitors CF (Fig. 2, bottom inset).
The central strip is 27 mm long and 1 µm wide and has
a sheet kinetic inductance of ∼4.2 pH/�. The combination
of a highly inductive central strip and increased capacitance
of fractalized capacitors results in slow propagation velocity
(∼2% of the speed of light), thereby reducing the length of
the transmission line required to get sufficient amplification
[23,24]. Moreover, the width of the capacitors is periodically
varied along the line to achieve dispersion engineering, with
stop band at ≈10 GHz. In the vicinity of the band gap, the
phase propagation velocity is perturbed, so that with a proper
choice of the pump frequency the dispersion phase shift 	k3

compensates for nonlinear phase shift acquired by high power
pump and the β = 0 condition can be fulfilled [8].

The KI-TWPA chip was measured in a Helium gas-flow
cryostat with a base temperature of ∼2 K. The input and out-
put terminals of the device were bonded onto sampling lines
in a printed circuit board (PCB) and the microwave transmis-
sion was measured using a vector network analyzer (VNA).
In order to eliminate spurious ground plane resonances, the
ground plane of the chip was carefully bonded to the PCB
ground around the perimeter of the sample.

Figure 3 presents the amplifier’s gain measured in 3WM
operation regime for DC bias current ID = 1 mA and the pump
current amplitude Ip ≈ 1 mA at frequency 10.38 GHz. These
values were precisely chosen to pump the amplifier at the
edge of the band gap at the highest possible pump power,
which does not break superconductivity. At optimal values,
the phase-matching condition β3 = 0 is fulfilled and high gain
is achieved. The measured gain profile shows an average gain
of 9.15 dB in the frequency range of 3–7 GHz, along with
the presence of ripples indicating an impedance mismatch. As
seen in Fig. 3 (inset), the ripples can be reasonably fitted with
the proposed model. The reflection coefficient �p and phase
velocity v can be estimated from the fit, and are presented in
Table I along with the values of Ip and ID. For the kinetic
inductance TWPA, I∗ is derived within microscopic theory
in Ref. [25] as I∗ ≈ 2Ic. However, in experiments, deviations
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FIG. 2. Schematic of the KI-TWPA with chip dimensions. The
right inset shows an optical micrograph of a few sections of quasi-
fractal waveguide. The bottom inset is a magnified SEM image of the
fractal structure. The width of the central high KI line is 1 µm.

from this value were observed. For example, in Ref. [26], for
similar technology, the ratio I∗/Ic was estimated to be ≈5.
This increase can be caused by the suppression of the critical
current by vortex motion [27], and/or by the presence of
weak spots in the middle wire. In other words, the average

TABLE I. Parameters of the KI-TWPA. The length l is given
by the design, the other parameters are obtained from the fit of the
amplification profile.

l (mm) v[c] ID[I∗] Ip[I∗] �p

standard theory 27 0.018 0.11 0.095 0
with correction 0.1 0.094 0.52
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FIG. 3. Measured amplification of kinetic inductance TWPA
(blue data). Red curve is a fit by the modified theory. The inset shows
how the Fabry-Pérot oscillations were matched to the measured
transmission, allowing the extraction of phase velocity and reflection
coefficient utilized to reconstruct the frequency profile of the gain.
The orange curve is a fit of the data by standard theory.

depairing current of the middle wire is higher than the critical
current expected from the DC measurement. Therefore here
we express the parameters Ip and ID in units of I∗. A fit to the
standard CM theory returns slightly higher values of ID and
Ip and lower amplification.

FIG. 4. (a) Transmission measurement setup in refrigerator. The
3 dB attenuator placed between the DUT and the isolator suppresses
spurious resonances resulting from reflections between DUT and
other parts of the setup. (b) Lumped element model of the JJ trans-
mission line terminated by 50 � coaxial cables. Estimated values of
inductance Ll and capacitance Cl are listed in Table II. (c) Photo of
the TWPA chip in copper box connected to SMA connector by in-
dium. The sample is grounded by conductive silver varnish. (d) SEM
image of Nb/AlO/Nb JJs forming the middle wire of TWPA.
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TABLE II. Parameters of the JJ-TWPA waveguide. The length l and the number of junctions N are set by design. NRn is the room
temperature resistance of the chain of N JJs. Other parameters are obtained from the fit of the weak signal transmission by Eq. (9) and the
amplified signal transmission by the presumed model.

N l (mm) Rn (�) Ic (µA) Ll (pH/µm) Cl (fF/µm) 1/
√

LlCl [c]
√

Ll/Cl (�) �s �′
s v [c] Ip[Ic]

2000 11 155 12.3 4.68 0.13 0.14 189 0.51 0.72 0.14 0.84

B. Josephson junction TWPA

To show that the effect of gain enhancement of a TWPA
occurs even for a higher reflection coefficient (�p ≈ 0.7), a
high impedance CPW with nonlinear inductance was stud-
ied (see Fig. 4). The middle wire, 11 mm long, is formed
out of 2000 niobium-based Josephson junctions (JJs), see
Appendix D as well as Ref. [28]. Assuming the inductance
is dominated by the Josephson inductance, the inductance
per unit length can be estimated by the relation Ll l/2000 =
�0/2π Ic, where �0 is the magnetic flux quantum. Here, the
critical current Ic is estimated from the BCS relation for the
product of Ic and the normal state resistance of the junction
Rn [29]. The ground capacitance is estimated both by the
standard formula (see Ref. [30]), and an EM simulation in
SONNET software. These values, listed in Table II, are uti-
lized in the estimation of the phase velocity 1/

√
LlCl and the

characteristic impedance
√

Ll/Cl . The design also contains
photonic-crystal-like impedance modulation, however at the
actual length of the waveguide, it has no observable effect.

The sample was installed in a copper box and its 50 �

contacting pads were connected to the SMA connectors by
indium [see Fig. 4(c)]. Prior to the actual measurement, the
transmission has been calibrated by using a 50 � TL con-
nected instead of the TWPA (for details on calibration, see
Ref. [31]) by a VNA in a pulse-tube refrigerator at a tempera-
ture of 3.5 K according to scheme shown in Fig. 4(a).

Transmission measurement of the unmatched TL was per-
formed at low signal power, where nonlinearity is negligible
(see blue line in Fig. 5). The measured transmission exhibits
resonances, with peaks at frequencies fm = mv/2l , where m
is an integer and l is the length of the waveguide. As the
unmatched waveguide creates a stepped impedance resonator,

3.0 3.5 4.0 4.5 5.0 5.5 6.0

f (GHz)

0.2

0.4

0.6

0.8

1.0

G
a
in

ca
l

Δf = v/2l

FIG. 5. (a) Calibrated weak signal transmission without pumping
tone (blue line). Fit of the data by Fabry-Pérot oscillating transmis-
sion (9) (red curve). The parameters of the fit; �s and v, are listed in
Table II.

the transmission can be described by Eq. (9) plotted as red line
in Fig. 5.

The obtained phase velocity v and the reflection coefficient
�s of the waveguide are consistent with the estimated induc-
tance and capacitance per unit length (see Table II). These
parameters are used to calculate the gain of the TWPA from
Eq. (17). In addition, the reflection coefficient �s is increased
after the pump is applied and amplification is observed (see
Appendix C). Therefore �s was replaced by the value �′

s ≈
0.72 obtained as a best fit to the experimental blue line by the
theoretical red curve in Fig. 6.

The signal transmission with pump tone on was measured
for various signal and pump powers. The highest amplifica-
tion was achieved for pump power of −57.0 dBm and signal
power ranging from −100 to −86 dBm at the input of the
device. Figure 6 presents the gain as a function of the signal
frequency, at the pump frequency of 3.38 GHz. As there were
no dispersion engineering features, and 	k4 = 0 holds for
all pump frequencies, a similar gain profile was obtained at
various pump frequencies. The measured gain profile shows a
region where the amplification occurs, clearly corresponding
to a peak resulting from resonance caused by the impedance
mismatch (Fig. 5). When the standard model for matched
TL is applied (�p = 0, see orange curve in Fig. 6), a weak
amplification (< 5 dB) is obtained over a wide bandwidth.
Including the effects of reflections by the discussed model and
accounting for the correction �p = �′

s from Table II improves
the correspondence between the theory and experiment. The
ratio between the nonlinearity scale and the critical current for
JJs is more robust and it is given as I∗/Ic = √

2. As the critical
current estimated from the Josephson inductance agrees with
the value calculated from the resistance of junctions, the pump
current amplitude is expressed in units of Ic.

3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.4

f (GHz)

−5

0

5

10

G
a
in
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)

FIG. 6. The measured gain of the TWPA (blue line) for the pump
frequency of 3.38 GHz. Orange and red curves are the results of
the standard CME and the model with reflections for �p = 0.72,
respectively.
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IV. CONCLUSION

In this paper, we presented a modification of standard CME
for parametric amplification, which is commonly utilized to
analyze TWPAs. By considering reflections due to impedance
mismatches, we showed that the gain ripples are an inherent
property of unmatched finite length TWPAs. Similarly to res-
onant amplifiers, in these peaks, the presented theory predicts
enhanced gain. This feature can be utilized in the design of
shorter TWPAs. A shorter TL results in the broadening of
gain ripples with bandwidth from few MHz up to 1 GHz and,
at the same time, providing reasonable gain. The operating
frequency range, where the unmatched TWPA provides gain
in a series of Fabry-Pérot-like resonances is also increased
by the reflections. Therefore these peaks could be utilized in
experiments requiring multiplexing.

Less demanding fabrication of the shorter TWPAs and
omitting the challenging impedance matching may be advan-
tages. In this paper, therefore, we studied the working regime
of TWPA, in which the gain is increased by the reflections and
the bandwidth is given by Fabry-Pérot resonances. We demon-
strate the usability of our model by analyzing the response of
two types of devices: a JJ and a kinetic inductance TWPA.
For the kinetic inductance TWPA 27 mm long with slight
impedance mismatch, good agreement with the experiment
was achieved. Series of 30–40 MHz wide peaks with gain over
10 dB are observed in range from 3–7 GHz. The JJ TPWA
was significantly shorter (l = 11 mm) with higher reflections
providing 8 dB gain in a single peak with the bandwidth of
≈600 MHz.
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APPENDIX A: COUPLED MODE EQUATIONS
FOR WAVES IN A RESONATOR

The field inside a Fabry-Pérot resonator terminated by two
identical mirrors with reflection coefficients �n consists of an
infinite number of reflected waves. Thus the amplitude In of

the field oscillating at frequency ωn is defined as

In(z, t )

= 1
2In(z)(eiknz + �neikn (l−z) + �2

neikn (2l+z) + ...)e−iωnt + c.c.

= 1
2In(z)tn(eiknz + �̃ne−iknz )e−iωnt + c.c., (A1)

where in the last line, the following notation is introduced

�̃n = �neiknl , (A2)

tn = 1

1 − �̃2
n

. (A3)

Solving the nonlinear wave equation (4) for current
in the form I (z, t ) = Is(z, t ) + Ip(z, t ) + Ii3 (z, t ) + Ii4 (z, t )
means finding the spatially dependent current amplitudes
In(z), such that the current (8), satisfies (4). Substituting (8)
into (4) and adopting notation I ′

n ≡ ∂In
∂z , one obtains within

a slowly varying envelope approximation (i.e., |I ′′
n | � kn|I ′

n|)
the following equation:

1

LlCl
iknI ′

n(z)tn(eiknz − �̃ne−iknz ) =

− εω2
n

2

∑
a,b∈

{p,s,i3}

⎛
⎜⎝∏

m∈{a,b}

1

2
I±

m t±
m (e±ikmz + �̃±

m e∓ikmz )

⎞
⎟⎠

× δ(ωn ∓ ωa ∓ ωb)

− ξω2
n

3

∑
a,b,c∈
{p,s,i4}

⎛
⎜⎝ ∏

m∈{a,b,c}

1

2
I±

m t±
m (e±ikmz + �̃±

m e∓ikmz )

⎞
⎟⎠

× δ(ωn ∓ ωa ∓ ωb ∓ ωc), (A4)

where the first sum on the right-hand side describes 3WM
terms and the second includes 4WM terms. Here, I+

m = Im,
t+
m = tm and �̃+

m = �̃m, whereas I−
m = I∗

m, t−
m = t∗

m and �̃−
m =

�̃∗
m, i.e., minus in superscript indicates complex conjugation.

To study the parametric amplification provided by three-
and four-wave mixing Eq. (A4) is solved for four waves:
strong pump Ip, signal Is and two idlers Ii3,4 such that Ip �
Is, Ii3,4 . Making use of conditions (6) and (7) in the delta
functions in equation (A4), one obtains

I ′
p = ikp

8
ξ |Ip|2|tp|2IpF pp

pp , (A5)

I ′
s = iks

4
εIpI∗

i3

tpt∗
i3

ts
F p

i3s

+ iks

8
ξ

(
I2

pI∗
i4

t2
pt∗

i4

ts
F pp

i4s + 2|Ip|2Is|tp|2F ps
ps

)
, (A6)

I ′
i3 = iki3

4

(
εIpI∗

s

tpt∗
s

ti3
F p

si3
+ ξ |Ip|2Ii3 |tp|2F pi3

pi3

)
, (A7)

I ′
i4 = iki4

8
ξ

(
I2

pI∗
s

t2
pt∗

s

ti4
F pp

si4
+ 2|Ip|2Ii4 |tp|2F pi4

pi4

)
, (A8)
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where

Fab
cd (z) = (eikaz + �̃ae−ikaz )(eikbz + �̃be−ikbz )

× (e−ikcz + �̃∗
c eikcz )

eikd z − �̃d e−ikd z
, a, b, c, d ∈ {p, s, i3, i4},

(A9)

Fa
cd (z) = (eikaz + �̃ae−ikaz )

(e−ikbz + �̃∗
beikbz )

eikcz − �̃ce−ikcz
,

× a, b, c ∈ {p, s, i3}. (A10)

The equation for pump (A5) is solved in the depleted pump
approximation |Ip|′ = 0:

Ip = |Ip|exp

(
i
∫ z

0

≈
κ pF pp

pp dx

)
, (A11)

where

≈
κn = kn

|Ip|2t2
p

8
ξ = kn

|Ip|2t2
p

8

1(
I2
D + I2∗

) , (A12)


κn = kn

tpIp

4
ε = kn

tpIp

4

2ID(
I2
D + I2∗

) . (A13)

Although the exponential in Eq. (A11) contains also a real
part, changing the module |Ip| too, the contribution oscillates
at the scale of 1/kp and it is smaller than imaginary part
by factor �p, thus it is neglected. Utilizing solution (A11),
Eqs. (A6)–(A8) are simplified by the following transforma-
tion:

An = Intnexp

(
− 2i

∫ z

0

≈
κnF pn

pn dx

)
, n = s, i3, and i4.

(A14)
Finally, one obtains the coupled mode equations for the com-
plex amplitudes As and Ai3,4 :

A′
s = i


κsA

∗
i3F

p
i3se

ib3 + i
≈
κsA

∗
i4F

pp
i4s eib4 , (A15)

A′
i3 = i


κ i3 A∗

sF
p
si3

eib3 , (A16)

A′
i4 = i

≈
κ i4 A∗

sF
pp
si4

eib4 . (A17)

Here, the functions b3(z) and b4(z) contain contributions to the
nonlinear phase modulations and are expressed as follows:

b3(z) =
∫ z

0

(≈
κ pF pp

pp (x) − 2
≈
κsF ps

ps (x) − 2
≈
κ i3F

pi3
pi3

(x)
)

dx,

(A18)

b4(z) = 2
∫ z

0

(≈
κ pF pp

pp (x) − ≈
κsF ps

ps (x) − ≈
κ i4F

pi4
pi4

(x)
)

dx.

(A19)

In the following sections, the obtained equations are solved in
two cases: (1) ID � Ip (three-wave mixing) [16,22] and (2)
ID = 0 (four-wave mixing).

1. Three-wave mixing

To study 3WM, let us assume that the DC bias current
is much larger than the pump amplitude, which means, ac-

cording to Eqs. (A12) and (A13), that

κn � ≈

κn. If no idler
is applied at the frequency ωi4 to the input of the device,

the 4WM idler is generated proportionally to
≈
κ i4 . Therefore

the 4WM idler is much weaker than 3WM idler which is
proportional to


κ i3 and the system of equations (A15)–(A17)

is approximated by two coupled equations

A′
s = i


κsA

∗
i3F

p
i3se

ib3 , (A20)

A′
i3 = i


κ i3 A∗

sF
p
si3

eib3 , (A21)

which can be easily decoupled. For As, the uncoupled equa-
tion is

A′′
s −

(
eib3F p

i3s

)′

eib3F p
i3s

A′
s − 

κsF p
i3s

(
κ i3F

p
si3

)∗
Ase

−i2Im(b3 ) = 0.

(A22)

2. Four-wave mixing

When no DC bias is applied, pure 4WM is observed and
the system (A15)–(A17) becomes

A′
s = i

≈
κsA

∗
i4F

pp
i4s eib4 , (A23)

A′
i4 = i

≈
κ i4 A∗

sF
pp
si4

eib4 , (A24)

which gives the equation for the spatial evolution of the trans-
formed signal amplitude As(z):

A′′
s −

(
eib4F pp

i4s

)′

eib4F pp
i4s

A′
s − ≈

κsF pp
i4s

(≈
κ i4F

pp
si4

)∗
Ase

−i2Im(b4 ) = 0,

(A25)
A simple check of our derivation is achieved by identifying

Eqs. (A22) and (A25) as the general form of the standardly
presented CME result for �n = 0.

APPENDIX B: APPROXIMATION OF
THE GAIN EQUATION

Equations (A22) and (A25) for slow variation of an en-
velope of waves propagating and reflecting in a nonlinear
Fabry-Pérot resonator are second-order differential equa-
tions where F and b are functions of z. To solve the
differential equations, we expand these functions up to second
order in the reflection coefficient �n < 1 and remove terms
with harmonic spatial dependence via the averaging method
[32]. This transformation is indicated by the arrows in the
equations given below. This procedure yields an equation sim-
ilar to the result of the standard CME for waves propagating
only in one direction:

F pp
pp ≈ 1 + 2�pe−ikp(2z−l ) + 2Re(�pe−ikp(2z−l ) )

+ 3|�p|2 + 4�2
pe−i2kp(2z−l ) → 1 + 3|�p|2, (B1)

F pn
pn ≈ 1 + 2�ne−ikn (2z−l ) + 2�2

ne−iks (2z−l )

+ 2Re(�pe−ikp(2z−l ) )(1 + 2�ne−i(kn )(2z−l ) )

+ |�p|2 → 1 + |�p|2, n = s, i4, (B2)

F p
si3

∗F p
i3s → 1 + |�p|2, (B3)

F pp
si4

∗F pp
i4s → 1 + 4|�p|2. (B4)
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The above approximations leads to the equation describing
3WM

A′′
s − iβ3A′

s − 
κs


κ

∗
i3 (1 + |�p|2)As = 0, (B5)

which gives the nonlinear phase mismatch β3

β3 = 	k3 + ≈
κ p(1 + 3|�p|2) − 2

≈
κs(1 + |�p|2)

− 2
≈
κ i3 (1 + ∣∣�p

∣∣2
)), (B6)

where 	k3 = kp − ks − ki3 is the deviation from linear disper-
sion relation.

Similarly, the differential equation for 4WM takes the form

A′′
s − iβ4A′

s − ≈
κs

≈
κ

∗
i4 (1 + 4|�p|2)As = 0 (B7)

and the nonlinear phase mismatch β4 reads

β4 = 	k4 + 2(
≈
κ p(1 + 3|�p|2) − ≈

κs(1 + |�p|2)

− ≈
κ i4 (1 + |�p|2)), (B8)

where 	k4 = 2kp − ks − ki4 .
With the boundary conditions Is(z = 0) = Is0 and

Ii3,4 (z = 0) = 0, the solution takes the compact form

Is(z) = Is0

(
cosh(g3,4z) − i

β3,4

2g3,4
sinh(g3,4z)

)

× ei
(

β3,4
2 +2

≈
κs (1+|�p|2

)
)

z
, (B9)

where

g3 =
√


κs


κ

∗
i3 (1 + ∣∣�p

∣∣2
) − β2

3

4
, (B10)

g4 =
√

≈
κs

≈
κ

∗
i4 (1 + 4

∣∣�p

∣∣2
) − β2

4

4
(B11)

are gain factors for 3WM and 4WM, respectively.

APPENDIX C: QUALITY INCREASE DUE
TO AMPLIFICATION

Following the conventional derivation of the reflection co-
efficient �n at the ends of the TL (see Ref. [33]), we derive
below the influence of the amplification on the reflection co-
efficient and, therefore, on the quality factor of the resonator.
Utilizing the first telegrapher equation (1) for harmonic
components:

I ′
n(z) = −iωsCVn(z), (C1)

the voltage amplitude along the waveguide is found by sub-
stituting the current amplitude, which was determined in the
previous Appendix (Appendix A). This way the impedance at
the end of the waveguide is obtained:

Zn(l ) = Vs(l )

Is(l )
≈ Z0

(
1 + i

In(z)′|z=l

In(l )kn

)
, (C2)

where Z0 = √
Ll/Cl and the nonlinear spatial variation of

phase velocity was neglected. Finally, the reflection coeffi-
cient can by expressed as

�n =
ZL − Z0 − Z0i In(z)′ |z=l

In(l )kn

ZL + Z0 + Z0i In(z)′ |z=l

In(l )kn

, (C3)

showing that the reflection is sensitive to any spatial variation
in the amplitude of the current.

APPENDIX D: SAMPLES PREPARATION

The 140 nm NbN film for a KI-TWPA was fabricated at
Chalmers, following the recipe Ref. [26]. These films were
deposited on a sapphire wafer and the desired structure was
patterned with e-beam lithography and Ar:Cl2 plasma etching.
The central line was further thinned down to 30 nm, to get
a sheet resistance of ∼48 �/�, which corresponds to the
desired kinetic inductance of ∼4 pH/�. The thickness of the
ground plane and other elements was left unchanged, in order
to keep the KI of these elements low and thereby eliminate
self-resonances in fractal structures.

The JJ devices were fabricated at Leibniz IPHT by making
use of the so-called cross-type Josephson junction technology.
Here a trilayer of Nb/AlOx/Nb with a critical current density
of about 1.7 kA/cm2 is deposited on an oxidized 4 inch
silicon wafer of 500 µm thickness. Thermal oxide thickness
on the wafer was about 600 nm. Inside a meander shaped Nb
groundplane with a 9 µm slit, an array of Josephson junctions
form the center conductor. In total, 2000 Josephson junctions
with a nominal junction size of (0.9 × 0.9) µm2 are fabricated
on a single chip, with dimensions of (10800 × 15000) µm2.
By means of Fiske step measurements, the specific junction
capacitance has been determined to be around 60 fF/µm2 for
this critical current density. For sample fabrication, electron
beam lithography has been used. Nb patterning was done by
making use of reactive ion etching based on CF4.
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