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Measurement-based control, using an active-feedback loop, is a standard tool in technology. Feedback
control is also emerging as a useful and fundamental tool in quantum technology and in related fundamen-
tal studies, where it can be used to prepare and stabilize pure quantum states in various quantum systems.
Feedback cooling of center-of-mass micromechanical oscillators, which typically exhibit high thermal
noise far above the quantum regime, has been particularly actively studied and has recently been shown
to allow ground-state cooling by means of optical measurements. Here we realize measurement-based
feedback operations in an electromechanical system, cooling the mechanical thermal noise down to three
quanta, limited by added amplifier noise. We also obtain significant cooling when the system is pumped
at the blue optomechanical sideband, where the system is unstable without feedback.
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I. INTRODUCTION

In cavity optomechanics, quantum control of mechan-
ical motion can be achieved via radiation-pressure force
from an optical light field on a mechanical degree of
freedom in two different ways. Coherent quantum control
involves applying a coherent pump tone to induce a strong
coupling between the motion and an effective cold bath,
so that the combined system evolves to a desired state.
In measurement-based feedback control, an error signal
obtained from a measurement result is applied as a force
on the mechanical oscillator through a time-delayed and
carefully filtered feedback loop to steer and control the
evolution of motional states.

Feedback control and its ability to achieve cooling of
massive mechanical objects has been investigated both the-
oretically and experimentally. It was first demonstrated
in optics [1], with active experimental research following
along the same lines [2–11]. Recently, feedback cooling
down to the ground state was achieved for an ultrahigh-
quality-factor SiN membrane resonator [12]. Feedback
cooling also allowed the bringing of a 10-kg mass in the
Advanced LIGO gravitational-wave detector close to its
motional ground state [13,14]. Besides massive oscillators,
levitated nanoparticles have been successfully feedback-
cooled [15–19], some recent experiments even reaching
the motional ground state [20,21].

Feedback control applied to a microwave optomechani-
cal system [22,23] has yet to be realized. The implementa-
tion poses experimental challenges, but also has potential
for operation deep in the quantum regime for which elec-
tromechanical systems are generally well suited. Typical
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microfabricated electromechanical resonators have rather
high frequencies (greater than 5 MHz), which sets con-
straints for a digital realization of a control system, as
high processing rates are required. Furthermore, since the
electromagnetic degree of freedom has to react fast to the
control, a microwave cavity with a high external coupling
is necessary. This poses further challenges, as large exter-
nal couplings are not easily combined with mechanical
elements directly integrated in superconducting on-chip
cavities. Here we realize feedback control in an electrome-
chanical system with a drum mechanical membrane using
a scheme adapted for this system, where we use a coher-
ent tone to perform a strong measurement and a modulated
tone to apply the adequate feedback force on the system.

II. THEORY

In measurement-based feedback cooling of a mechani-
cal oscillator, the motion is continuously monitored with
very high precision, which allows one to determine the
oscillator’s speed. A force proportional to the speed, which
therefore acts as a viscous force, is fed back to the
oscillator. This force artificially damps the motion with-
out adding the fluctuation counterpart usually linked to
damping mechanisms. This reduces the displacement vari-
ance, so the oscillator is effectively cooled. To cool the
oscillator’s thermal occupation number near the quantum
ground state, it is critical that the measurement is close
to the quantum-limited sensitivity. Indeed, measurement
noise higher than the level of position quantum fluctua-
tions results in feedback-force noise limiting the cooling
efficiency above the quantum ground state.
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A. Basic principle of feedback cooling

The principle of feedback cooling of mechanical oscilla-
tions is fairly well known [24–29] and is recalled here only
briefly. The position x (for the moment given in meters) of
an oscillator of mass M , frequency ωm, and damping rate
γ follows the evolution equation

ẍ(t) = −ω2
mx(t) − γ ẋ(t) + Fth(t)/M , (1)

where Fth(t) is the Langevin force whose spectrum SF [ω]
in the classical limit is Sth

F [ω] = 2kBTMγ , with T the tem-
perature of the oscillator’s bath and kB the Boltzmann
constant. The spectrum of the position of the free oscillator
is given by

Sx[ω] = 2kBTγ

M [(ω2
m − ω2)2 + γ 2ω2]

. (2)

The damping rate appears both in the intensity of the cou-
pling to the thermal bath and as the bandwidth of the
Lorentzian mechanical spectrum. Application of a damp-
ing feedback force FFB of −gMγ ẋ, where g is the feedback
gain, broadens the spectrum γ → γ (1 + g), resulting in

Sx[ω] = 2kBTγ

M [(ω2
m − ω2)2 + γ 2(1 + g)2ω2]

, (3)

which holds in the high-temperature limit, where quan-
tum fluctuations can be ignored. This process of damping
the oscillator without adding fluctuations has been coined
“cold damping.” Effectively, the resulting spectrum is that
of an oscillator of damping γ (1 + g) at a temperature
T/(1 + g), lower than the temperature of the bath T. This
effect is therefore also called “feedback cooling.” The
process requires a measurement and a reaction to the mea-
surement result much faster than the decay time of the
oscillator 1/γ . The cooling efficiency is limited by the
amount of noise added in the feedback loop. This noise
predominantly comes from the background noise in the
detection of the oscillator’s position.

B. Microwave optomechanical detection

We consider an archetypal optomechanical system,
where a single mechanical harmonic mode (frequency ωm
and damping rate γ ) is coupled to an electromagnetic cav-
ity (frequency ωc and damping rate κ). We ignore internal
losses of the cavity. The cavity is probed by a strong coher-
ent field (frequency ωp ), which is detuned from ωc by
an amount � = ωp − ωc. The probing induces an effec-
tive optomechanical coupling G = g0

√
nc, where nc is the

number of photons driven in the cavity by the tone and g0
is the vacuum optomechanical coupling.

To describe the feedback process, we treat the system
using the standard input-output theory of optical cavities.

From now on, we treat the mechanical oscillator with
dimensionless position x(t) and momentum p(t). We also
define the dimensionless quadratures of the field in the
cavity, xc(t) and yc(t) in the frame rotating at the cavity fre-
quency. The equations of motion in the frequency domain
are

χ−1
c xc = −�yc + √

κxc,in,

χ−1
c yc = �xc − 2Gx + √

κyc,in,

−iωx = ωmp ,

(γ − iω) p = −ωmx − 2Gxc + fth
ωm

+ fFB

ωm
, (4)

where the cavity susceptibility is χ−1
c = κ/2 − iω, xc,in and

yc,in are the input noise operators for the cavity, and fth and
fFB are scaled forces: fX = ωmFX /MxZPF, where FX is a
force, M is the effective mass, and xZPF is the zero-point
fluctuation of the oscillator.

The feedback force fFB is now present in addition to
the thermal force. If information on the measured observ-
able, position x, is contained in the feedback force, a closed
feedback loop is formed.

In a generic optomechanical measurement, the output
field

yout = √
κyc − yc,in (5)

emitted from the cavity carries information about x. The
nature of the feedback force is designed by one applying a
suitable processing, or filter function, to the measured yout.
In a real situation, the measurement can provide only an
approximation of x. This is primarily because a significant
amount of noise is added to yout before it is converted into
a force. In microwave experiments, this noise, denoted as a
random field yadd(t), is due to transistor amplifiers. Even in
the best cases, this noise is at least an order of magnitude
higher than the quantum limit. The amplifier noise is typ-
ically characterized as the added number of noise quanta
〈yadd[ω]yadd[−ω]〉 = nadd.

The feedback force is obtained by application of a filter
function A[ω] to the signal, including a gain, and is scaled
for convenience by

√
κ:

fFB[ω] = A[ω]√
κ

(yout[ω] + yadd[ω]) . (6)

To approximate a force proportional to the oscillator’s
velocity, we take the filter function A[ω] to be a phase-
shifting (phase shift φ ∈ R) and amplifying (gain A0 > 0)
operation:

A[ω] = A0 exp
(

−iφ
ω

ωm

)
. (7)
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1. Resonant probing

The unresolved-sideband (bad-cavity) situation κ � ωm,
where the cavity follows the mechanics without delay,
allows a simple treatment of the entire process. Our exper-
imental parameters, where κ ≈ ωm, do not well satisfy this
condition. The basic case of resonant probing (� = 0), as
shown in Fig. 1(a), allows some analytical results at arbi-
trary sideband resolution to be obtained (Appendix A).
Here the effective susceptibility of the oscillator is similar
to that implied by Eq. (3):

χFB[ω] = 1
−iωγeff + ω2

eff − ω2
. (8)

Here, for large mechanical quality factors ωm/γ � 1 (in
the experiment ωm/γ ∼ 105), the effective mechanical
frequency and damping rate are, respectively,

ωeff 
 ωm + 2GA0 (κ cos φ + 2ωm sin φ)

κ2 + 4ω2
m

, (9a)

γeff 
 γ + 4GA0(κ sin φ − 2ωm cos φ)

κ2 + 4ω2
m

. (9b)

At the optimum feedback phase satisfying

φm = tan−1
(

− κ

2ωm

)
+ π , (10)

the resonant frequency is unchanged, and the damping is
maximized, with the feedback-induced damping

γFB = 4GA0√
κ2 + 4ω2

m

. (11)

The oscillator is supposed to couple to a bath with ther-
mal occupation number nT

m, which is usually much larger
than 1. As mentioned earlier, the added feedback damping
will induce cooling of the oscillator. However, there are
competing processes that limit the cooling effect.

The mechanical noise energy is obtained from the spec-
tral density of the oscillator’s displacement, where we can
identify three contributions. The thermal-plus-zero-point-
fluctuation spectrum is cooled via the enhanced damping
down to the variance:

nT = γ

γeff

(
nT

m + 1
2

)
. (12)

As in generic optomechanical position measurements, the
quantum backaction of the measurement tends to heat
up the oscillator linearly with the cooperativity, adding a
mechanical population:

nQBA = Ceff
κ2

κ2 + 4ω2
m

. (13)

The cooperativity Ceff appearing in this quantum backac-
tion noise is the cooperativity defined from the damped
oscillator’s parameters:

Ceff = 4G2

κγeff
. (14)

The increased damping of the oscillator (reduced Ceff) thus
makes the oscillator less susceptible to the quantum back-
action, and the backaction contribution nQBA is reduced
with increasing feedback gain.

The background noise in the detection in typical
microwave-optomechanical systems is dominated by the
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FIG. 1. Feedback setup. (a) The basic frequency scheme of feedback cooling in cavity optomechanics, with the strong probe tone set
at the cavity frequency (� = 0). (b) The probe tone set alternatively to the blue mechanical sideband (� = ωm). (c) Optical micrograph
of a similar circuit-electromechanical device. The aluminum-drumhead oscillator of diameter 13 µm is connected to a meander inductor
to form a cavity strongly coupled to a transmission line through a large external finger capacitor. An enlargement of the area of the
drumhead is indicated by dashed red lines. (d) Simplified schematic of the microwave circuit around the electromechanical device;
PM, phase modulator.
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microwave-amplifier noise nadd. Here it is fed back to the
oscillator, leading to additional mechanical fluctuations.
Another, more-fundamental contribution is due to vacuum
fluctuations associated with the measurement, which are
also fed back to the mechanical oscillator. The sum of these
is given as follows:

nFB = A2
0

2κγeff

(
nadd + 1

2

)
. (15)

The total remaining mechanical occupation nm under feed-
back cooling satisfies

nm + 1
2

= nT + nQBA + nFB, (16)

which decreases with increasing gain A0 and then, for
high gain, starts increasing again as nFB becomes the
dominant contribution to the occupation. The optimum
cooling is reached when the oscillator is strongly damped,
nT � 1, and when the contributions of backaction and
noise injection balance each other. This occurs when
G/A0 = 1/4

√
1 + 2nadd

√
κ2 + 4ω2

m/κ , and results in the
optimum cooling:

nm,min + 1
2

= 1
2

√
1 + 2nadd. (17)

To cool the system down to the ground state with nm < 1,
one has to reach nadd < 4. This is beyond reach of transis-
tor amplifiers, but is possible with near-quantum-limited
Josephson parametric amplifiers.

We now discuss the detection aspect. Under resonant
probing of the cavity, the quadrature of the cavity out-
put yout = i(a†

out − aout)/
√

2, where aout is the output-field
annihilation operator, displays a mechanical signature at
the optomechanical sidebands around the probe tone. In the
experiment, the signal used to establish the feedback loop
is the demodulated signal coming out of the cavity. For the
data analysis, we also record the heterodyne spectrum

Sout[ω] = 〈a†
out[ω]aout[−ω]〉 + 1

2
. (18)

Inference of the state of the mechanical oscillator based
on the in-loop spectrum is complicated by the fact that
the injected noise and the reflected noise are out of phase,
which leads to “noise squashing,” or destructive interfer-
ence close to the mechanical resonance. This becomes
relevant at strong feedback strength around the optimum
cooling; see Eq. (17). In the bad-cavity case, one can
easily identify correlations leading to the squashing; see
Appendix B. In the case of arbitrary sideband resolution,
we calculate the theoretical output spectra numerically (see
Appendix A) from the solution of the equations of motion,
Eq. (4), and from the input-noise correlators.

2. Blue-sideband probing

For optomechanical systems with κ � ωm, blue-
sideband probing leads to optomechanical antidamping.
The damping rate is reduced by

γopt = 4G2

κ

1

1 +
(

κ
4ωm

)2 . (19)

If this antidamping rate overcomes the intrinsic, or
otherwise-enhanced, damping rate of the mechanical oscil-
lator, the latter becomes unstable.

It has been shown that blue-sideband pumping can be
used to drive a stable steady state, but only if combined
with other processes that stabilize the system. Examples
include optomechanical dissipative squeezing and entan-
glement [30–34], which count on steadying dynamical
backaction effects dominating backaction noise in some
regimes to allow the squeezing of a quadrature, in spite of
a simultaneous increase of the effective bath temperature
for that quadrature because of backaction noise.

A similar competition of effects exists in the present
case: large probe powers provide large detection sensi-
tivities beneficial to the feedback process, but also large
optomechanical amplifications that can result in instability.
The gain of the feedback loop can be chosen independently
from the probe power, so a good configuration of feedback
parameters is expected to produce cooling. The question is
then whether the strong cold-damping effect obtained from
this efficient measurement can, for some range of param-
eters, dominate optomechanical antidamping. We find that
the answer is yes. The effective mechanical damping rate
in the scheme in Fig. 1(b) is the sum of the rates due to
dynamical backaction and the feedback cooling:

γeff = γ − γopt + 4GA0
[
(κ2 + 8ω2

m) sin φ − 2κωm cos φ
]

κ3 + 16κω2
m

.

(20)

Because the feedback has to first counteract the amplifi-
cation induced by dynamical backaction, a larger gain as
compared with the gain required for resonant probing is
needed, which in turn will inject more noise and tend to
reduce the cooling performance. Ground-state cooling is
still possible, but very little added noise can be tolerated.

C. Feedback scheme

In some feedback-cooling experiments, a single laser is
used both for probing and applying the feedback force by
radiation pressure [7,11]. A situation described by Eq. (4)
requires a separate method to create the force. One pos-
sibility is to use direct mechanical actuation [13]. Most
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optomechanical experiments have used another laser ded-
icated to applying the feedback force. We adapt this tech-
nique in this work, and create the feedback force by suit-
able modulation of another microwave tone, a relatively
weak feedback tone.

The basic frequency scheme is shown in Fig. 1(a), where
the probe tone frequency is set at the resonance of the cav-
ity. The feedback tone is typically detuned from the cavity
by a detuning �f larger than several cavity linewidths.
This large frequency separation between microwave tones
allows us to treat all optomechanical processes indepen-
dently. Similar reasoning holds also for the other explored
alternative, the blue-sideband probing shown in Fig. 1(b).

At room temperature, the cavity output field is
homodyne-detected by demodulation with a local oscilla-
tor at the probe tone frequency ωp , as seen in Fig. 1(d).
The phase of the local oscillator (with respect to the phase
of the driving tone) is tuned to measure the quadrature yc
carrying the most information on the mechanical oscilla-
tor. The demodulated quadrature is a direct record of the
position, appearing as an oscillatory signal at frequency
ωm in the laboratory frame. This signal, once phase-shifted
and amplified, is used to realize a weak phase modulation
of a second microwave tone (the feedback tone) at fre-
quency ωf = ωc + �f . This effectively generates a triplet
of frequencies separated by ωm, centered at ωf . With an
adequate setting for the feedback phase shift, the amplitude
of each sideband of the driving triplet is approximately
proportional to the velocity ẋ, while the central peak has a
constant, much-larger amplitude. Each sideband interferes
with the central peak to produce a feedback force linear
in sideband amplitude (see Appendix C); that is, propor-
tional to ẋ. Cross-products of sidebands generate a force
dependent on the mechanical energy, which is maintained
negligible in comparison with the linear feedback force
by our keeping the amplitude of the central peak much
larger than the amplitude of the sidebands. For details on
generation of the feedback force, see Appendix C.

III. EXPERIMENTAL SETUP

A. Electromechanical device

A microwave optomechanical device is used in which
an aluminum-drum oscillator is coupled to a supercon-
ducting microwave resonator (the cavity). Photographs
of the device are shown in Fig. 1(c). The aluminum-
drum oscillator is a parallel-plate capacitor with a vac-
uum gap, consisting of an aluminum membrane sus-
pended above an aluminum electrode. It oscillates at fre-
quency ωm/2π = 8.14 MHz and has intrinsic damping
rate γ /2π = 76 Hz. An LC circuit formed by this plate
capacitor and a meandering inductor sustains a resonance
at microwave frequency ωc/2π = 5.35 GHz. The device
structure and fabrication is otherwise standard [33,34], but

the microwave cavity is strongly coupled to a transmis-
sion line by means of a large interdigitated capacitor with
capacitance of approximately 15.5 fF, on the same order
as the drum capacitance. The cavity is overcoupled, with
the total decay rate κ/2π = 8.5 MHz dominated by exter-
nal coupling and containing a small contribution κI/2π =
660 kHz due to internal cavity losses.

The device is maintained at a somewhat elevated tem-
perature of 80 mK, where nT

m 
 205, in a dilution refrig-
erator. We chose an operating temperature clearly higher
than the base temperature, because we observed inter-
mittent “spiking” [35] of the mode temperature at lower
temperatures.

The single-photon optomechanical coupling is g0/2π 

130 Hz. The calibration of the effective coupling G of the
probing tone is realized by our monitoring the sideband-
cooling effect as described in Appendix D. The values of
the enhanced couplings of all tones used in this work are
inferred from this calibration and from the measurement of
the cavity susceptibility.

B. Feedback setup

The cavity output signal, Eq. (5), which mainly con-
sists of the two optomechanical sidebands generated by
the probe tone, is amplified inside the refrigerator with an
amplifier exhibiting the effective noise nadd 
 13 quanta,
and is then demodulated with use of the probe tone as
a local oscillator to realize a homodyne detection. The
demodulation result is passed through an analog band-
pass filter (bandwidth of 5–11 MHz) to retain the signal
oscillating at the mechanical frequency, while limiting
unnecessary broadband noise before digitization. The sig-
nal is then sent to a 14-bit field-programmable-gate-array
(FPGA)-backed acquisition device (Red Pitaya STEMlab
125-14) with an input and output sampling rate of 125
MHz. The FPGA card is programmed to replay this signal,
after further digital bandpass filtering (1-MHz bandwidth),
time delaying, and amplification [36].

Both the derivative and the phase-shifting feedback
functions assume unlimited feedback bandwidth, so in this
sense the mentioned bandpass filtering is not needed, and
in principle it even limits the cooling. The reason for our
implementing the bandpass filtering is to cut off unneces-
sary off-resonant noise that otherwise would saturate the
amplification setup or that would lead to loss of the useful
information in the digitization noise.

To cool all the relevant frequency components of the
oscillator’s motion, the passband width has to be much
larger than γeff, which is satisfied in our case. It is not
practical to further try to reduce the bandwidth, since it
is technically very difficult if not impossible to produce
a relatively flat passband response of, say, 1% bandwidth
centered at ωm.
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The FPGA output signal is sent to a microwave phase
modulator to modulate the feedback tone at frequency ωf .
This phase modulation, being very weak, is essentially
comparable to an amplitude modulation, and generates
mechanical-momentum-dependent sidebands ±ωm around
a strong coherent peak at ωf . The details are given in
Appendix C.

Since the feedback tone (and its modulation sidebands)
sits far on the red side of the cavity, the cavity suscepti-
bility significantly shifts the phase of the feedback force,
by an estimated 72◦. The tunable contribution to the phase
shift is eventually tuned to produce a total phase shift
of φm + 2nπ (n ∈ N) between the position signal and the
feedback force. As long as the total number of additional
periods n by which the force is delayed from the momen-
tum signal remains much smaller than the quality factor of
the mechanical oscillator, the feedback performance is not
significantly affected by this additional delay.

Both sidebands of the feedback triplet mix with the
strong central coherent peak of the triplet, generating a
term in the feedback force with a slightly different phase
shift, as the cavity susceptibility and microwave transmis-
sion lines contribute differently to the total phase shift for
each component of the driving triplet. These two contri-
butions to the feedback force, containing versions of the
mechanical signal phase-shifted by different amounts, do
not necessarily add up fully constructively (see Appendix
C), but one is sufficiently attenuated by the cavity suscep-
tibility to limit the effect of a destructive interference and
allow there to be a relatively strong feedback force in the
experimental situation.

IV. RESULTS

A. Probing at the cavity frequency

The probe tone is first positioned at the cavity fre-
quency (� 
 0), such that the displacement spectrum of

the oscillator is encoded in the cavity output spectrum
with the maximum transduction efficiency while maintain-
ing mechanical stability. In practice, we set � to negative
values of a few kilohertz, which ensures the system is sta-
bler toward a possible drift of the cavity frequency, while
still having a negligible optically induced damping. The
feedback tone is detuned by �f /2π = −20 MHz from
the cavity frequency. This detuning is chosen such that
|�f | > 2ωm to avoid integration of stray-feedback-field
components into the measurement of the position, but is
kept on the order of κ to allow there to be a significant
response of the cavity.

Next we vary the feedback phase φ and record the prop-
erties of the mechanical peaks in the heterodyne spectrum.
The peaks are primarily characterized by their frequency,
Eq. (9a), and linewidth, Eq. (9b). We show the phase
dependence of these quantities in Figs. 2(a) and 2(b).
The data are not plotted in the regime where the system
is unstable (γeff < 0). Aside from the effect of the feed-
back, the mechanical frequency is expected to undergo a
redshift under the strong probe driving due to the second-
order optomechanical coupling. The shift is given by δf2 =
− 1

2 g2nc, where g2 = 1
2 d2ωc/dx2x2

ZPF. With the experimen-
tal parameters, we expect δf2/2π 
 400 Hz. However, the
frequency at zero feedback gain is observed to be red-
shifted by 1.2 kHz with respect to its value calibrated
independently. We believe that the additional shift is due
to occasional drifts of the intrinsic mechanical frequency
observed during the cooldown. For the feedback-induced
frequency shifts shown in Fig. 2(a), we thus use the zero
value of the shift as a free parameter, common to all traces.

With this adjustment, we reach good agreement with the
theoretical predictions, leaving a phase offset ϕ as another
adjustable parameter. This offset is defined to contain the
phase shifts due to transduction, as detailed in Appendix
C, and an unknown contribution due to the time delays in
the system. More specifically, in Eqs. (9a) and (9b), we

(a) (b) (c)

(a
rb

. 
un

it
s)

FIG. 2. Feedback-control measurements. We use a strong probe tone at the cavity center frequency (� = 0), with effective coupling
G/2π 
 420 kHz. The data in each panel correspond to feedback gain A0/2π = 2.8 kHz (red), A0/2π = 6.7 kHz (blue), and A0/2π =
16.7 kHz (green). The solid lines are theoretical fits. (a) Mechanical frequency shift and (b) effective damping rate as functions of
feedback-loop phase. (c) Area of the mechanical peak in the heterodyne output spectrum.
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identify φ ⇒ φ + ϕ and use ϕ as an adjustable parame-
ter when we fit Eqs. (9a) and (9b) to the data shown in
Fig. 2. We also study the phase dependence of the area of
the mechanical peaks as shown in Fig. 2(c). In the limit
of weak feedback, where the noise squashing plays little
role, the peak area is a good measure of the temperature of
the mechanical mode. This condition is satisfied in the data
shown in Fig. 2, where γeff reaches values up to approxi-
mately 2π × 1 kHz. A cooling by 1 order of magnitude
is observed in Fig. 2(c), where the reference is the cross-
ing point of the curves corresponding to zero cooling or
amplification.

The maximum damping from the phase-sweeping mea-
surements is determined at a phase value around 145◦ ±
5◦, which according to Eqs. (9a) and (9b) corresponds to
an optimized loop delay to exert a damping force propor-
tional to the velocity. Notice that this phase differs from the
optimum value φm = 90◦ expected in the bad-cavity limit.
With this optimized phase, we proceed to vary the feed-
back gain up to large values and investigate the maximum
cooling we can achieve.

We show in Figs. 3(a) and 3(b) the two peaks of the
in-loop heterodyne spectra. At high gain, the peaks are
not equal. The lower sideband of the probe tone exhibits
less squashing than the upper sideband. This can be inter-
preted as a manifestation of the sideband asymmetry that
has been studied in various optomechanical systems [37–
39]; see Eq. (B1). For the theoretical fits, we use the bath
temperature for each gain as the only adjustable parameter
because we anticipate the mechanical bath may be heated
up as the gain increases. We indeed observe a heating of
the bath from nT

m 
 200 to nT
m 
 370 between zero and

the high feedback-gain values (Fig. 5). Overall, the the-
ory gives a good fit to the data. There is some discrepancy
at the highest gain values in the upper sideband, which
we speculate is due to noise related to the feedback tone

circulating in the system, the exact origin of which remains
to be clarified.

According to Eq. (9b), the mechanical linewidth evolves
linearly with respect to the feedback gain. We test this
basic property as shown in Fig. 3(c). At high gain values,
the peaks become distorted due to noise squashing, and
these data are not considered in this situation. The solid
line in Fig. 3(c) is a linear fit that is the basis for creating
the theoretical spectra in Figs. 3(a) and 3(b), according to
Eqs. (D4) and (D5). At zero gain, the linewidth γeff/2π 

97 Hz. This value is slightly higher than the intrinsic
linewidth γ because of a finite negative detuning and con-
sequently some optical damping. Nonetheless, the cooling
due to the optical damping is negligible. Finally, in Fig.
3(d), we show the mechanical occupation number that can
be reached in our setup. The occupation is calculated with
Eq. (16) with use of the calibrated quantities and the bath
temperature obtained from our fitting the spectra. We reach
an occupation of nm=2.9 ± 0.3 quanta, which is signif-
icantly close to the ground state, and is limited by the
amplifier added noise injected back into the sample.

B. Probing at the blue optomechanical sideband

We next move the probe tone from the cavity center
frequency to the blue-optomechanical-sideband frequency.
Since the probe tone at its final intended power pushes
the oscillator far into the instability regime, the feed-
back parameters are first optimized at a low probe power,
only incrementally reaching higher powers by our explor-
ing small parameter ranges around the stability regime.
Figure 4 shows the result of gain sweeps performed
at the highest probe power used in this configuration,
and at the optimal feedback phase. The investigation of
small gains is precluded by instability at low feedback
efficiencies.

(a) (b)

(c) (d)

FIG. 3. Feedback cooling. The parameter values are G/2π 
 427 kHz and φ 
 143◦. (a),(b) In-loop heterodyne output spectra at
the lower and upper sideband, respectively. The gain values are A0/2π 
 0, 10, 28, 76, 125, and 206 kHz from top to bottom. The
solid lines are theoretical fits. (c) Damping rate extracted by our fitting Lorentzian curves to the spectra at lower gain values, together
with a fit to Eq. (9b). The data are shown in the range where the peaks are roughly Lorentzian. (d) Mechanical occupation as a function
of feedback gain. The arrow indicates the value nm 
 440 at zero gain.
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(a) (b) (c) (d)

FIG. 4. Feedback stabilization and cooling of an intrinsically unstable system. The probe tone is set at the blue-sideband frequency
(� = ωm), and the effective coupling is G/2π 
 104 kHz. The gain values are A0/2π 
 189, 225, 267, and 378 kHz from top to
bottom. The same quantities are presented as in the resonant-pumping case, Fig. 3. (a),(b) Lower-sideband and upper-sideband peaks
around the probe tone, respectively. (c) Effective damping in the stable range. (d) Mechanical occupation as a function of feedback
gain.

The lower-sideband peak shown in Fig. 4(a), which
in this case is located at the cavity frequency, exhibits
good agreement with the numerically computed line shape
for each gain displayed as solid black lines. The upper-
sideband peak shown in Fig. 4(b) is strongly suppressed
by the unfavorable cavity susceptibility as this signal is
detuned from the cavity by approximately twice the cav-
ity linewidth. With the upper sideband, we acknowledge a
discrepancy between the theoretical line shapes also dis-
played in Fig. 4(b). We again anticipate some additional
noise is circulating in the feedback loop at frequencies
near the upper sideband of the probe tone, inducing addi-
tional squashing effects. The calibrated height of the peaks,
however, matches well with the predictions.

Similarly to the resonant-pumping case, we again use
the mechanical-bath temperature as a free parameter in the
fits to the line shapes. We consider only the strong, lower
sideband in the fitting. Here we find a very strong technical

FIG. 5. Technical heating. Bath temperature of the mechanical
oscillator as a function of feedback gain. Black circles repre-
sent resonant probing, and blue circles represent blue-sideband
probing.

heating when the feedback gain increases: the mechanical
bath heats up to nT

m 
 5 × 103 phonons at the maximum
gain A0/2π 
 400 kHz (Fig. 5).

As shown in Fig. 4(c), a sizable damping rate γeff/2π 

5 kHz can be obtained in the blue-sideband configuration.
This damping is not only significant considering that the
oscillator is antidamped at zero gain but is also nearly
2 orders of magnitude larger than the intrinsic damping.
Finally, in Fig. 4(d) we display the mechanical occupa-
tion inferred in the situation using our numerical model.
We obtain a modest cooling down to nm 
 38, limited
primarily by the technical heating.

V. CONCLUSIONS

In summary, we demonstrate feedback cooling in a
microwave optomechanical system. We reach a mechan-
ical occupation nm 
 3 quanta in an 8-MHz membrane
resonator. The cooling is limited by the added noise of
the microwave amplifier. By the introduction of traveling-
wave Josephson parametric amplifiers, which exhibit near-
quantum-limited-noise performance [40,41] with nadd ∼
1–1.5 quanta, ground-state cooling with the parameters
used in this work should be well within reach. This will
open up possibilities for feedback-based preparation of
more-sophisticated states, such as squeezed states [42],
through backaction-evading measurements.
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APPENDIX A: SOLVING THE CLOSED-LOOP
DYNAMICS

In the bad-cavity case there are simple analytical results
for the entire system, including the output spectrum due
to the probe tone (Appendix B). Also, with arbitrary side-
band resolution but restricted to � = 0, we can recover
expressions for the mechanical occupation, Eq. (16), and
the preceding equations. However, with the current param-
eters we always calculate the output spectrum numerically.
We start from Eq. (4), and write the connection of the
variables to the inputs with coefficients to be determined:

xc = Xcxxc,in, (A1a)

yc = Ycyyc,in + Yxxc,in + Yf fth + Ynyadd, (A1b)

x = Xf fth + XBAxxc,in + Xinjyc,in + Xnyadd, (A1c)

p = Pf fth + PBAxxc,in + Pinjyc,in + Pnyadd. (A1d)

As an example, the term with XBAx gives the quantum mea-
surement backaction to the position, Xinj describes how the
quantum noise in the feedback loop is injected back into
the sample, and Xn = Xinj is a similar injection of amplifier
noise. To continue with the example, in the case � = 0,

Xf = χFB,

Xinj = −4Gωm
√

κ

κ − 2iω
χFB, (A2)

with χFB given by Eq. (8).

1. Noise considerations

In this section, we assume that the optimal feedback
condition is met; that is, φ = φm [Eq. (10)]. In this case,

fFB[ω] = i2GA0√
κ2/4 + ω2

m

x[ω]

+ A0ωm√
κ

e−iφ ω
ωm

(
(κχc[ω] − 1)yc,in[ω] + yadd

)
.

(A3)

The first term of the feedback force is responsible for
feedback damping. The second term accounts for noise
coming from the cavity quantum fluctuations reinjected in

the feedback loop, as well as added noise from the detec-
tion stage (mainly amplifier added noise), also fed back to
the oscillator. As a result, the position satisfies the equation

x = χFB

[
fth − 2ωmGxc

+ A0ωm√
κ

e−iφ ω
ωm

(
(κχc − 1)yc,in + yadd

)]
, (A4)

with xc = χc
√

κxc,in. In Eq. A4, the first term accounts
for thermal noise, the second accounts for measurement-
backaction noise, and the third accounts for the total mea-
surement noise fed back to the oscillator, which is the sum
of the two contributions discussed above. All noise pro-
cesses appearing in these equations are uncorrelated, so
the contributions do not interfere. Assuming (as always)
that γ � κ and that the cavity is in its ground state, the
backaction noise arising from the second term in Eq. (A4)
gives Eq. (13). The third term in Eq. (A4) leads to the total
measurement noise fed back to the oscillator, Eq. (15).

APPENDIX B: SPECTRUM IN THE
UNRESOLVED-SIDEBAND SITUATION

The “noise squashing” in the bad-cavity situation allows
simple analytical results to be obtained. At the optimum
feedback phase in this situation, φm = π/2, the in-loop het-
erodyne spectrum can be understood as consisting of two
Lorentzians with opposite signs:

Sout,x[ω] = 8G2

κ
Sx[ω],

Sout,±[ω] = −GA0ωmγeff/κ(nadd + 1
2 )

(ω ∓ ωm)2 + (
γeff
2 )2 , (B1)

and Sout[ω] = Sout,x[ω] + Sout,−[ω] + Sout,+[ω] + nadd + 1
2 .

The term Sout,x[ω] gives the sideband asymmetry, while the
squashing term is the same for the lower sideband and the
upper sideband.

In the case of weak feedback, Sout,+ and Sout,− are
negligible.

APPENDIX C: ELECTROMECHANICAL FORCES

The intracavity field-annihilation operator can be
decomposed into a = α(t) + αf (t) + ã(t), where ã is a
(quantum) annihilation operator associated with a small
fluctuation, α is the classical complex amplitude of the
probe tone oscillating at ωc or ωc + ωm, and αf is the clas-
sical complex amplitude of the feedback tone oscillating
at ωc + �f ± ωm. Notice the above does not yet imply lin-
earization of the optomechanical interaction. The evolution
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equation for the mechanical-oscillator momentum is

ṗ = −γ p − ωmx −
√

2g0a†a + fth
ωm

. (C1)

The total electromechanical force −√
2g0a†a contains the

following terms:

(a) −√
2g0|αf |2: feedback force

(b) −√
2g0|α|2: a dc force from the probe tone

(c) −√
2g0(αã† + α∗ã): dynamical and quantum back-

action from the probe tone
(d) −√

2g0(αf ã† + α∗
f ã): dynamical and quantum back-

action from the feedback tone

The force also contains cross-products of the probe and
feedback tones (oscillating at �f or �f + ωm) that are
largely out of resonance with the mechanical oscillator and
whose impact is ignored. Finally, it also contains terms
such as −2g0ã†ã coming from quantum fluctuations of the
cavity field, which is, as usual in driven-cavity optome-
chanics, ignored compared with all other forces as it is
typically much weaker.

1. Probe tone at the cavity center frequency

We now derive αf to give the expression for the feed-
back force in the situation where the probe tone is sent
at the cavity center frequency. The position signal in
frequency space is

x[ω] ≡ b[ω] + b†[ω]√
2

, (C2)

with b (b†) the annihilation (creation) operator in the lab-
oratory frame. In the following, we also use phase-shifted
position signals

xϕ[ω] ≡ b[ω]eiϕ + b†[ω]e−iϕ

√
2

. (C3)

The inverse Fourier transform of xϕ is, in the limit of
small delays compared with the decoherence time, the
delayed position signal xϕ(t) 
 x(t − ϕ/ωm). In the fol-
lowing subsection, we assume the small-delay condition
is systematically satisfied. The cavity quadrature coupled
to the motion is given by

yc[ω] = χc[ω]
[

−
√

2G
(

b[ω] + b†[ω]
)

+ √
κ yc, in[ω]

]
.

(C4)

Each operator (b, b†) selects a narrow frequency range
(+ωm, −ωm) over which the cavity susceptibility can
be considered constant. That is, b[ω] and b†[ω] sample

the cavity susceptibility at different (opposite) frequencies
±ωm, such that

yc[ω] 
 −
√

2G|χc[ωm]|
(

b[ω]eiφ0 + b†[ω]e−iφ0
)

,

+ χc[ω]
√

κ yc, in[ω], (C5)

where

φ0 ≡ arg{χc[ωm]} = arctan
(

2ωm

κ

)

|χc[ωm]| ≡ (κ2/4 + ω2
m)−1/2. (C6)

If we ignore cavity noise, the corresponding output quadra-
ture is given by

yout[ω] = √
κyc[ω] − yc, in[ω]

= 2
√

κG√
κ2/4 + ω2

m

xφ0 [ω] + (κχc[ω] − 1) yc, in[ω].

(C7)

We ignore cavity noise in the following. The feedback loop
applies a filter that amplifies this signal by a gain G and
delays it by τ . The equivalent phase shift for an oscillator
at ωm is φτ ≡ ωmτ . The unit of G is chosen such that the
result of the filtering operation is a dimensionless signal
s(t) whose Fourier transform is given by

s[ω] = 2G√
κG√

κ2/4 + ω2
m

xφ0+φτ [ω]. (C8)

This signal is sent to a phase modulator driven by a coher-
ent pump at ωf and of amplitude α0/π . The result of this
modulation is an electronic signal

αf ,mod(t) = α0/π sin(ωf t + s(t)). (C9)

In the equation above, the conversion factor affecting s(t)
in the mixing operation is also integrated into G, and there-
fore s(t), for convenience. Finally, if |s(t)| � 2π , if we use
sin s(t) 
 s(t) and cos s(t) 
 1, this signal corresponds to
the sum of a strong coherent tone oscillating at ωf and a
weaker signal at ωf whose amplitude is modulated by s(t):

αf ,mod(t) 
 α0/π
(

sin ωf t + s(t) cos ωf t
)

. (C10)

The corresponding complex amplitude in the frame oscil-
lating at the cavity resonance frequency is given by

αf ,in[ω] = iα0δ(ω − �f )+ α0G√
κ2G√

κ2/4 + ω2
m

xφ0+φτ [ω −�f ].

(C11)

This signal is driving the cavity to apply the feedback
force. The spectrum of this signal is a triplet of peaks:
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one strong peak of amplitude α0 at ω = ωc + �f and
two weaker sidebands (weak as per the assumption above,
|s(t)| � 2π ), whose spectrum reproduces the spectrum
of x, oscillating at frequencies ω = ωc + �f ± ωm. Since
these three peaks sit at significantly different frequencies
compared with the cavity linewidth, they are affected dif-
ferently by the cavity susceptibility. In particular, they
will be affected by different phase shifts due to the cavity
susceptibility denoted φ1, φ+, and φ−.

αf [ω] = α0Gκ
√

2G√
κ2/4 + ω2

m

(
b[ω − �f ]ei(φ0+φτ +φ+)√

κ2/4 + (�f + ωm)2

+ b†[ω − �f ]e−i(φ0+φτ −φ−)√
κ2/4 + (�f − ωm)2

)

+ α0
√

κ
δ(ω − �f )ei(φ1+π/2)√

κ2/4 + �2
f

, (C12)

with

φ1 = tan−1 2�f

κ
,

φ+ = tan−1 2(�f + ωm)

κ
, and φ−= tan−1 2(�f − ωm)

κ
.

(C13)

a. Feedback force

The linear feedback force therefore comes from a cross-
product of either sideband of the drive with the central peak
of the drive (if we ignore the added noise contribution for
now):

fFB[ω] = −g0
κ3/2α2

0G2G√
(κ2/4 + ω2

m)(κ2/4 + �2
f )

(
xφ0+φτ +φ+−φ1−π/2[ω]√
κ2/4 + (�f + ωm)2

+ xφ0+φτ −φ−+φ1+π/2[ω]√
κ2/4 + (�f − ωm)2

)
. (C14)

The force therefore has two contributions. This results
from each of the sidebands of the driving triplet inter-
fering with the central peak to give a force contribu-
tion. Each of these forces contains a phase-shifted ver-
sion of the position, with a different phase shift for
each, due to the frequency dependence of the cavity-
susceptibility phase. In the limit of small delays com-
pared with the decoherence rate, the sum of the two
position signals with different phase shifts is itself a phase-
shifted position signal. If we denote the phase shifts as
ϕ = φτ + φ+ − φ1 − π/2 and ϕ′ = φτ − φ− + φ1 + π/2
and the coefficients A = κ/

√
κ2/4 + (�f + ωm)2 and B =

κ/
√

κ2/4 + (�f − ωm)2, the force is then written as (again
if we ignore the noise contribution)

fFB[ω] = − 2G√
κ2/4 + ω2

m

g0
√

κα2
0G√

κ2/4 + �2
f

D xφ0+φ[ω],

(C15)

with D ≡
√

A2 + B2 + 2AB cos(ϕ − ϕ′) and φ ≡ arctan(A
sin ϕ + B sin ϕ′)/(A cos ϕ + B cos ϕ′). We can now iden-
tify the phase shift φ of the feedback filtering application
as defined in the main text, as well as the gain A0,

A0 = g0
√

κα2
0G√

κ2/4 + �2
f

D, (C16)

which is proportional to G. We also see that because the
two position signals contributing to the feedback force are
not affected by the same phase shift, their sum is only par-
tially constructive. Indeed, the gain A0 is maximum when
ϕ and ϕ′ are equal. On the other hand, if one force contribu-
tion largely dominates over the other, then the interference
between these two contributions is weak. The only very
unfavorable situation, which makes A0 vanish, is therefore
the bad-cavity limit, wherein the amplitudes of the two
contributions are similar and ϕ − ϕ′ 
 −π . In the experi-
mental situation, not accounting for phase shifts incurred in
the propagation in transmission lines, the phase difference
between force components ϕ − ϕ′ = φ+ + φ− − 2φ1 − π

is about −176◦, which would be quite unfavorable. How-
ever, the sideband at ωc + ωm + �f of the feedback triplet
is more than twice as strong as the sideband at ωc − ωm +
�f , limiting the destructive interference’s impact. Further-
more, as they come from signals at different frequencies,
ϕ and ϕ′ are also impacted by different phase shifts accu-
mulated in the propagation in transmission lines, which are
not accounted for in the latter estimate. In conclusion, even
in the worst phase configuration, where the two feedback-
force contributions interfere destructively, the fact that one
dominates over the other ensures that the destructive inter-
ference is not complete and that the feedback force is
significant.

APPENDIX D: DATA ANALYSIS

The effective coupling G at a given generator power
is obtained on the basis of a standard power sweep in
a sideband-cooling measurement, where the pump fre-
quency is set at the red sideband. The optomechanical
damping is fitted linearly with the generator power P:

γopt = PP, (D1)

where P is the calibration coefficient. The effective cou-
pling under the red-sideband probing is obtained from
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Eq. (19) as

GRSB = 1
2

√√√√PPκ

[
1 +

(
κ

4ωm

)2
]

. (D2)

In determining G in the feedback experiment, we have to
account for the specific probe-tone detuning because the
field amplitude in the cavity, at a given generator power,
depends on the cavity susceptibility:

G = |χc(�)|
|χc(−ωm)|GRSB, (D3)

where � is the specific detuning, which can be either 0 or
ωm.

The gain A0 used in the theoretical discussion is not a
quantity directly applicable to the experiment. The experi-
mentally relevant gain G is simply proportional to it, with
an unknown coefficient coming from the transduction.

The values of A0 calibrated as described immediately
below are used when we are fitting the theoretically
obtained output spectrum to the feedback data, and to infer
the mechanical occupation.

1. Resonant probing

We fit the measured linewidths as follows to obtain the
calibration coefficient L:

γFB = LG. (D4)

We combine Eq. (D4) with Eq. (11):

A0 = LG√
κ2 + 4ω2

m

4G
. (D5)

2. Blue-sideband probing

Here we use the damping stated in Eq. (20), and obtain
at the optimum phase

γeff = γ − γopt + γFB,BSB, (D6)

where

γFB,BSB = 4A0G
√

κ4 + 20κ2ω2
m + 64ω4

m

κ3 + 16κω2
m

. (D7)

We fit to Eqs. (D6) and (D7) the measured linewidth with
increasing gain, in a manner similar to that described in Eq.
(D5) for the resonant-probing situation.

3. Error analysis

As mentioned in the main text, the occupation numbers
under feedback cooling are calculated from Eq. (16). To
evaluate the error bars of these quantities, we propagate 2σ

uncertainties in this equation. The quantities that have sig-
nificant uncertainties are the bath temperature nT

m and A0.
The error bars of nT

m are the statistical errors from the fit to
the full theoretical model. For A0, a significant uncertainty
comes from the calibration coefficient L in Eq. (D4).
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