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The present paper pertains to mechanical properties and structure of nanocrystalline multiferroic BeFiO
3
(BFO) thin films, grown

by atomic layer deposition (ALD) on the Si/SiO
2
/Pt substrate. The usage of sharp-tip-nanoindentation and multiple techniques

of structure examination, namely, grazing incidence X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron
microscopy, and energy dispersive X-ray spectrometry, enabled us to detect changes in elastic properties (95GPa ≤ 𝐸 ≤ 118GPa)
and hardness (4.50GPa ≤ 𝐻 ≤ 7.96GPa) of BFO after stages of annealing and observe their relation to the material’s structural
evolution. Our experiments point towards an increase in structural homogeneity of the samples annealed for a longer time. To our
best knowledge, the present report constitutes the first disclosure of nanoindentation mechanical characteristics of ALD-fabricated
BeFiO

3
, providing a new insight into the phenomena that accompany structure formation and development of nanocrystalline

multiferroics. We believe that our systematic characterization of the BFO layers carried out at consecutive stages of their deposition
provides pertinent information which is needed to control and optimize its ALD fabrication.

1. Introduction

TheBiFeO
3
compounds attract currently a significant interest

due to their prominent multiferroicity that concerns their
superior ferroelectric and (anti-)ferromagnetic properties.
These fascinating materials give us a possibility to control
ferroelectricity and ferromagnetism by means of a magnetic
or electric field [1, 2]. Their magnetoelectric coupling and
strong electric polarization raises the prospect of using these
for data storage, magnetic detectors, and tunnel-junction
devices or as essential spintronics materials [2–4].

There are numerous methods for production of BFO
thin films, such as pulsed laser deposition (PLD) [5], metal-
organic chemical vapor deposition (MOCVD) [6], radio fre-
quency magnetron sputtering [7], or sol-gel solution deposi-
tion [8], to namemerely a few. As is well known, the synthesis

procedure has a pronounced effect on physical properties of
different materials [9]; therefore establishing of a manufac-
turing process is very important. The present paper pertains
to BFO thin films obtained via the atomic layer deposition
(ALD) technique being nowadays widely appreciated due to,
for instance, its capability to deposit various geometries with
thickness control [10] or produce multiferroic materials with
satisfying dielectric properties [11]. Thus, we employed the
ALD procedure to obtain nanocrystalline BFO thin films
which underwent nanomechanical probing, allowing us to
investigate the mechanical properties and characterize the
structure of our material, which is essential for technological
applications of BFO [12, 13].

Although the electric and magnetic properties of BiFeO
3

compound are already well recognized [11], there is an
increasing interest in mechanical properties of multiferroic
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materials of industrial importance, especially in these pro-
duced in a nanostructured form [14]. Since the nanoin-
dentation testing already proved to be a powerful tool to
investigate this kind of materials [7, 8], we employed the
surface-deformationmeasurements to reveal the relationship
between mechanical behavior of BFO and its structure.
Such an approach enabled one to conclude on elastic and
plastic responses, stress-induced phase-transitions [15, 16],
and dislocation-based mechanisms of nanodeformation in
semiconductors and metals [15, 17], while the present paper
demonstrates mechanical and structural changes in BFO
produced via ALD, when various annealing times are used.
Young modulus, hardness, and grain size of the material in
question are determined. To our best knowledge, this study
for the first time deals with the evaluation of multiferroic
material properties during consecutive stages of its annealing
process, until the crystalline BFO material is received.

2. Experimental

2.1. Material Synthesis and Preparation of the Samples.
BiFeO

3
thin films were prepared by the ALD method using

a process composed of two deposition stages. Firstly, deposi-
tion of initial Bi-O and Fe-O layers on an Si/SiO

2
/Pt substrate

was carried out at 413 K, using bismuth(III) 2,3-dimethyl-
2-butoxide and iron(III) tert-butoxide as metal precursors.
We applied an exact number of growth-cycles (200 cycles of
iron oxide and 180 of bismuth oxide) followed by exposure of
the material to water vapor in order to oxidize the deposited
layers. This operation was repeated 15 times to achieve a
satisfactory layered structure of Bi-O/Fe-O oxides. Secondly,
the fabricated laminar “semiproducts” underwent annealing
in nitrogen atmosphere at 823K. The nonannealed samples
were also secured for a further examination, for the sake of
comparison. The duration of the applied thermal treatment
varied for different sets of specimens denoted finally as S-
5, S-30, and S-60 for the films annealed for 5, 30, and 60
minutes, respectively. Our multilayers were 500 nm thick,
similar to those produced by Jalkanen et al., who considered
only the S-60 material as the one with a well-developed
BiFeO

3
crystalline structure (details in [11]).

2.2. Structural Analysis and Mechanical Testing. The crys-
talline structure of the ALD-prepared BFO material was
determined bymeans ofX-ray diffraction (PANalytical X’pert
Pro diffractometer with CuK

𝛼
X-ray source, 𝜆 = 1.5405 Å)

that enabled us to conclude on the grain size of the formed
structure. The complementary evaluation of the obtained
microstructure and the relative content of different elements
were carried out using a Scanning Electron Microscope
(SEM) equipped with an Energy Dispersive X-ray Spec-
trometer (EDS) within a Hitachi S-4800 (Oxford INCA 350
spectrometer) system. The quantitative analysis of composi-
tion of the obtained materials was made by means of X-ray
Photoelectrons Spectroscopy (XPS) with monochromatized
Al K𝛼 radiation. In order to reveal the depth-distribution
of investigated elements, Elastic Recoil Detection Analysis
(ERDA) was employed to finally determine the structure of
the ALD-produced BFO.

As far as the mechanical properties are concerned, we
examined the prepared BFOmaterials using well-established
nanoindentation experiments carried out with Hysitron
Triboindenter TI 950 armed with a sharp diamond tip
(Berkovich-type, radius of 𝑅 = 100 nm) and alternatively a
spherical one (radius of 𝑅 = 2 𝜇m). We intended to reveal
changes in the mechanical response of the BFO multiferroic
prior to and after the annealing process, in order to obtain a
pertinent characteristic for the deposited material. Moreover,
the nanoindentation results constitute a convenient support-
ive feedback for the control of the applied ALD fabrication
process.We determined the essential mechanical parameters,
namely, the elastic modulus 𝐸 and hardness 𝐻 of our films,
according to the Oliver and Pharr method [20] with the
central relationships that reads

𝐻 =
𝑃

𝐴
,

1 − ]2

𝐸
=
2𝛽

𝑆√𝜋
√𝐴 −
1 − ]
𝑖

2

𝐸
𝑖

,

(1)

where 𝑃 is the indentation load, 𝐴 is projected contact area,
𝛽 is constant dependent on the tip geometry, 𝑆 is unloading
stiffness, ] is film’s Poisson’s ratio, ]

𝑖
is Poisson’s ratio of a

diamond, and 𝐸
𝑖
is tip (diamond) elastic modulus, respec-

tively.
Our nanoindentation experiments were carried out with

a maximum load 𝑃max ranging from 200 to 1000 𝜇N in
order to satisfy the commonly accepted practice that recom-
mends refraining from exceeding the maximum indentation
depth more than 10% of the investigated film thickness
[21]. The selection of a smooth surface area, free of defects,
and therefore suitable for nanoindentation measurements,
was accomplished using Scanning Probe Microscopy (SPM)
based on surface profiling by the tip being in contact with a
film, which is available in our TI 950 instrument.

3. Results and Discussion

The structure of our ALD-grown materials was determined
by grazing incidence X-ray diffraction. The examinations
revealed a predominantly amorphous structure in the spec-
imens that did not undergo the annealing process, while
the others (namely, those heated for 5min and longer)
crystallized as a stable BiFeO

3
-phase (Figure 1). A hexagonal

R3c (161) BFO structure with lattice constants of 𝑎 = 𝑏 =
5.5876(3) Å and 𝑐 = 13.867(1) Å was detected.The two highest
diffraction peaks recorded for the sample annealed for 5
minutes are broader and lower (Figure 1) than those observed
for the film annealed for 60 minutes, which confirms a typ-
ical behavior of annealed polycrystals. The higher intensity
suggests a higher content of the component generating the
peak, in the present case, the increased amount of the BFO
phase. The diffraction peaks at Bragg angle Θ = 39.9∘ and
Θ = 46.3∘ correspond to Pt (111) and Pt (200) plane since
our BFO samples were heterogeneously ALD-grown on a
Si/SiO

2
/Pt substrate. Interestingly, the spectrum recorded for

S-60 reveals a smaller contribution of the Pt phase into the
deposited BiFeO

3
film.
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Figure 1: XRD spectra recorded for BiFeO
3
thin films deposited

by the ALD method on the Si/SiO
2
/Pt substrate and subsequently

annealed for 5, 15, 30, or 60 minutes (the samples S-0, S-5, S-30, and
S-60 according to our notation).

Moreover, the grain size of the crystallite was determined
using Scherrer’s equation [22]:

𝐷 =
𝑘𝜆

𝛽
𝑤
cos 𝜃
, (2)

where 𝐷 is the crystallite size, 𝑘 is a dimensionless shape
factor, 𝜆 is the X-ray wavelength, 𝛽

𝑤
is the line width at half

maximum intensity of the peak, and 𝜃 is Bragg angle. Thus,
the estimated grain size equalled 5.58, 10.06, and 8.66 nm for
the annealed S-5, S-30, and S-60 samples, respectively.

The morphology of the deposited material was carefully
examined by means of SEM-technique coupled with EDS
analysis. The obtained micrographs (Figure 2) proved that
the surface of the obtained specimens is homogeneous
and smooth (see Figure 2). They also revealed a commonly
expected increase of the grain size that occurs during the
annealing process [7]. Interestingly, beyond the annealing-
time-threshold of 30 minutes, we did not observe further
changes in the surface morphology (Figure 2), and the

Table 1:The Bi/Fe ratio concluded from EDSmeasurements carried
out for BiFeO

3
thin films.

Sample Bi/Fe ratio
Nonannealed 1.07 ± 0.02
5min 1.03 ± 0.02
30min 1.04 ± 0.02
60min 0.97 ± 0.02

structure seemed already well stabilized. This conclusion is
supported by the results of the EDS measurements which
enabled us to estimate the Bi/Fe content ratio of the examined
samples (refer to Table 1). Thus, the stoichiometry proper for
BiFeO

3
was confirmed exclusively in the case of the S-60

material.
The results of the XPS examinations revealed a principal

core level of Bi, Fe, and O ion content and confirmed the
presence of C, F, and Si in the samples structure. The spectra
were corrected for the background signal using the iterated
Shirley algorithm, while the band levels were adjusted using
Gaussian and Lorentzian lines.The presence of characteristic
spectral lines for Fe2p core levels (Figure 3(a)) proved that
FeO with binding energy of 𝐸

𝑏
= 709.9 eV and Fe

2
O
3
(𝐸
𝑏
=

710.8 eV) are included among the main components of our
film. The same applies to the Bi4f (Figure 3(b)) core level
and consequently to the Bi

2
O
3
phase (𝐸

𝑏
= 158.95 eV). The

satellite peak for Fe3+ (Figure 3(a)) located at 719 eV suggests
a partial oxidation of our samples, which is in accordance
with the observation by Li et al. [23]. Despite considerable
difficulties in detection of the contribution from the Fe and
Bi oxide from the O1s core level (Figure 3(c)), we successfully
determined the binding energy of 529.85 eV for both Bi and
Fe oxides using the NIST database. Furthermore, the SiO

2

signal from the substrate that we used for BFOdepositionwas
also registered.Thus, the investigation of chemical state of our
material confirmed the presence of pure BFO phase.

For the sake of clarity of our paper, we carried out the
indentation examination for the nonannealed (S-0) and long-
annealed (S-60) BFO thin films only. Our SPM probing of
the surface of the nonannealed (Figure 4(a)) and annealed
(Figure 4(b)) specimens revealed a significant difference in
the surfacemorphology.The nanoindentationmeasurements
were carried out on a carefully selected area of the sam-
ples with a similar roughness. It was possible due to the
nanometer-scale contact area induced by our indenter. Thus,
our nanoindentation results can be considered as virtually
unaffected by the displayed surface features (Figures 4(a)-
4(b)).

The micrographs in Figures 4(a) and 4(b) disclose a
difference in the surface roughness for the nonannealed and
annealed specimens. However, the marked consistency and
repeatability of the obtained results (refer to Figure 4(c))
convince us that the noted discrepancies do not affect the
results of mechanical testing. Consequently, we reported a
considerable change in mechanical properties of the BFO
specimen when annealed for a longer time (compare black
and red curves in Figure 4(c)). Despite the character of
the 𝑃-ℎ curves being of a similar kind, the material after
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Figure 2: SEM micrographs of BFO films after annealing at 𝑇 = 300K for 0, 5, 30, and 60min (the samples denoted as S-0, S-5, S-30, and
S-60).The insets (c and d) reveal structural aspects in a greater detail, which disclose a difference between the S-60 sample (d) which contains
BiFeO

3
structure (refer to Figure 1) and the other materials (a, b, c).

Table 2: Elastic modulus and hardness of S-0 and S-60 BFO thin films obtained from different deposition methods.

Method 𝐸 (GPa) 𝐻 (GPa)
Atomic layer deposition (ALD) 111.11–118.31 7.50–7.96
Radio frequency magnetron sputtering [7] 131.4–170.8 6.8–10.6
Sol-gel [8] 26–51 2.8–3.8
Pulsed laser deposition [18] 100 —

First-principles calculation [19] G-AFM - 142.19
C-AFM - 144.87 —

the thermal treatment (S-60) becomes markedly harder (a
significantly lower indentation depth ℎ) than the ALD-grown
one (S-0), which runs contrary to common expectation
(Figure 4(c)). Indeed, polycrystalline materials (especially
metals) usually turn softer after annealing [7], which con-
trasts with the discovered BFO behavior. All of these bring us
to suspect that the observed hardening is due to considerable
structural changes which occur during annealing.

The deformation of the amorphous material (S-0, black
curve) and the one crystallized during annealing (see
Figure 4) of the BFO films (S-60, red curves) performed
within a load range from 𝑃max = 200 𝜇N to 1000 𝜇N does
not resemble either the results obtained for GaN [15] and
GaAs [16] crystals, inwhichnanodeformation depends on the
transition between crystalline structures, accompanied by a
dislocation activity.

Our analysis of the nanoindentation𝑃-ℎdata is supported
by classical hardness and elastic modulus measurements that
confirm that the heat treatment resulted in increase of these
two. Furthermore, the results of our nanomechanical testing
were compared with those obtained by other authors for
different deposition methods and various kinds of mea-
surements, or they were predicted theoretically (Table 2).
Thus, we contend that the nanoindentation probing and the
recorded mechanical characteristics serve to be a convenient
indicator of the process that undergoes between Bi-O and Fe-
O layers with increasing time of heat treatment.

Our results reveal a decrease in hardness and elastic
moduli with an increasing load, which reflects the well-
known “size effect” [24]. The corresponding Young modulus
values (hardness) for BFO material are 118.31 GPa (7.96GPa),
114.43GPa (7.80GPa), and 111.11 GPa (7.50GPa) for loads
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Figure 3: XPS spectra obtained for a 500 nm BiFeO
3
film (S-60) grown by the ALD technique. One can readily recognize the spectral com-

ponents for Fe2p (a), Bi4f (b), and also O1s lines (c).

(depths) of 200𝜇N (25 nm), 600 𝜇N (52 nm), and 1000 𝜇N
(76 nm), respectively.

One should note that hardness of the nonannealed sample
(𝐻 = 4.5GPa) is almost two times lower than that of the
one which underwent the annealing procedure, and its elastic
modulus is also lower (95GPa).

4. Conclusions

The present work focused on the relationship between me-
chanical characteristics and structure of industrially impor-
tant multiferroic BiFeO

3
films ALD grown on an Si/SiO

2
/Pt

substrate and subsequently variously annealed. This way, we
revealed a dependence of the common mechanical parame-
ters on the stage of crystallization of BFO films and finally

formation of the BiFeO
3
structure. Thus, we contend that

nanoindentation constitutes a simple and very convenient
method of testingmultiferroic filmswith respect to formation
of a properly developed structure of the material.

In a greater detail, a number of measurements were
carried out to determine both structure and mechanical
properties of the BFO thin film that underwent a post-ALD
thermal treatment (annealing) at 823K which lasted for 5,
30, and 60 minutes. The as-deposited samples (S-0) were
also examined as a reference material. Thus, the structures
of the samples labelled as S-0, S-5, S-30, and S-60 were
extensively investigated by means of XRD, XPS, SEM, and
EDS techniques.

Since we found that our ALD-grown BFO layers require
at least 60 minutes of treatment to crystallize in the intact
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Figure 4: The surface morphology of the BFO samples S-0 (a) and S-60 (b) intended for nanomechanical testing and the results of
nanoindentation examinations (c). The SPM micrographs of selected area of the S-0 and S-60 samples reveal features characteristic for an
ALD-grown (a) and thoroughly annealed (𝑡 = 60min, 𝑇 = 300K) material (b). The nanoindentation load-depth 𝑃-ℎ curves are recorded for
various maximum loads 𝑃max of 200, 400, and 1000 𝜇N, for both S-0 (black) and S-60 (red) thin films (c).

BiFeO
3
structure, the mechanical testing was limited to

as-deposited (S-0) and final (S-60) state proving that the
nanoindentation testing is a perfect experimental method to
provide us the information about the stage of formation of a
multiferroic material.

Furthermore, our research provides (to the best of our
knowledge for the first time) nanoindentation mechanical
characteristics of BFO multiferroics grown by means of
the ALD process. Hardness obtained under nominal loads
of 200, 600, and 1000 𝜇N was equal to 7.96, 7.80, and
7.50GPa, respectively (please note that hardness is a load-
dependent material property that reflects plastic properties
of the material) [25]. In contrast hardness of the as-deposited
film amounted to 4.5GPa. As for elastic characteristics, the
level elasticmoduli of a properly crystallized BiFeO

3
equalled

118.31, 114.43, and 111.11 GPa under various loads, while that of

the as-grownmaterial (S-0) approached ∼95GPa.The almost
negligible load/depth-dependence of 𝐸𝑟- and 𝐻-parameter
of our sample proved a homogeneity of the material and
correctness of our measurements.
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