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SHAPE AND CELL WALL SLENDERNESS EFFECTS ON 
THE STIFFNESS OF WOOD CELL AGGREGATES IN THE 

TRANSVERSE PLANE 

Alp Karakoҫ1,♠

ABSTRACT

The present study investigates a homogenization method in the framework of finite element method 
to determine the effective stiffness properties of wood cell aggregates in the transverse plane. For this 
purpose, square and regular hexagonal representative volume elements are chosen to mimic the wood 
cells. Thereafter, simulation experiments are conducted to understand how different cell shapes and 
cell wall slenderness, which is cell wall thickness to height ratio, affect the stiffness properties in the 
transverse plane. The comparison between analytical and computational homogenization results show 
that square cells have higher elastic moduli than the ones computed for hexagonal cells whereas shear 
modulus of both cell shapes have more or less the similar values. This can be explained due to the 
effective deformation mechanisms under different loading conditions. Thus, the present study provides 
an effective stiffness estimation tool and insight for wood cell aggregates.

Keywords: Cell wall shape, computational homogenization, effective stiffness, finite element 
method, mechanical properties, wood. 

INTRODUCTION

Wood is a natural engineering material which has a microstructure composed of cells. The 
abundance, moderate durability, favorable strength-to-weight ratio and esthetical concerns make the 
wood and wood products appealing for different architectural and engineering fields, e.g. structural 
applications including glulam beams, plywood and particle boards. In these applications, effective 
stiffness properties in the transverse plane, here referring to radial-tangential plane, are matter of 
special interest because of the significance of the transverse loads. The effective stiffness properties of 
wood and wood products can be derived through empirical, analytical and numerical investigations, 
where the latter two approaches are mainly based on the material microstructure and homogenization. 

There have been various empirical studies in the literature to predict the mechanical properties of 
different wood species, some of which are listed in the following references (Baar et al. 2015, Chauhan  
and  Sethy 2016, Laghdir et al. 2008). Due to long preparation periods of setups and specimens, expensive 
equipment and need for qualified labor in empirical studies, material homogenization methods, which 
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have been the main foci of analytical and numerical investigations, have been introduced and widely 
implemented (Alkhader and Vural 2008, Charalambakis 2010, Geers et al. 2010). The basic idea 
behind this phenomenon is to evaluate the effective properties by solving boundary value problem with 
appropriate boundary conditions defined on a representative volume element RVE, which contains 
all necessary information (Nemat-Nasser and Hori 1999, Nguyen et al. 2012, Karakoç 2013). Key 
advantages are to be able to introduce all necessary geometrical and mechanical information related 
to different scales of the material and use different mechanical models, e.g. beam and plate models, in 
material sub-scales (Freund  et al. 2014, Gibson and Ashby 1999, Wang et al. 2005). Especially, with 
the introduction of powerful computers in recent years, computational homogenization tools have been 
widely used for material characterization of complex structures such as wood and wood products, e.g. 
to determine the effective stiffness properties of cellular materials such as softwood species in the 
transverse plane (Hofstetter et al. 2009, Karakoç et al. 2013, Rafsanjani 2013, Saavedra Flores 2011).

In order to study the wood cell mechanical behavior, a strain driven computational homogenization 
model in the framework of finite element method, which couples the geometrical and mechanical 
description of wood cells with the effective properties of aggregate, is presented. The objectives of 
the current study are (1) to determine the effective stiffness properties of wood cell aggregates in the 
transverse plane by using square and regular hexagonal RVEs shown in Figure 1, (2) to understand the 
effect of cell wall slenderness that is cell wall thickness to height ratio on these effective properties, 
(3) and to compare the obtained stiffness properties with the analytical results given in the literature 
on the basis of RVE shape and cell wall slenderness. Therefore, the present study aims at providing an 
effective stiffness estimation tool and insight for wood cell aggregates.

Figure 1. Wood cell aggregate, and hexagonal and square RVEs mimicking the wood cells (edited 
micrograph, Sjölund et al. 2014).

MATERIALS AND METHODS

First order strain driven computational homogenization

In order to determine the effective stiffness properties, first order strain driven computational 
homogenization can be used. In this method, macroscopic strain M

ije  for { }, ,∈i j X Y  is assumed to 
be uniform over the material and imposed at the RVE boundary ω∂  as illustrated in Figure 2. Therefore, 
first order microscopic displacement field decomposition for RVE can be given as (Rafsanjani 2013)
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                                                                                             (1)

for which the first addend on the right hand side represents the macroscopic displacement 
contribution and second addend represents the displacement fluctuation field u  due to heterogeneities 
within the RVE (Geers et al. 2010). Here, r  represents the position vector with respect to any described 
origin.

 

Figure 2. Strain driven homogenization scheme with imposed macroscopic strain M
ije  and computed 

stress M
ijs  for { }, ,∈i j X Y . Here, Ω and ∂Ω represents the volume and boundary of aggregate, 

and ω and ∂ω represents the volume and boundary of RVE.

Since the overall body is assumed to be composed of periodic arrays of repeating RVEs, continuity 
conditions for the displacements and tractions must be satisfied at the boundaries of each neighbouring 
cells. The first can be satisfied by taking the relative positions of the node sets, e.g. node 1 and node 2 
at the boundaries, i.e. surfaces, edges, corners. Hence, Eq.(1)  can be expanded as

  
                                                                                                            (2)

where the displacement fluctuation field u  of Eq.(1)  vanishes under the periodicity condition.  Eq.
(2)  forms the basis of displacement boundary condition for the periodic arrays. The traction boundary 
condition is satisfied with anti-periodicity of traction field in case of existence of traction on the 
boundaries (Nguyen et al. 2012). However, the current study focuses on the displacement boundary 
conditions; therefore, only Eq.(2)  is studied for the periodic boundary conditions.

In order to establish a consistent relation between different scales, Hill-Mandel principle can be 
used such that (Pham et al. 2013)

                                                                                                   (3) 
 

for which subscript m represents the microscopic or RVE scale. The symbol (:) denotes the double 
dot operator and for second order tensors it is defined as
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                                                                                           (4)

By using the Gauss theorem, Eq.(3)  can be rewritten at the RVE boundary ω∂  as

                                                              
                                                                                                                 (5)                                                                               

where mt


 is the microscopic traction vector at ω∂ . By plugging Eq. (1)  into Eq.(5) ,

 
                                                                                                                  

 
                                                                                                                                      

(6)

which yields to

                                                                                          

                                                                                                                                       

 (7)

Here, the symbol ⊗  denotes the dyadic operator. The second integrand at the right hand side 
vanishes in case of periodic boundary conditions as elaborated in Eq. . Hence, macroscopic stress M

ijs  
can be expressed as the volume average of the microscopic stress m

ijs  such that

      

                                                                                                                 

(8)

 

in which ω  is the total volume of the RVE.

Thereafter, effective stiffness can be determined by means of the relationship between the 
macroscopic strain M

ije  and stress M
ijs  under the linear elasticity assumption. This relationship can be 

constructed in terms of macroscopic compliance so that (Karakoç and Freund 2013)

                 

                                                                              

(9)

: .ij ija b=a b

M M m m1: dt u
ω

ω
ω ∂

= ⋅ ∂∫s e




( )M M m M m1 1: d d ,t r t u
ω ω

ω ω
ω ω∂ ∂

= ⋅ ⋅ ∂ + ⋅ ∂∫ ∫s e e
 

 

( )M M m M m1 1: d : dt r t u
ω ω

ω ω
ω ω∂ ∂

= ⊗ ∂ + ⋅ ∂∫ ∫s e e
 

 

( )M m m1 1d d ,t r
ω ω

ω ω
ω ω∂

= ⊗ ∂ =∫ ∫s s




M M M: .=e C s



693

        Maderas. Ciencia y tecnología 18(4): 689 - 700, 2016Shape and cell wall slenderness..: Karakoҫ

Then, Voigt notation for MC  can be constructed as

 

M,1 M,2 M,3 M,1 M,2 M,3
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for which M  C  is taken to be symmetric matrix. Superscripts 1, 2, 3 represent three different 
loading conditions fulfilling the minimum requirement to obtain the compliance matrix. Under the 
assumption of orthotropic material properties

 M

1 0

1 0

10 0

− 
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for which ,X YE E  are the elastic moduli, XYG  are the shear modulus and ,XY YXv v are the 
Poisson’s ratios with reciprocal relation / /XY X YX Yv E v E= (Laghdir et al. 2008).

Implementation of computational homogenization

In this study, square and regular hexagonal RVEs are investigated, which has the potential to mimic 
the nature of wood cells. Therefore, RVEs are first discretized into finite elements and the kinematic 
boundary condition given in Eq. is applied on matching node sets that form the periodicity conditions. 
The mapping is exemplified for both RVE geometries in Figure 3.

Figure 3. Geometrical properties and matching nodes of investigated RVEs for periodic boundary conditions: a) 
8-noded square RVE, b) 12-noded regular hexagonal RVE. Here, t is cell wall thickness and h is cell wall height.

Matching nodes:

Corner nodes: N1 - N2 
                        N1 - N3 
                        N1 -N4

Edge nodes:    N5 - N7 
                        N6 - N8

Matching nodes:

Corner nodes: N1 - N3 
                        N1 - N5 
                        N2 - N4 
       N2 - N6

Edge nodes:    N7 - N10 
                        N8 - N11 
                        N9 - N12
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RESULTS AND DISCUSSION

Design of experiments

In the present study, cell walls are taken to be transversely isotropic under the assumption of uni-
form distribution of cell wall material in the plane of interest. The detailed information of the assump-
tion and supporting empirical data can be found in the literature (Astley et al. 1998). Hence, mechan-
ical parameters of the cell walls are selected as Es=9 GPa and vs=0,4; which refer to cell wall elastic 
modulus and Poisson’s ratio, respectively, as provided in the previous studies (Kahle and Woodhouse 
1994). In relation to Eq. , three different in-plane loading conditions, i.e. tensile load along X- and 
Y- directions and XY-shear load as listed in Table 1 and exemplified in Figure 4, are used to compute 
the effective stiffness properties and understand the effect of cell wall slenderness /t h , for which 

2t t= , t is cell wall thickness, and h refers to cell wall height (as depicted in Figure 3), on the com-
puted properties. The cell wall slenderness is taken to be in the range so that [ ]/ 0,04;0, 40t h∈  
with increment of 0,04t h∆ = .

Table 1. Loading conditions.

Case

Imposed strains

M
XXe M

YYe M2 XYe

1 0,01 0 0
2 0 0,01 0
3 0 0 0,01

Figure 4. Representation of loading conditions based on the listed cases in Table 1 (presented 
deformations are scaled larger than the actual ones for readability):a) undeformed square RVE, b) 
square RVE subjected to M

XXe , c) square RVE subjected to M
YYe , d) square RVE subjected to M

XYe , 
e) undeformed hexagonal RVE, f) hexagonal RVE subjected to M

XXe , g) hexagonal RVE subjected to 
M
YYe , h) hexagonal RVE subjected to M

XYe .
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RESULTS

For determining the effective stiffness properties of wood cell aggregates derived in Eq.  and 
understanding the effect of cell wall slenderness, simulation experiments are carried out on square 
and regular hexagonal RVEs in the frameworks of finite element and computational homogenization 
methods. For this purpose, Abaqus CAE is used and solution domains are discretized into sets of finite 
elements, e.g. 6-node quadratic triangular CPS6 provided in Abaqus/CAE software. The results are 
then compared with the analytical results provided in the literature. 

Square RVE

The analytical solutions for cellular RVEs are principally derived considering the cell shape and 
related deformation mechanisms. For example, in case of square RVEs, cell walls are assumed to 
behave as a rigid structure than a mechanism (Deshpande et al. 2001). Therefore, stretching is taken 
to be dominant and bending is neglected under uniaxial loading. However, under shear loading, cell 
walls are assumed to deform due to bending (Wang et al. 2005). Under these assumptions, previously 
derived formulae of elastic parameters in the transverse plane are listed in Table 2. Linear relationship 
between the cell wall slenderness and effective elastic moduli, and cubic relationship between the cell 
wall slenderness and shear modulus are obvious from this table.

Table 2. Effective elastic moduli, shear modulus and Poisson’s ratios as functions of cell wall 
slenderness t h , where 2t t=  in Survey I and II (Freund et al. 2014, Wang et al. 2005).

Survey I 

(Freund et al. 2014)

Survey II

(Wang et al. 2005)

/X sE E t h t h  

/Y sE E t h t h

/XY sG E ( )31
2

t h ( )31
2

t h

XYv 0 ( )sv t h

YXv 0 ( )sv t h

The comparison graphs presented in Figure 5 also indicate the linear and cubic relations of moduli 
and t h . It can be seen that analytical results for elastic moduli and shear modulus are in accordance 
with the computational homogenization results. It can be also deduced that there is a positive effect of 
t h  on moduli. On the other hand, Surveys I and II do not estimate the Poisson’s ratios correctly that 

are obtained from the computational homogenization. The main reason can be due to taking only axial 
deformations into account in the analytical solutions. Similar to effective moduli, t h  has a positive 
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influence on the Poisson ratio’s (Figure 5).

Figure 5. Effective elastic parameters via analytical and computational homogenization results.

Hexagonal RVE

In case of hexagonal RVEs, cell walls are assumed to behave as mechanism than rigid structure 
where the bending moments are the dominant deformation mechanisms under both uniaxial and shear 
loading (Deshpande et al. 2001). Under the assumption, previously derived formulae of elastic param-
eters in the transverse plane are listed in Table 3. As seen in this table, relationship between the cell 
wall slenderness and elastic parameters have a more complicated representation compared to the ones 
for square RVEs.
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Table 3. Effective elastic moduli, shear modulus and Poisson’s ratios as functions of cell wall 
slenderness t h , where 2t t=  in Survey I and III (Freund et al. 2014, Gibson and Ashby 1999).

Survey I 

(Freund et al. 2014)

Survey III

(Gibson and Ashby 1999)

/X sE E  

/Y sE E

/XY sG E

XYv

YXv

The comparison graphs presented in Figure 6 indicate that there is a positive effect of t h  on 
the effective moduli. However, with increase in t h , there is a decrease in the Poisson’s ratios. In 
addition to these, it is also observed that Surveys I and III are in accordance with the computational ho-
mogenization results especially for low values of t h , e.g. 0,25t h � . This is a valuable outcome, 
e.g for softwood cells which usually have the cell wall slenderness values in this t h  range.
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Figure 6. Comparison of effective elastic parameters based on analytical and computational ho-
mogenization results.

Another interesting outcome is that elastic moduli of hexagonal RVEs is lower than the one for 
square RVEs, which is due to the dominant effect of stretching over bending. Moreover, shear modulus 
have more or less the similar values due to bending as the deformation mechanism for both types of 
RVEs.  

CONCLUSIONS

In the present study, effective stiffness properties of wood cell aggregates, which are composed of 
either square or regular hexagonal RVEs, are investigated by means of analytical and computational 
homogenization methods. The analytical formulae are derived considering the cell shape and related 
deformation mechanisms, i.e. bending and stretching in the current study. For the computational ho-
mogenization, RVEs are first discretized into finite elements and kinematic boundary equations are 
applied to the matching nodes so as to generate periodic boundary conditions, which is commonly used 
in multiscale modelling of cellular materials. The simulations are carried by using the linear elastic 
constitutive equations and effective stiffness properties are obtained by means of the relationship be-
tween the macroscopic strain M

ije  and stress M
ijs .

The homogenization results show that square RVEs have higher elastic moduli values compared to 
regular hexagonal RVEs due to the dominancy of stretching over bending, which has been briefly ex-
plained here and elaborated in the literature. However, there are slight differences for the shear moduli 
of both RVE types, which can be explained with the dominant effect of bending under shear loading. 
The investigated shapes are common for many types of softwood species. Therefore, both the analyti-
cal and computational homogenization results in the tables and comparison graphs work as an effective 
stiffness estimation tool in case of knowing the mechanical and geometrical properties of wood cells. 
Hence, the use of present methodology is expected to decrease the operational cost and time and ad-
vances the state-of-the-art in the field of wood and cellular materials mechanics.
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