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Abstract 

Van der Waals interactions are known to play a key role in the formation of weakly bound solids, such as 

molecular or layered crystals. Here we show that the correct quantum-chemical description of van der 

Waals dispersion is also essential for a correct description of the relative stability between purely 

covalently-bound solids like silicon allotropes. To this end, we apply periodic local MP2 and DFT with 

Grimme’s empirical –D3 correction to 11 experimentally determined or yet hypothetical crystalline 

silicon structures, including the most recently discovered silicon allotropes. Both methods provide similar 

energy ordering of the polymorphs, which, at the same time, noticeably deviate from the order predicted 

by standard DFT without proper description of the van der Waals dispersion.  

 

Keywords: Silicon allotropes, van der Waals dispersion, Møller-Plesset perturbation theory. 

                                                 

* To whom correspondence should be addressed. E-mail: antti.j.karttunen@iki.fi, 

lorenzo.maschio@unito.it 



 2 

Introduction 

Novel allotropes of the chemical elements are of great scientific and technological interest. For example, 

the step-wise discovery of carbon fullerenes,1 carbon nanotubes,2 and graphene3 has each time opened up 

a completely new research field of increasing proportions. There are also significant ongoing experimental 

and computational efforts towards the discovery of new allotropes for the heavier group 14 elements 

silicon and germanium. In the case of silicon, its fundamental technological role as the key material for 

microelectronics and photovoltaic technologies is a major driving force for the research towards novel 

allotropes. In particular, the discovery of direct bandgap silicon allotropes that can be prepared in bulk 

quantities could result in improved silicon-based photovoltaic or optoelectronic applications, depending 

on the magnitude of the band gap. Important examples of well-characterized silicon allotropes are 

Si(cF136) (silicon clathrate II),4, 5 and the other recently synthetized open-framework allotrope Si(oC24).6 

Of these two open-framework allotropes the cF136 structure has also been obtained for germanium.7 

Neither Si(cF136) nor Si(oC24) possess a direct band gap, but their controlled preparation via vacuum 

treatment of the binary precursors NaxSi136 and Na4Si24 illustrates an important synthetic strategy for the 

discovery of novel silicon and germanium allotropes. 

A large number of previous computational studies have focused on existing and hypothetical allotropes 

of silicon. Because tetrahedrally coordinated group 14 atoms such as silicon can form a vast number of 

different types of networks, a systematic classification of the possible network topologies is of utmost 

importance.8 A highly efficient way to analyze the network topologies is the TOPOS software suite,9 

which also includes structural databases that can be used to assess whether a certain topology is really a 

novel one or if it has already been discovered. Another important resource in this field is the Reticular 

Chemistry Structure Resource,10 which provides thousands of already known network topologies. Finally, 

many tetrahedrally coordinated carbon allotropes predicted in the literature are also relevant for silicon, 

and the recently introduced Samara Carbon Allotrope Database provides convenient access to hundreds 

of network topologies relevant for tetrahedrally coordinated group 14 elements.11 

Due to the vast number of hypothetical silicon allotropes proposed in the recent literature and provided 

in the abovementioned structural databases, we will not review all of them here. For those interested in a 
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deeper survey of the existing allotropes, Bromley et al. have provided an excellent and extensive review 

on low-density allotropy in silicon.12 Low-density allotropes and the structural principles of silicon 

clathrate frameworks have also been discussed in Ref 13. Finally, a review on more recent work on silicon 

allotropes is included in a paper that also provides guidelines for deriving Si allotropes in a chemistry-

inspired fashion from the diamond structure.14 The number of hypothetical silicon allotropes is expected 

to increase steadily as novel strategies are adopted for discovering them. Ab initio random structure 

searches and particle swarm methods are some examples of the new strategies.15, 16 Another very fruitful 

strategy is to exploit the topologies known for zeolites.17-20 

Practically all computational studies on existing and hypothetical silicon allotropes so far have been 

carried out using standard density functional theory (DFT) methods, that is, with either LDA, GGA, or 

hybrid exchange correlation functionals. A common problem of standard DFT functionals is that they 

cannot capture van der Waals –dispersion interactions, unless dispersion correction is added to the DFT 

energy.21, 22 To our knowledge, the role of dispersion interactions in the energetics of tetrahedrally 

coordinated silicon allotropes has been neglected so far. While dispersion interactions play a key role in 

the structural chemistry of molecular crystals,21-23 they are typically considered to be less important for 

bulk solids with covalent or ionic bonding. However, previous work on bulk TiO2 or BN polymorphs has 

clearly illustrated that dispersion interactions can be important also for network-type bulk materials and 

need to be taken into account to obtain the experimentally known energy ordering of topologically 

different polymorphs.24-26 Indeed, two-body dispersion is always an attractive force, which in bulky 

systems can accumulate to a sufficiently large contribution to influence even the relative stabilities of 

covalently bound polymorphs. 

We note at this point that some standard functionals (e.g. LDA, PBE, or PBEsol) deliver artifical non-

electrostatic binding between two closed-shell systems, which can to a certain extent effectively substitute 

the van der Waals interaction. However, this fortuitous error compensation can only “work” in small 

systems, since this fictitious binding has an exponential rather than the genuine R–6 decay of the van der 

Waals dispersion. Therefore, the effect of accumulated long-range dispersion in bulky systems cannot be 

captured in this way. In order to overcome this problem, in the past decades several DFT-based approaches 
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appeared that include van der Waals interaction. The presently most popular technique is abovementioned 

Grimme's emperical correction D.21 There are also more rigorous ways of treating dispersion within the 

DFT framework,22, 27-31 which however are usually computationally much more demanding than standard 

DFT. 

An alternative to DFT is the ab initio wave-function methodology. These methods can capture 

dispersion as well as other types of interaction in a balanced and non-empirical way. Furthermore, these 

techniques form methodological hierarchies, allowing for a systematical improvement of the accuracy of 

the results. The problem of such methods is their computational cost, which, especially in solids, can 

become prohibitively high. Nevertheless, low order quantum chemical methods, such as MP232, 33 or the 

Random Phase Approximation (RPA)34, 35 are available in periodic form and can be applied for relatively 

complex systems. Higher order corrections can be calculated using fragment-based approaches.36-40 The 

most advanced hierarchical wavefunction-based techniques already challenge the accuracy of 

experimentally determined lattice41 or adsorption energies.42 

In this work we investigate dispersion interactions in different types of silicon allotropes to shed light 

on the stability trends of the allotropes. By applying the Orbital-Specific Virtuals (OSV) LMP2 approach43 

recently implemented in the CRYSCOR code,32 we carry out a systematic comparison of dispersion 

interactions in different silicon topologies without any empirical parametrization. We also compare our 

results with standard and dispersion-corrected DFT methods and demonstrate that the dispersion 

interactions have a significant effect on the predicted stabilities of several low-density allotropes of 

silicon. Van der Waals dispersion in a silicon clathrate framework containing noble gas guest atoms has 

been investigated by some of us using periodic LMP2 and dispersion-corrected DFT earlier.44 However, 

that study focused on the host-guest interactions and included only a single network topology. In the 

present study, we shift our focus on dispersion within the covalent networks themselves and its role in 

their relative energetics.  
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Computational Methods 

The silicon allotropes were investigated using two different types of quantum chemical methods, that 

is, density functional theory (DFT), and local second-order Møller-Plesset perturbation theory (LMP2).45 

The DFT calculations were carried out using the CRYSTAL14 program package.46 In addition to the 

standard hybrid PBE0 functional, we also applied Grimme’s empirical DFT-D3 dispersion correction with 

Becke-Johnson damping (PBE0-D3).47-50  Both LMP2 and DFT calculations were carried out using a 

localized Gaussian-type basis set of triple-zeta-valence + double polarization (TZVPP51,44) quality. The 

Monkhorst-Pack-type k-point grids used for sampling the reciprocal space of each structure are listed in 

the Results and Discussion section.52 The geometries of all studied structures were fully optimized using 

both PBE0 and PBE0-D3 functionals and for both functionals the relative energy at the respective local 

minimum is used in the comparisons. Full structural data and detailed specification of the computational 

parameters and basis set can be found in the Supporting Information. All studied structures have been 

confirmed previously to be true local minima either with DFT-GGA or hybrid DFT methods (see the 

Results and Discussion section for references). The three-body (ABC) contribution to the D3 dispersion53  

correction was tested on a few single-point structures at the PBE0 minimum, but the effect of the three-

body contribution on relative stabilities does not appear to be significant. For example, the relative energy 

of the hP8 structure in comparison to the cF8 structure did not change, while the relative energy of the 

cF136 structure decreased by 2.5%.  

The LMP2 calculations were carried out with a development version of the CRYSCOR software,32 

which implements orbital-specific virtuals (OSVs) to represent the truncated pair-specific virtual space.43 

In the OSV-LMP2 formalism, it is not necessary to manually define excitation domains for the virtual 

space as in the previous implementation based on projected atomic orbitals (PAO-LMP2). The OSV-

LMP2 straightforwardly enables the calculation of smooth potential energy surfaces and relative energies 

of structural frameworks with different topologies.40, 43 The Hartree-Fock reference wavefunction and the 

localized valence-space Wannier functions (WFs) necessary for the LMP2 procedure were obtained with 

CRYSTAL14. In the LMP2 calculations, we utilized the direct-space density-fitting technique for 
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computing the two-electron four-index integrals.54A Poisson/Gaussian-type auxiliary basis set55, 56 

corresponding to the triple-zeta-valence orbital basis57 was employed for the density-fitting. 

Due to the lack of analytical gradients, full geometry optimizations of the studied structures were not 

yet computationally feasible at the LMP2 level. Instead, we performed single-point energy calculations 

at the geometries optimized with the DFT methods. A potential energy scan for the lattice constant of α-

Si showed that the optimal LMP2 lattice constant of 5.43 Å is practically identical to the PBE0 lattice 

constant, while the PBE0-D3-optimized lattice constant has a slightly smaller value of 5.39 Å (see 

Supporting information for details on the LMP2 potential energy scan). The experimental value for the 

lattice constant at 6.4 K is 5.430 Å.58,59 The low-temperature value is in fact close to the room temperature 

value of 5.430 Å because α-Si shows negative thermal expansion up to about 170 K. The LMP2/TZVPP 

relative energies reported here have been calculated at the PBE0 geometries, but the relative LMP2 

energies obtained at the PBE0-D3 geometries are very similar. We note that in a previous study utilizing 

DFT-PBE with semiempirical dispersion corrections, the effect of the dispersion correction on the lattice 

constant of α-Si was four times smaller in comparison to the difference arising from the D3 correction .60 

 

Results and Discussion 

The silicon allotropes studied in this work are described in Table 1 and Figures 1–3. The energetically 

most favorable silicon allotrope (cF8) α–Si is used as the reference to investigate the relative energies of 

the other ten allotropes. The latter have been shown to be among the energetically most favorable 

structures in previous computational studies carried out typically with DFT-LDA, DFT-PBE, and DFT-

PBE0 methods that cannot properly describe weak dispersion interactions. Some of the silicon allotropes 

studied here have been synthesized experimentally (hP4, oC24, cF136), while all others, yet hypothetical, 

show some close relation to experimentally known materials (some are known for Ge, but not for Si). We 

note that several silicon allotropes, which do not show any direct relationship with experimentally known 

materials, have also been predicted recently.15, 61 They show rather low relative energy because the 

structures incorporate the strain-free diamond lattice as a building block.  



 7 

In the following, we denote the individual silicon allotropes under study by their Pearson symbols. We 

briefly discuss their network topologies in the captions of Figures 1-3. The full descriptions of their 

structural characteristics can be found in the original references cited in Table 1. The network topologies 

of most of the structures are described in full detail in the RCSR database or can be obtained with the help 

of the TOPOS program8, 10. 



 8 

Table 1. Silicon allotropes included in this study. The structures are ordered according to their relative 

energy ΔE at the LMP2/TZVPP level (see below) from the most to the least stable structure. 

Pearsona Name(s)b 

Space 

group a (Å)c b (Å) c c (Å) c k-gridd Notes 

cF8 Alpha (α) / 3C Fd-3m 5.43 
  

12×12×12 Diamond structure. Most stable Si 

allotrope at STP conditions. 

hP8 4H P63/mmc 3.83 
 

12.59 12×12×4 Hexagonal polytype of 3C. 4H-Ge has 

been synthetized as bulk material 

starting from m-allo-Ge.62, 63 

hP4 2H P63/mmc 3.83 
 

6.32 12×12×6 Hexagonal polytype of 3C. 2H-Si has 

been fabricated on GaP nanowire 

templates.64 

tP12 cdp / T12 P42/ncm 5.19 
 

9.24 8×8×4 Hypothetical allotrope, topology same 

as in CdP2.16, 65 

oP32 GAa4 Pbcm 7.85 11.29 7.45 4×4×4 The most stable building block of 

stacking-faulted m-allo-Ge (synthetized 

as bulk material structure starting from 

Li7Ge12.17, 63 

hP6 unj / NGS P6122 5.44 
 

5.08 8×8×8 Hypothetical allotrope, topology same 

as for the Ga-Sn network in 

NaGaSn5.17, 66 

tP24 tum1 P42/nmc 7.42 
 

9.15 6×6×4 Hypothetical allotrope, topology same 

as for the B–Si network in LiBSi2.67 

oC24 CAS Cmcm 3.82 10.68 12.66 8×8×4 Has been synthetized from Na4Si24.68 

cF136 Clathrate II Fd-3m 14.65 
  

4×4×4 Has been synthetized from NaxSi136,4, 5 

also known for Ge. 7 

cI46 Clathrate VIII I-43m 10.04     4×4×4 Hypothetical allotrope, experimentally 

known in type-VIII Ge and Sn 

clathrates.13, 69, 70 

cP46 Clathrate I Pm-3n 10.16 
  

4×4×4 Hypothetical allotrope, experimentally 

known in Na8Si46 type-I clathrate.13, 69, 

70 

a Pearson symbol of the allotrope, including the Bravais lattice and the number of atoms in the crystallographic unit cell. For 

the cF8, oC24, cF136, and cI46 structures the number of atoms in the primitive cell is 2, 12, 34, and 23, respectively.b Names 

/ codes used for the structure in the literature (see Notes). c Lattice parameters of the structure obtained at the PBE0/TZVPP 

level of theory. d Monkhorst-Pack-type k-point grid used for sampling the reciprocal space.  
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Figure 1. Simple silicon allotropes that are polytypes of the diamond structure. a) cF8 (α-Si / 3C 

polytype); b) hP4 (2H polytype); c) hP8 (4H polytype). The cF8 structure has been oriented to emphasize 

the structural connection to the hexagonal polytypes. The red lines denote six-membered rings in the chair 

conformation, while the blue lines denote six-membered rings in the slightly more strained boat 

conformation. The least strained 3C polytype possesses only six-membered rings in the chair 

conformation. 
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Figure 2. Silicon allotropes that are less dense than the diamond polytypes shown in Figure 1. All 

structures possess channels highlighted by the violet space-filling balls. a) hP6 (unj/NGS); b) tP12 

(cdp/T12) c) oC24 (CAS); d) tP24 (tum1); e) oP32 (GAa4). hP6 contains helical (chiral) channels in one 

direction, while in tP12 similar helical channels are stacked in perpendicular fashion along the c axis. In 

oC24, tP24, and oP32 the channels highlighted here are formed by eight-, seven-, and seven-membered 

rings, respectively. All three allotropes also possess smaller channels formed by five-membered rings. In 

tP24, the larger channels run in perpendicular fashion. The structures hP6, tP12, and tP24 can actually be 

derived by slicing and re-connecting the cF8 diamond structure and the structural characteristics of these 

allotropes have been recently described in detail.14 
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Figure 3. The least dense silicon allotropes studied here: clathrate frameworks composed of polyhedral 

cages. a) cP46 (Clathrate I) composed of 20-membered (violet) and 24-membered (blue) cages; b) cF136 

(Clathrate II) composed of 20-membered (violet) and 28-memberd (green) cages ; c) cI46 (Clathrate VIII) 

composed of 23-membered cages. The structural principles of the studied clathrate frameworks have been 

described in detail elsewhere.13 
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The relative energies ΔE predicted for the studied silicon allotropes are listed in Table 2 and illustrated 

in Figure 4. The cF8 structure is used as the reference with ΔE = 0.0 kJ mol–1 Si–1. The energy ordering 

of the allotropes obtained at the PBE0/TZVPP level of theory is in line with previous computational 

studies carried out with DFT-GGA and hybrid DFT methods,12-14, 17 even though no previous paper 

includes exactly the same set of allotropes as discussed here. However, the energy ordering of the 

allotropes shows some significant changes when dispersion interactions are taken into account either with 

PBE0-D3 or the LMP2 method. The relative energies of the allotropes with lowest densities clearly 

increase in comparison to the denser allotropes when dispersion interactions are taken into account. For 

example, for the lowest-density allotrope, that is, the cF136 clathrate, ΔE increases from 7.2  kJ mol–1 Si–

1 (PBE0) to 12.6 kJ mol–1 Si–1 (PBE0-D3) or 13.5 kJ mol–1 Si–1 (LMP2). The silicon atoms are bound in 

a similar tetrahedral fashion in all studied allotropes, but in denser structures the next-nearest neighbors 

are closer than in lower-density structures with cavities or channels, resulting in stronger dispersion 

interactions. The correlation between the dispersion interactions is clearly seen in Figure 5, which shows 

the the difference between ΔEPBE0-D3 and ΔEPBE0 plotted as a function of density of the individual silicon 

allotropes (the densest cF8 allotrope has the largest absolute D3 contribution per atom and ΔEPBE0-D3 –

ΔEPBE0 increases for the less dense allotropes). Since the D3 dispersion coefficients by construction 

remain the same for all the crystals under study, the magnitude of the D3 contribution to the energy per 

one Si atom has to grow linearly with increase of the density, which is also evident from Figure 5. Though 

two-body dispersion is a weak attractive force, it is relatively long-ranged: it decays with the inverse sixth 

power of the distance between the interacting fragments. Yet due to the 3D packing, the number of formal 

fragments in a solid, separated by a certain distance R from a given center, grows quadratically with this 

distance. Hence, dispersion interactions have effectively a much larger range and are of greater importance 

in crystals compared to molecular systems. As the presented results demonstrate, the excess in dispersion 

in more compact structures is already sufficient to influence the relative stability between the silicon 

allotropes with different topologies.  
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Table 2. Predicted relative energies of the studied silicon allotropes. The structures are ordered according 

to their relative energy ΔE at the LMP2/TZVPP level. 

  ΔE (kJ mol–1 Si–1)c 

Pearsona Densityb 

(g cm–3) 

PBE0 PBE0-D3 LMP2 

cF8 2.316 0.0 0.0 0 

hP8 2.320 0.3 0.4 1.2 

hP4 2.319 1.0 1.1 1.9 

tP12 2.245 5.7 7.1 7.6 

oP32 2.250 7.6 8.9 8.5 

hP6 2.137 6.9 10.3 10.6 

tP24 2.210 9.4 11.5 10.6 

oC24 2.157 10.3 13.1 12.4 

cF136 2.010 7.2 12.6 13.5 

cI23 2.112 10.1 14.0 13.6 

cP46 2.036 8.5 13.5 14.1 

a Pearson symbol of the silicon allotrope (see Table 1). b Density of the allotrope (PBE0/TZVPP geometry). c Relative energy 

of the allotrope, obtained as ΔE = E(allotrope)/n – E(cF8)/2, where n is the number of atoms in the primitive cell of the allotrope 

(n = 2 for cF8). The PBE0 and PBE0-D3 energies have been obtained for PBE0 and PBE0-D3 optimized structures, 

respectively. The LMP2 energies are for PBE0-optimized structures (see Computational details) 

 

Figure 4. Relative energies of the studied silicon allotropes obtained with PBE0, PBE0-D3, and LMP2 

methods (see Table 2 for details). The PBE0 and PBE0-D3 energies have been obtained for PBE0 and 

PBE0-D3 optimized structures, respectively. The LMP2 energies are for PBE0-optimized structures (see 

Computational details). 
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Figure 5.  The difference between ΔEPBE0-D3 and ΔEPBE0 plotted as a function of density for the studied 

silicon allotropes. Note that in this double difference formula, ΔEPBE0-D3 and ΔEPBE0 are by definition zero 

for the densest allotrope Si-cF8 (see caption of Table 2 for the definition of ΔE).  

 

The PBE0-D3 and LMP2 methods yield rather similar relative energies. The D3 correction does not 

capture the influence of the topology on the dispersion coefficients, which depend only on the atomic 

species. The LMP2 treatment of dispersion, on the other hand, is rigorous in this respect. However, since 

both methods provide the same general pattern for the relative stability as a function of the density, the 

influence of the structure on the dispersion coefficients seems not to be substantial (at least for the 

allotropes considered in this study). Nevertheless, the predicted energy ordering does show some 

differences. In particular, the energy ordering changes from ΔE(cF136) < ΔE(oC24) to ΔE(oC24) < 

ΔE(cF136) when comparing PBE0-D3 to LMP2. Both of these allotropes have been synthetized (see 

Table 2), demonstrating that the energy orderings discussed here are relevant for experimentally known 

species. Interestingly, the dense hP8 and hP4 allotropes closely related to the cF8 reference structure 

illustrate one clear difference between the ΔEPBE0-D3 and ΔELMP2 values. For PBE0-D3, ΔE(hP8) = 0.4 kJ 

mol–1 Si–1 and ΔE(hP4) = 1.1 kJ mol–1 Si–1, which are very close to the PBE0 values of 0.3 and 1.0 kJ 
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mol–1 Si–1, respectively. For comparison, the LMP2 values are ΔE(hP8) = 1.2 kJ mol–1 Si–1 and ΔE(hP4) 

= 1.9 kJ mol–1 Si–1, suggesting a much larger importance of dispersion interactions for the relative 

energetics of cF8, hP8, and hP4. The difference of 0.8 kJ mol–1 Si–1 between the PBE0-D3 and LMP2 

values is of similar magnitude as the differences between these methods for the low-density allotropes. 

There is no experimental thermodynamic data available for these silicon allotropes, but a recent study on 

the analogous hP8-Ge allotrope (4H-Ge) offers a point of comparison.71 Using differential scanning 

calorimetry the transition enthalpy hP8-Ge -> cF8-Ge was determined to a value of 1.46 ± 0.55 kJ mol–1 

Ge–1. In the course of the present work we calculated the ΔE value of hP8-Ge at the PBE0-D3/TZVPP 

and LMP2/TZVPP levels of theory. Neglecting zero-point vibrational energy contributions, we obtained 

ΔEPBE0-D3 = 0.6 kJ mol–1 Ge–1 and ΔELMP2 = 0.9 kJ mol–1 Ge–1. Evidently, the LMP2 value is closer to the 

experimental value. This comparison suggests that the larger ΔE(hP8) and ΔE(hP4) values predicted for 

silicon by LMP2 are likely to be reasonable. We note that MP2 often overestimates dispersion 

interactions, this problem being the most severe for highly polarizable systems with small band gap.72  

Finally, we shortly comment on the energy ordering of the individual silicon allotropes obtained with 

various DFT approaches. We have carried out ΔE calculations also using the GGA functionals PBE and 

PBE-D3. The full results are not reported here since they do not really add any benefit beyond the already 

reported PBE0 and PBE0-D3 values, but we note that in general the predicted ΔE values increase as PBE 

< PBE0 < PBE-D3 < PBE0-D3. For example, for the lowest-density allotrope cF136, the predicted values 

increase as 6.1 < 7.2 < 10.8 < 12.6 kJ mol–1 Si–1, the corresponding LMP2 value being 13.5 kJ mol–1 Si–

1. Based on this comparison, it appears that the dispersion interactions can be much more significant for 

the energy ordering of silicon allotropes than the use of a hybrid instead of GGA functional. The data 

displayed in Figure 4 also reveals the influence of the underlying PBE0 energies on the PBE0-D3 results: 

the latter curve has drops for the same structures as the PBE0 one, which are softened but not eliminated 

by the -D-contribution. In the LMP2 case such a bias is clearly absent. 

It should be noted that while the ΔE values discussed here shed light on the relative stability of various 

silicon allotropes, it is not easy to transform the predicted ΔE values into successful guidelines for the 
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experimental realization of novel silicon allotropes. In fact, while the diamond polytype allotropes hP8 

and hP4 show very low relative energies in comparison to cF8, the bulk synthesis of neither allotrope has 

been realized. Instead, the cF136 and oC24 allotropes have been realized experimentally despite their 

rather high relative energy. Thus, when hunting for new silicon allotropes, it has so far proved to be more 

important to discover a suitable precursor material that can be modified to yield a metastable modification 

of silicon. For example, an important synthetic route towards novel silicon allotropes is via binary alkali 

metal phases such as Na4Si24 and NaxSi136, from which the Na atoms can be removed with vacuum 

treatments in a controlled fashion to yield the new allotropes oC24 and cF136. Considering the predicted 

LMP2 and PBE0-D3 relative energies, it appears that even after taking the dispersion interactions into 

account, all hypothetical structures studied here could be experimentally feasible silicon allotropes, if 

suitable precursor materials can be discovered and there is a large enough energy barrier to prevent their 

immediate transformation to the cF8 structure or other more stable allotropes.  

 

Conclusions 

We have investigated how dispersion interactions affect the stability trends of the energetically most 

favorable silicon allotropes. Systematic calculations at the LMP2/TZVPP and PBE0-D3/TZVPP levels of 

theory clearly demonstrate that dispersion interactions in silicon networks can be so strong that the energy 

ordering of the allotropes is changed with respect to DFT calculations not including dispersion 

interactions. Furthermore, inclusion of dispersion interactions can be much more significant for the energy 

ordering of silicon allotropes than the use of hybrid DFT instead of GGA-DFT. The LMP2/TZVPP 

calculations show that two experimentally known silicon allotropes, oC24 and cF136, possess rather high 

relative energies when the dispersion interactions are taken into account. Therefore, it appears that the 

denser and less strained silicon allotropes hP8, hP4, oP32, tP12, hP6, and tP24 should be feasible targets 

for experimental synthesis, provided that suitable precursor materials for them can be found.  
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