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a b s t r a c t

The mobile Internet that was a huge hype ten years ago is finally here. We have a wealth of
mobile devices that allow us to enjoy and consume Internet content from any number of
web sites and services. With faster processors and radio links, our use of the Internet
and the traffic mobile users generate grows at a tremendous pace. In this development,
we still have a huge challenge to tackle: energy efficiency. When ten years ago one would
recharge his personal mobile device once a week, we now do that daily; Smart phones
today are not able to carry enough energy to allow us several days of usage time. The focus
on this paper is to present and analyse one solution to help us in our daily lives. We imple-
ment and study a scheme where web content, a page, is delivered as a whole to a mobile
device, instead of sending each individual object of the page separately. Combined with
RRC state based header compression and selective content compression, our proposal
allows the radio to keep in low power state for longer durations, and as a consequence
brings huge energy savings. Download times also decrease, thus bringing increased Quality
of Experience.

� 2013 The Authors. Published by Elsevier B.V.

1. Introduction

With the advent of almost 6 billion mobile-cellular sub-
scriptions at the end of 2011 [1], the inevitable trend of
post-PC era is already clearly visible. In the last decades,
rarely have technical innovations changed everyday life
as fast and profoundly as the pervasive use of mobile com-
munications. With the advance of wireless communication
technology and the emergence of mobile devices, global
mobile data traffic grew 2.3-fold in 2011, which was eight
times the size of the entire global Internet traffic in 2000,
and is expected to increase 18-fold by 2016 [2]. The ever-

increasing demand for mobile connectivity and wireless
services has lead to increased energy consumption and
short battery life on mobile devices. A major technological
challenge for mobile devices is to store a large amount of
energy in batteries for increasingly complex mobile de-
vices and yet still deliver reasonable size and weight. So
long as batteries continue to be based on electrochemical
processes, limitations of power density and limited life-
time will be difficult to overcome, making it hard to cater
for mobile devices with power-hungry features and adopt
mobile services further [3,4].

The reduction in energy consumption of mobile net-
works is of great importance to continued adoption of mo-
bile Internet services and sustainability of an acceptable
Quality of Experience (QoE) for mobile Internet. This paper
focuses on energy saving on mobile web access, which ac-
counts for 10.11% of Internet web access worldwide in May
2012, a growth of 75.8% over last year [5]. The number is
even higher in Asia and Africa, where PC penetration is
lower on average. Clearly, mobile devices have being rap-
idly evolving as one of the primary choices of accessing
web content. However, mobile web access faces several
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issues regarding energy efficiency. Firstly, the fixed over-
head of transmission of radio interfaces is significant once
they are in active mode [30]. Thus data should be sent in
quick bursts (compared to constant small transfers) to en-
able a longer battery lifetime. Secondly, unlike wired net-
works, wireless networks take open air as the
transmission medium, which is subject to interferences,
fading over the wireless channel and mobility of end de-
vices. As a result, application layer performance in terms
of goodput has been significantly reduced due to increased
delay and rate variability. Least but not last, the power
consumption of transmitting one bit over the air is over
1000 times than that of 32-bit CPU computation [29].
Hypertext Transfer Protocol (HTTP), as a verbose protocol
to carry web traffic, introduces additional bytes into its
communication resulting in additional energy cost.

Therefore, we undertake a detailed exploration of the
effects of power consumption on HTTP traffic, propose
and evaluate a proxy-based architecture for energy-effi-
cient web access. In particular, we make the following
contributions.

� This work studies the characteristics of transmission in
wireless networks, namely Wireless Local Area Network
(WLAN) network, and Universal Mobile Telecommuni-
cations System (UMTS) network in terms of throughput
and energy efficiency performance. The results present
the energy consumption characteristics of browsing
web content over the wireless networks, and also the
potential of improving the power consumption
efficiency.
� An energy-efficient proxy is introduced between mobile

devices and web servers to improve energy efficiency of
web access by optimising the web content delivery
through the content bundling, header compression,
and selective content compression.
� The energy-efficient proxy was implemented on a com-

mercial smartphone and evaluated through experi-
ments in both WLAN and 3G networks with thorough
test cases. We concentrate on the improvement of the
proxy-based solution compared to normal web access
from several aspects, where we look into how data sub-
scription plan, traffic delay, file content and Radio
Resource Control (RRC) inactivity timers affect the
power consumption. The results show significant
energy consumption reduction of web access.

It is worth to mention that the solution provides energy
saving opportunity not only for web browsing. HTML5 is a
trending web technology that is being applied to a range of
industries with a new method of content delivery. The
emerging developments for HTML5 are changing the way
to access content, and also boost the potential of energy sav-
ings by deploying our solution. For example, Pocket [27] as a
mobile application with over 4.5 million users helps people
to save an interesting article or web page that users do not
have time to view it right away but for reading it later on
their mobile devices. Our solution optimises the download-
ing of the content over wireless networks in an energy-effi-
cient way for the type of services, which take HTTP traffic as a
major carrier of interaction between clients and servers.

The remaining sections are organised as follows. We
start with reviewing prior work on the field in Section 2
and provide sufficient background information for further
discussion in Section 3. Then we present the architecture
and design of our system in Section 4. Section 5 evaluates
the performance of the energy-efficient proxy and Section 6
discusses related issues regarding the proxy and summa-
rise in Section 7.

2. Related work

Energy consumption of network transmission on mo-
bile devices has seen a large number of academic papers.
Our work, in particular, focuses on applying a performance
enhancing proxy to improve energy efficiency of web ac-
cess relating to mainly three categories of work: research
on analysing and improving TCP performance over wire-
less links, research on optimising RRC state in UMTS net-
works, and research on enhancing HTTP performance.

A lot of prior work has been conducted to enhance TCP
performance with proxy over wireless links. Some studies
focus on TCP throughput improvement and propose that
TCP connections can be split using as pivot proxies con-
nected to both wireless and wired links. End-to-end con-
nections are partitioned into two portions so that the
impact from the slow and lossy wireless link on the fixed
network can be minimised. I-TCP [6] is the very first work
in the area, M-TCP [7] uses a zero window ACK scheme to
schedule TCP data to provide better preserved end-to-end
transmission. Other similar studies can be found in [8–
11]. As energy issues have presented a significant barrier
to continued adoption of mobile Internet services, many
studies have been carried on using a proxy to improve en-
ergy efficiency over transmission. Cool-Tether [12] was
proposed to minimise energy consumption on mobile de-
vices while they serve as Internet access gateways for
other clients by employing gatherer, striper and a re-
verse-infrastructure mode for WiFi. Network Connectivity
Proxy (NCP) [13] proposes a SOCKS-based proxy to pre-
serve existing TCP connections and UDP data flows for a
mobile device when it goes to sleep so that the device
can enter a low power consumption state and its full net-
work presence is still maintained.

The RRC inactivity timers have also been widely studied
in several previous work. The energy inefficiency of the
timers was analytically studied in [14,15] to determine
the optimal values of the inactivity timers. Then the timer
issues have been studied in [36,37,16] on real-measure-
ment basis. Researchers also proposed solutions to deal
with the issues. In [47], Tail Optimisation Protocol (TOP)
dynamically decides timeouts for the inactivity timers
and utilises fast dormancy to eliminate the tail energy. An-
other solution TailTheft [17] prefetches and delays data
transfer to schedule a number of transmissions to the tail
time (the period of high power state after the completion
of a transmission) of the transmissions.

In comparison, our study utilises the principle of split
TCP to optimise HTTP downloading over wireless links,
and focuses on leveraging RLC buffer threshold to keep
the mobile device in lower power consumption state.
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Existing work has studied how to improve HTTP perfor-
mance. WebExpress [41] was proposed to improve web-
browsing performance over wireless links through caching,
differencing, and header reduction. GPRSWeb [26] imple-
ments CHK-based caching, parse-and-push functions, del-
ta-encoding and utilises its own customised protocol
between a client and a proxy to improve web-browsing
experience over GPRS links. In [18,19], HTTP is modified
to deliver the embedded web objects as a single bundle
to a web browser without being explicitly requested. In
addition, Opera Mini [23] applied transcoding approaches
to reduce the traffic load instead of the power consump-
tion, which requires frequent communications between
the proxy and user clients. Thus, it consumes a lot of
power. In summary, the solutions were designed for fast
page downloading and do not focus on energy-efficiency
of web browsing.

The studies of energy-efficient web browsing have also
been reported in prior work. Power Aware Web Proxy
(PAWP) [20] is an architecture designed to schedule
incoming web traffic into intervals of high and no commu-
nication so that WLAN interfaces can switch to a low
power state after very short idle intervals. Another ap-
proach is reported in [43], which proposes an architecture
called Virtual-Machine based Proxy (VMP) to shift comput-
ing from mobile devices to the proxy in 3G networks. The
proxy transcodes dynamic web objects in order to save en-
ergy of mobile devices. In comparison of the proxy-based
solutions for energy-efficient web browsing, our solution
utilises bundling and header compression to cater to the
energy consumption characteristics of WLAN and 3G net-
works. The selective compression applied is lossless com-
pression, which does not alter original web content and
still provides significant improvement of energy consump-
tion along with other techniques. In addition, the solution
does not require any modification on web browser and
web servers, thus it can be deployed incrementally.

3. Transmission and energy issues over wireless
networks

In the section, we start with TCP performance issues
over wireless networks in Section 2.1. We then discuss en-
ergy consumption issues of mobile devices and demon-
strate power saving mechanism of WLAN and 3G
networks in Section 2.2. Furthermore, their effects on HTTP
traffic are discussed in Section 2.3.

3.1. TCP Issues over wireless networks

TCP performance issues manifest in various aspects as
significant degradation of TCP throughput, under-utilisa-
tion of link capacity, excessive interruption of data trans-
missions, and energy-inefficiency of transmission. There
are several reasons resulting in these problems:

High and variable latency: generally, wireless links suffer
from severe error rates due to external interference, going
out-of-range, or blocking of signal. WLAN networks pro-
vide relatively smaller coverage area and higher system
bandwidth, where the observed transmission and propaga-

tion delay is relatively smaller as well compared to 3G net-
works. 3G networks exhibit spurious delay and additional
jitter not only due to the lower bit rate or wider coverage
range, but also because of packets buffering, interleaving,
rate adaptation and retransmission in Radio Link Control-
ler (RLC) layer, and allocation and de-allocation of network
resources when RRC state transition happens. Based on
more than half million of measurements gathered by Nett-
itutka [35] from nation wide user base, we find that the
average Round-Trip Time (RTT) is around 83.29 ms in
WLAN networks and 150.76 ms in 3G networks (UMTS
and HSPA/HSPA+). Fig. 1 shows the cumulative distribution
function of latencies of sending packets from mobile cli-
ents to our server. 60% of the latencies are below 80 ms
in WLAN and 150 ms in 3G networks. However, over 4%
of the latencies can go beyond 500 ms in both networks.
We also measured the jitter during TCP sessions. There

Fig. 1. CDF of network latencies.

Fig. 2. CDF of network latencies.
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were nearly 30 thousand TCP sessions measured, during
each of which the value of RTT was recorded every
50 ms. During certain TCP sessions, the standard deviations
are surprisingly high as seen in Fig. 2, where the cumula-
tive distribution function of the sorted standard deviations
of network latencies in ascending order is plotted.

Fluctuation of TCP throughput: With the large delay in
wireless links, the connection stays longer in slow start
state leading to longer TCP start process to fully utilise
available link bandwidth. RTT inflation may also lead to
high retransmission timer value, potential SYN timeout,
higher recovery time, and mistaking wireless losses for
congestion, which all impact TCP performance [25,26,28].
Fig. 3 demonstrates how RTT affects TCP goodput in WLAN
and 3G networks based on the measurements collected
from the Nettitutka database. The increase of RTT results
in poor perceived TCP goodput in both networks. The blue
solid line in each figure presents a borderline where 95% of
measurement dots are within it.

3.2. Energy efficiency of transmission

WLAN and 3G radio interfaces of mobile devices present
high association energy cost to the networks. We mea-
sured the consumed power of one Nokia N9 by using Nokia
Energy Profiler Compared to 330 mW operating power of
screen with maximum brightness on the Nokia N9, the
power of WLAN radio interface is around 310 mW when
it stays in active mode without sending/receiving any data,
and the operating power is above 1380 mW when sending/
receiving data at full-speed rates, which is around 12 Mbps
on downlink and 5 Mbps on uplink. The operating power of
3G radio interface in active mode without sending/receiv-
ing is around 1085 mW, and the operating power increases
to 1470 mW when data are transmitted through the
interface.

The two radio technologies present radically different
energy consumption characteristics due to the different
network resource allocation/de-allocation mechanisms.
Specifically, IEEE 802.11 standard defines that the 802.11
WLAN capable devices operate either in Continuously Ac-
tive Mode (CAM) or Power Saving Mode (PSM). Compared

to CAM, the objective of the 802.11 PSM allows the mobile
device to switch from the Active Mode to the Sleep Mode
as soon as data transmission is completed. The mobile de-
vice synchronises with the infrastructure such as Access
Point (AP) by receiving periodical beacon frames every
100 ms or 200 ms. The mobile device suspends its radio
activity after the period of inactivity, and then wakes up
for buffered frames from the access point. If there is no
incoming traffic, the mobile device is able to switch into
low power consumption mode right after the beacon inter-
val. In the upper plot of Fig. 4, the power consumption and
uplink/downlink rates of downloading a 2.5 MB file are
shown. TCP handshaking triggered the N9 into active mode
and the power consumption increased dramatically when
the downloading started. The operating power then went
down due to sleep mode in 200 ms after the end of the
traffic.

Due to the scarceness of radio resources in 3G networks,
RRC state machine is defined in the Third Generation Part-
nership Project (3GPP) [38]. It is more dedicated and com-
plex including IDLE state, Cell Paging Channel (Cell_PCH)
state, Cell Forward Access Channel (Cell_FACH) state and
Cell Dedicated Channel (Cell_DCH) state. Each state pre-
sents different requirements of radio resources and level
of operating power. There is no radio resource allocated
for the mobile device in the IDLE state, even through the
device monitors the broadcast messages from the Radio
Network Controller (RNC). In the Cell_PCH state, the device
monitors the paging control channel, and yet is still not
able to have uplink activity. Packet Data Protocol (PDP)
context is maintained so a session could be reconnected
rapidly. In the Cell_FACH state, the device is assigned a
common or shared transport channel but not a dedicated
channel. Thus, this state is suitable for small or medium
amount of data [36,37]. In the Cell_DCH state, RRC connec-
tion is fully established and the device is assigned dedi-
cated transport channels both downlink and uplink. The
dedicated resources make the channels more suitable for
large traffic volume such as audio/video streaming, file
transfer and Web traffic with large objects. Since the re-
sources associated with these states are different, each
state also presents different operating power. As seen in

Fig. 3. TCP goodput over RTT.
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the lower plot of Fig. 4, the operating power of the Cell_-
FACH state is around 489mW, roughly 50% of that in the
Cell_DCH state, and the Cell_PCH state only consumes
about 1–2% of the operating power of the Cell_DCH state.
After the end of traffic, the 3G link exhibited a residual en-
ergy cost. Compared to the operating power characteristic
of WLAN, inactivity timers are introduced in UMTS as
shown in Fig. 5. Timer T1, T2 and T3 control the durations
of staying at the Cell_DCH, the Cell_FACH and the Cell_PCH
states, respectively. Mobile device is able to switch from
the Cell_DCH state to the Cell_FACH state only after T1
times out, and from the Cell_FACH state to the Cell_PCH
state after T2 times out. When T3 times out, the device falls
back from the Cell_PCH to the IDLE state.

In the RRC state machine, the states promote when
switching from lower power consumption states to higher
power consumption states, and the states demote when

switching happens in the reverse direction. The state pro-
motion is triggered either from the IDLE/Cell_PCH state
to the Cell_FACH state once there is any transmission activ-
ity or from the Cell_FACH state to the Cell_DCH state when
the data volume exceeds the RLC buffer threshold, which is
controlled by network operators [36]. To explore the
threshold value in our measurement environment, we sent
different-sized ping packets from the N9 and measured the
operating power. In Fig. 6, the average power of sending
ping packets including the portion of energy tail, and its
95% confidence interval are shown. The power increases

Fig. 4. Power consumption states in WLAN and 3G networks.

Fig. 5. RRC states transitions.
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significantly from around 400 mW to 700 mW when the
size is over 400 bytes. Because the energy tail is included
in our calculation, these two values of power are smaller
than the operating power of the Cell_FACH and the
Cell_DCH states. More specifically, the threshold value is
reached when IP payload is 470 ± 12 bytes (8 bytes ICMP
header + 462 bytes payload) in the network. Before state
switching is done, signalling traffic is exchanged between
the mobile device and the RNC for resources allocation
and de-allocation [39]. Since the allocation is more costly,
the promotion needs more control messages yielding a
long latency that is around 1 s for the promotion from
the IDLE/Cell_PCH state to the Cell_FACH state, and 0.5 s
for the promotion from the Cell_FACH state to the
Cell_DCH state. The state demotions are triggered by the
inactivity timers, which are also determined by network
operators in the RNC.

3.3. HTTP traffic over wireless networks

In addition to the limitations of wireless communica-
tions in terms of throughput and energy efficiency, the
HTTP protocol also presents inefficiencies:

� As a verbose protocol, HTTP is coded in standard ASCII,
which increases the number of bytes transmitted over
the air.
� Due to the statelessness of HTTP protocol, HTTP relays

on cookies or Etags to keep states consistent between
web browser and server. According to RFC 2109 [40],
the size of one cookie could be up to 4096 bytes and it
is normally around 700–800 bytes per HTTP request
[43].
� Simultaneous persistent connections in HTTP/1.1 [31]

allows the TCP connections to keep open for the follow-
ing requests without opening new connections. HTTP
pipelining offers the ability to pipeline requests for dif-
ferent web objects in a single TCP connection. The tech-
nologies eliminate the overhead from a single client
[26]. However, modern websites are integrated with
the third-party content, such as web analytics tools,
social media plugins and embedded advertisements.
TCP connections have to be set up between the mobile

device and multi-domains. Thus, associated TCP con-
nection overhead, e.g. SYN, ACK packets, is still high,
and TCP three-way handshake delay can be significant
while establishing a TCP due to the high latency of wire-
less links.

Fig. 7 simply depicts the energy consumption perfor-
mance when downloading a web page under different level
of delay. As the delay increases by 200 ms, the energy con-
sumption of loading a webpage increases 60.14% and
33.12% in average in the WLAN and 3G networks
respectively.

4. System architecture and design

Guided by the findings revealed and the causes of poor
energy consumption performance of web access in the
wireless environment in Section 2, we propose an en-
ergy-efficient proxy system to reduce the operating power
of web access. We will first overview the architecture in
Section 3.1. Then the design of the key components and
its rationales are presented in Sections 3.2, 3.3 and 3.4
respectively.

4.1. Overview of components

The overall architecture of the energy-efficient proxy is
shown in Fig. 8. The proxy is introduced between the mo-
bile devices and web servers to split HTTP traffic into two
portions, one of which is normal HTTP traffic between the
proxy and web servers, another operates over our Energy-
Efficient Proxy (EEP) protocol to save energy consumed for
web content delivery through a number of enhancements.
The solution is designed to be generic and transparent be-
tween the mobile devices and web servers, and also inde-
pendent of web browsers. Thus, as part of installation, the
web browser only needs to configure its HTTP proxy set-
ting to route all HTTP requests to the device’ s localhost ad-
dress, where the client side software is listening. Once any
request is received, it is forwarded to the proxy in compact
format. The system is designed and implemented to im-
prove energy-efficient performance from the following
aspects.

Fig. 7. CDF of energy consumption for downloading a webpage.
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� On one hand, we offload entire interactive web fetching
from the mobile device to the web proxy. On the other
hand, we allow the mobile device to enter low power
consumption state till the proxy sends the bundled
objects back instead of keeping the radio on until down-
loading is finished. The solution simplifies the HTTP
message exchange procedure between the mobile
device and the web servers. Once our running software
on the mobile device receives HTTP requests, it encap-
sulates the requests into EEP packets and forwards
them to the proxy. The proxy fetches all the web con-
tent and sends all of the web objects in one bundle to
the mobile device on behalf of the web browser. Instead
of using HTTP, the EEP protocol is applied between the
mobile device and the energy-efficient proxy. Further-
more, we offload DNS resolution to the proxy in the
wired network leading to faster lookup.
� HTTP headers are compressed not only to fasten trans-

mission rate but also to keep mobile devices in lower
power consumption state even when initial HTTP
request is sent through 3G networks. Compared to
WLAN, UMTS maintains an RRC state machine to man-
age radio resources for each mobile device. There are
three states, each of which allocates different amounts
of radio resources, and presents different level of oper-
ating power. Promotion from low power consumption
state to high power consumption state is decided by
the amount of data sent from mobile device to base sta-
tion. Keeping the size of HTTP request under the promo-
tion threshold is able to maintain the device in relative
lower operating power even during the requesting
procedure.
� Carefully selecting compression on HTTP payload can

provide further energy saving when fulfilling certain
conditions, which include considerations of link quality,
computation load, file type and compression algorithms
[32,33]. The proxy compresses the web objects selec-
tively based on the compression ratio of compressing
the objects and operating power of mobile devices
required for decompressing during the web fetching.

� The solution firstly utilises a single TCP connection to
effectively retrieve multiple web objects instead of mul-
tiple TCP connections. Secondly, the TCP connection is
split into wireless and wired portions. The improve-
ment of transmission results in lower connection over-
head, better utilisation of the wireless network
bandwidth, and higher robustness against link vari-
ances and agnostic to network heterogeneity.

Embodying the above motivated design principles, we
designed and implemented the energy-efficient proxy.
The whole system is mainly split into two parts, namely
Local Proxy residing in the UE and acting as a web proxy
for the browser to communicate with the outside, and Re-
mote Proxy acting as a proxy between the UE and web serv-
ers as shown in Fig. 9, where the detailed protocol stack is
illustrated. EEP protocol enables the local-remote commu-
nication, where compression algorithms and levels can be
specified, the knowledge of transmission medium (3G or
WLAN) can be shared, and the payload data can be inter-
preted by both sides (detailed in Section 4.3).

As seen in Fig. 10, once a new HTTP request is generated
by the browser, it is then forwarded to the Local Proxy,
where the URL of each HTTP is hashed as a 128-bit index
using SHA-1. The hashed indexes are stored in the Local
Proxy to map to the corresponding EEP reply, which con-
sists of EEP header, the URL hash and compressed HTTP re-
sponse. The Local Proxy compresses the request before
capsulating it as EEP payload and sending it over the air.

After being received by the Remote Proxy, the EEP re-
quests are examined and different actions are taken
depending on the request types. If the type is for web ob-
jects, the requests are then forwarded to a dedicated web
engine after decompression. A webpage normally contains
a number of web objects not only the HTML page. These
eventually generate more than one HTTP request after
parsing the HTML document. The web engine is able to
build Document Object Model (DOM) tree based on the
HTML document, and evaluate JavaScripts, which may gen-
erate new requests for web objects. Therefore, all the web

Fig. 8. Architecture of energy-efficient proxy.
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objects associated with the request can be fetched from
web servers. When the HTTP response is received, the Re-
mote Proxy compresses the response’s header, and the
payload selectively (detailed in Section 4.4). Since HTTP
is stateless, HTTP cookies and some other header fields
are used to maintain certain consistency between the
web browser and web servers. Thus, the HTTP response
headers are also kept in EEP replies. After all the web ob-
jects are downloaded, the Remote Proxy sends them back
in sequence as a single bundle to the Local Proxy. Once
the Local Proxy receives the EEP reply, it unbundles and
decompresses the reply so that the original HTTP re-
sponses including headers and payloads are reconstructed.
There might be the case that HTTP responses requested by
the web browser are missing from the reply due to the dif-
ferences between the web browser in the UE and web en-
gine in the Remote Proxy, or the requests generated by
web engine related JavaScript codes. The web browser

can request for the missing content until the whole web-
page is loaded.

4.2. Bundling

As discussed, persistent and pipelining HTTP still suffers
from the issue when web objects are kept in multi-do-
mains. By having bundling mechanism, both DNS resolving
and HTTP fetching can be entirely offloaded from the mo-
bile device to the Remote Proxy. Besides, bundling splits
the TCP connections between the mobile device and web
servers to optimise TCP behaviour over congested wireless
links. The main benefit from the bundling mechanism is
not only to keep the link utilised during the transmission
and reduce overhead of maintaining multiple TCP connec-
tions, but also to keep the mobile device in lower power
consumption state during the period of web object fetch-
ing and bundling in the Remote Proxy. In Figs. 11 and 12,

Fig. 9. Protocol stack.

Fig. 10. Flow chart of message exchange between the web browser, local proxy, remote proxy and web server.
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the operating power of fetching a webpage with size of
678 KB using bundling and unbundling mechanisms in
WLAN and 3G is depicted. As shown, the download time
reduces from 15 s to 9.5 s in WLAN network, and from
20 s to 17 s in 3G networks. After TCP connection setup
and the EEP request is sent, the operating power of fetch-
ing with bundling in WLAN drops immediately and keeps
in lower power consumption state until the bundled reply
is back. The total energy consumption reduces from 6.15
Joules to 2.69 Joules. In the case of fetching in 3G network,
the difference is that the operating power declines only to
the operating power of Cell_FACH state not Cell_PCH state,
since the value of T2 timer was shorter than the time of

spending on bundling. Furthermore, the energy consump-
tion is able to drop from 17.84 Joules to 14.36 Joules.

It is worth mentioning the fast dormancy here, which
was introduced to 3GPP Release 8 [45,46] to offer the pos-
sibility for the UE to control the state changes actively
rather than only being controlled by RNC. A Signalling Con-
nection Release Indication (SCRI) message is explicitly sent
to the network to indicate the desire of state demotion.
With the fast dormancy, it is possible for the UE to enter
Cell_FACH or Cell_PCH immediately after the EEP request
is sent. This provides the potential to increase the energy
savings offered by the EEP proxy. However, the feasibility
of applying the fast dormancy for web traffic requires the

Fig. 11. The operating power of fetching a webpage with/without bundling in WLAN network.

Fig. 12. The operating power of fetching a webpage with/without bundling in 3G network (1 Mbps).
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knowledge of the aggregated traffic of all applications to
predict a long enough period for the changing to dormant
mode. The accuracy of prediction is also often compro-
mised since applications act independently and users in-
puts introduce randomness. Some research has being
carried on studying the problems [47,48].

4.3. Header compression

HTTP header compression was already proposed in few
studies [26,43] and their main purpose of reducing the size
of header is to improve the serialisation latency to send re-
quests, especially in low bandwidth networks, and also re-
duce the size of replies. Based on the measurements we did
against Alexa top 100 websites [43], the average size of all
the HTTP requests for the HTML documents during first
view (meaning visiting the website for the first time) is
395 bytes, and the average size during repeat view (mean-
ing a returning visit) is 602.17 bytes. The differences be-
tween the two views are that some web objects may
have been already cached in browser, and HTTP requests
normally have cookies associated. After the header com-
pression and EEP header added, the average size of EEP re-
quests without cookies included is 296.84 bytes, and that
of EEP requests with cookies included is 432.09 bytes.
Compared with non-compressed headers, the average size
of EEP headers in the both cases are reduced 28.2% and
24.9% respectively. In Fig. 13, the cumulative distributions
of the size of the four types of headers are illustrated.

The most important reason of integrating HTTP header
compression in the system is that compressing the re-
quests offers possibility of keeping the mobile device in
an even lower power consumption state after sending the
new requests. As seen in Fig. 14, a normal HTTP request
to ‘‘www.wikipedia.org’’ sent from the N9, and its operat-
ing power went up to Cell_DCH state and then took
24.01 s to switch back to initial power consumption state.
When the request was sent as an EEP request, the N9 only

switched to Cell_FACH state and was able to enter
Cell_PCH state in 13.57 s. The size of the HTTP request
including its cookie is 451 bytes and it reduces to 337 by-
tes as a EEP request. The mobile device was kept in Cell_-
FACH instead of Cell_DCH due to the size reduction,
which grants the device the chance of staying in a relative
lower power consumption state during the period between
sending the request and starting to receive the bundled
reply.

The triggering to different RRC states is decided by
whether the size of requests reaches the buffer threshold.
As it is size-depended, we show how much energy could
be saved if header compression is applied over requesting
Alexa top 100 websites [44] in Fig. 15. In average, the en-
ergy consumption of the requests without cookies in-
cluded reduces 4.7%, and that of the requests with
cookies included reduces 26.7%.
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4.4. Selective compression

Nowadays, the size of screen for mobile devices tends to
be increasingly bigger, given that the usage penetration of
the mobile devices with bigger screen is higher than nor-
mal ones in consuming the Internet content and services
[24]. Besides, the market share of tablet is expected to
reach a new high of 190 million shipment units with
year-on-year growth of 48.7%, and will surpass desktop
PCs in 2013 [21]. Based on these two facts, it might not
be necessary to wrap text and decrease image resolution
in original web content. Unlike.mobi [22] and Opera mini
[23], our solution applies loss-less compression to reduce
the number of bit transmitted over the air, and keep con-
tent unchanged when it reaches mobile users.

According to our previous study [32], there is a trade-off
between computation and transmission over wireless links
when using compression to save energy on mobile devices.
Compression squeezes the amount of bytes transmitted
over the air to reduce transfer size and improve response
time, but increase the energy consumption spending over
compression/decompression. Thus, compression-enabled
communication should take the type of transmitted data,
bandwidth of wireless link and energy consumption of
compression/decompression into consideration. The
scheme to achieve the energy-efficient communications
is called selective compression. The compression condition
is determined by two ratios. One is Rthreshold defined as the
ratio of the energy consumption of receiving one bit to the
energy consumption of decompressing one bit. The other is
R, which is defined as the ratio of the number of bits of
compressed data to that of deducted data (the delta be-
tween compressed and uncompressed data). The deriva-
tion can be found in our previous study [42]. The ratio
Rthreshold is approximately constant and can be obtained
from measurements on given specific mobile device.
Therefore, selective compression examines every received
object. If R over this object is less than Rthreshold, compres-
sion is applied. Compared to selective compression, HTTP
compression uses public domain compression algorithms
to encode text-based files such as HTML, XML, JavaScript
and CSS files, and other file formats like ICO and SVG files.
Since transmitting one bit over the air is energy-costly, the
selective compression is able to improve the energy saving
further by carefully checking the web object.

5. System evaluation

To evaluate the system, the downloading time of tested
webpages, and the energy consumption of fetching the
webpages are used as metrics. In this section, we first

introduce the experimental setup and measured perfor-
mance metrics in Section 5.1, and then the implementation
is briefly discussed in Section 5.2. Experimental results are
given in Section 5.3.

5.1. Experimental workload, testbed and measured
performance metrics

Table 1 shows the characteristics of our selected work-
load. The solution tends to keep the original content as
mush as possible, thus the selected webpages are not their
mobile versions. There are 4 webpages1 chosen, namely
‘‘ETSI reference web page ‘‘Copernicus’’ [34]’’, and the front
pages of ‘‘www.ebay.com’’, ‘‘www.youtube.com’’ and
‘‘www.tumblr.com’’ presenting ‘‘Small’’, ‘‘Medium’’, ‘‘Large
with more web objects’’ and ‘‘Large with less web objects’’
respectively. All the webpages were kept as original

We set up our experimental testbed as shown in Fig. 16.
The Nokia N9 was used as a mobile client, in which we in-
stalled the Local Proxy code, a customised web browser
based on QWebkit enabling automative measurements,
and the Nokia Energy Profiler to record the operating
power and downlink/uplink speed. A DLink DIR-815 wire-
less router was used for WLAN measurements. The router
offers maximum 54 Mbps downlink throughput theoreti-
cally and the N9 can achieve around 13 Mbps downlink
speed and 5 Mbps uplink speed in practice. The Elisa Fin-
land commercial 3G network was used for initial measure-
ments and a Nokia Siemens Networks Flexi Multiradio BTS
with 3GPP Release 6 specifications was used for evaluating
the system, with which we were able to control the net-
work parameters such as subscription rates and the values
of inactivity timers. The Remote Proxy was installed on a
Linux machine with the specification of 2.4 GHz Intel Core
i3 CPU and 3.2 GB memory.

In the same machine, two virtual machines were cre-
ated as middle boxes with netem installed to create delay
and packet losses between the N9 and the proxy, and be-
tween the proxy and a web server, where tested webpages
were servered by an HTTP compression enabled Apache
HTTP server Considering the real scenarios in WLAN net-
works, wireless APs are located close to users’ mobile de-
vices but the devices suffer from the delay and packet
loss over the links between the APs and web servers, which
are sometimes located far away from each other. Thus, we
introduced 150 ms delay in the netem box B during the
measurements for the WLAN network, except the mea-
surements of evaluating the performance over RTTs, where
the delay varied. As analysed in Section 2.1, the spurious

1 Captured on April 12, 2012.

Table 1
Measured webpages.

Wegpage Type Size # of CSS # of JavaScripts # of images Total # of web objects

Copernicus Small 254 KB 1 0 38 41
Ebay Medium 678 KB 3 3 37 45
Youtube Large 1 1.43 MB 2 3 84 92
Tumblr Large 2 1.2 MB 3 5 18 27
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delay in 3G networks is mainly due to allocation/de-alloca-
tion of network resources, buffering and bandwidth shar-
ing among users. Since the testbed we had for evaluation
in the 3G network did not have traffic load and the end-
to-end delay was around 60 ms, we applied 350 ms delay
in the netem box A during the measurements for the 3G
network, except when the performance over RTTs was
evaluated. It is prevalent to delegate static web content
to Content Delivery Networks (CDNs) to get the content
rapidly and reliably delivered to end-users. Therefore,
there was only 15 ms delay introduced in netem box B.

We evaluate the performance of our solution mainly
from perspectives of network quality, web content, proxy
functionalities and models of mobile devices to explore
how these metrics affect QoE of mobile Web access in
terms of downloading time and consumed energy. The de-
tailed metrics of measured performance are listed in
Table 2.

5.2. Implementation

The system was implemented over Qt SDK version 4.8,
which is a cross-platform application and UI framework.
Qt APIs speed up the development of networking related
functionalities and also provide QWebkit library giving
the ability to parse web content easily. Since Qt provides
high reusability of one code base for multiple platforms,
the Local Proxy on the Nokia N9 and Remote Proxy on a Li-
nux machine share part of the source code for the EEP pro-
tocol stack, the functionalities of compression/
decompression and HTTP connection. We also used Qt
Quick, a CSS/JavaScript-like programming language for ra-
pid UI creation, to implement a mobile application to dem-
onstrate the system in term of downloading time and
energy saving.

5.3. Results

In this section, we try to answer the following ques-
tions: (1) How much can the proxy improve web access?
(2) How much energy the proxy can save? (3) How web
content, network delay and link speed affect the results?
(4) How the inactivity timers affect the results in 3G
network?

5.3.1. Network quality
This section presents the results of comparing the per-

formance of downloading the medium-sized test webpage
over different RTTs using the normal web browsing or
using the proxy with bundling and selective compression
enabled. Figs. 17 and 18 show the download time and en-
ergy consumption comparison in the WLAN and 3G net-
works respectively. The average values are presented in
bar charts and their 95% confidence intervals are also given
to indicate the reliability of the measurements. In order to
emphasise the improvements, the saving in percentage for
both cases are marked next to the curly brackets.

We evaluated the proxy under four different network
latencies, namely 60 ms, 160 ms, 410 ms and 610 ms,
which were introduced to netem box B for WLAN and ne-
tem box A for 3G. As seen in the figures in general, the sav-
ings increase as the delay grows in both the networks.
With the normal web browsing, the download time and
energy consumption increase dramatically as expected.
The time and energy consumption increase 178% and 90%
in the WLAN network, and 116% and 109% in the 3G net-
work respectively when the delay increases from 60 ms
to 610 ms. Compared to the performance of using the nor-
mal browser, the solution of using the proxy is resistant to
the network delay resulting in only 17% more spent time
and 43% extra energy consumption in the WLAN network.
Even through the download time increases considerably
when the delay rises in the case of using the proxy, the
growth of energy consumption is contained in a small scale
since the header compression and bundling give the mo-
bile device the chance to remain in lower power consump-
tion state.

Since the link speed in WLAN is typically not limited in
APs in normal scenarios, we mainly focus on how link
speed affects the performance of the proxy in the UMTS
network as demonstrated in Fig. 19, where the proxy was
evaluated under two different subscription plans. As indi-
cated, the solution of using the proxy gains more benefit
over slow or congested wireless links. As the link speed in-

Fig. 16. Measurement setup.

Table 2
Measured performance metrics.

Network Quality/parameter Proxy functionalities

Metrics
RTT (ms) Bundle
Throughput (Mb/s) Compression
Packet Loss (%) Caching
Inactivity timer (s)

Web content Device models
Size of page (B) Hardware
# Of web objects Operating system
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creases fivefold in the new subscription plan, the time and
energy spent on downloading the bundle decrease result-
ing in less saving correspondingly. We also evaluated
how packet loss rate affect the performance of download-
ing a webpage in Fig. 20. As the packet loss rate grows from
0% to 2.0%, the time saving of using the proxy increases
from 9.12% to nearly 50%. Given the measurement case,
the energy can be saved over 58.26% when there is no
packet loss, and increases to nearly 70.56% when the pack-
et loss rate grows over 1.5%.

5.3.2. Inactivity timers
In order to improve battery life, the mobile device that

has been in the higher power consumption states for a per-
iod of time without sending or receiving any data can be

moved to the lower power consumption states. The period
of time is decided by the inactivity timers, which are con-
figurable in the RNC. We examined three different combi-
nations of T1 and T2 values as shown in Fig. 23. Since the
timers do not affect download throughput and the behav-
iour of the process, download time basically keeps con-
stant when using the proxy thought all the value
combinations. The energy savings are slightly decreased
as the values of timers are increased. As observed in the
measurements, the time spent on fetching and bundling
is approximately 3.5 s. Considering the values of the tim-
ers, the N9 was able to enter the lower power consumption
after sending a request when T1 is less than 3.5 s in this
particular test case. Thus, when T1 is 2 s and T2 is 1 s,
the N9 can entirely enter Cell_PCH state but reside there
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for only half second. This explains why the differences of
energy savings are minimal. This type of measurements
was done when there was 15 ms delay introduced in ne-
tem box B, which is the scenario that the web content is lo-
cated in CDNs. However, there are still a large fraction
websites running without supporting of CDNs. Then the
delivery time of web content from these websites to the
proxy could be longer and offer the N9 longer residency
in the lower power consumption states.

5.3.3. Web objects
Figs. 21 and 22 present the effect of the content of web-

pages over the performance in the WLAN and 3G networks
respectively. The number of bytes of the webpages decides
the download time and energy consumption directly as
comparing small-sized, medium-sized and large-sized
webpages. Since the most of objects in small-sized page
are images, the savings over this page is limited but the

proxy still can achieve 31.82% energy saving in the WLAN
network and 28.56% energy savings in the 3G network. It
is worth mentioning the comparison between Large 1
and Large 2 webpages. Both of the webpages are similar-
sized, but the first one outnumbers the second one in
terms of the number of web objects. The web browser in-
stalled in the N9 was built based QWebkit, which limits
the number of requests executed in parallel to 6 for one
host/port combination, and no HTTP pipelining enabled.
Thus the browser has to request the web objects more
times over each connection resulting in longer download-
ing. As seen in the figures, the download time of the Large
1 webpage is 33% and 30% more than that of Large 2 web-
page in WLAN and 3G networks. The correspondent energy
consumption is 52% and 51% more, respectively. Using the
proxy, we are able to reduce the energy consumption of
loading the Large 1 webpage down to 62.38% and 65.37%
in each network.
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5.3.4. Features
Figs. 24 and 25 show the performance over the func-

tionalities provided by the EEP proxy. As seen in the fig-
ures, the medium-sized webpage was taken as an
example to demonstrate the impacts from each scheme.
As more energy saving schemes are applied to the proxy,
the savings incrementally increase in general. As indicated
in Section 4.3.1, the time saving becomes significant only
when the network delay is over 400 ms in the 3G network.
Compared to the WLAN network, the energy saving in the
3G network is also less significant when using bundling.
Since the energy saving mechanisms in WLAN and 3G net-
works behave differently, the percentages of the savings
brought by bundling are different as well. In the 3G net-
work, the time spent on fetching and bundling of the web-
page by proxy is relatively too short to let the inactivity

timers expire resulting in that the N9 does not have the
chance to enter Cell_PCH state or stay there longer enough
after the proxy receives the request for the webpage. The
selective compression is more meaningful when the web-
page is transmitted over high-delayed and congested wire-
less link, e.g. the 3G network with 350 ms delay and 1Mbps
subscription rate. As to the caching, the benefit it brings is
trivial since the cache mechanism provided by Qt always
asks the web server to send the web object only if it has
changed, when the proxy has the web object in its local
cache. HTTP requests with a header field ‘‘If-Modified-
Since’’ are sent for every cached web object. If the server
tells the proxy that the web object has not changed since
last fetching time, in this case, the server sends HTTP
‘‘304 Not Modified’’ reply containing only HTTP header
without payload. Even though it reduces the amount of
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Fig. 21. Download time and energy consumption of Medium-sized webpage over different webpages in WLAN. There is 0% packet loss rate introduced by
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transmitted data by not sending the web object in HTTP re-
ply, it always involves a roundtrip delay between the ser-
ver and proxy, which compromises the improvement
offered by the cache.

5.3.5. Hardware and OS
To evaluate the effect of different hardware and operat-

ing system, a more recent popular smart phone, the Sam-
sung Galaxy SIII LTE, was compared to the Nokia N9. The
specifications of the two devices are listed in Table 3. Since
the original code of our Local Proxy was written in Qt and
C++, we ported the code to the Android platform via Nec-
essitas [52], which adds a dynamic library and a Java appli-
cation wrapper to the original code. To our knowledge,
there is no suitable software to provide accurate power
measurement results on the Android platform, similar to
what we can obtain from the Nokia Energy Profiler on

Meego platform. Thus, we used a power meter MAHEG
HM8115-2 with a power socket HZ815 to measure the
operating power of the Galaxy SIII. With the power socket,
the power measurement of tested devices can be done
with micro USB power cable connected to the phone on
one side and plugged into the HZ815 on the other side.
The comparison used the ETSI reference web page ‘‘Coper-
nicus’’ in real WLAN and 3G networks.

As can be seen in Fig. 26, the performance of the Galaxy
SIII is slightly better than that of the N9, which is under-
standable, given that Galaxy SIII was released nearly one
year later. More powerful CPU/GPU leads to faster execu-
tion of JavaScript and page rendering. Moreover, a more re-
cent radio chipset can potentially result in less operating
power and faster download. In general, the EEP solution
provides significant download time and energy savings
on both modern mobile devices.

Fig. 23. Download time and energy consumption of Large 1 webpage over inactivity timers in 3G. There is 0% packet loss rate introduced by the netem
boxes, 350 ms delay introduced in netem box A and 15 ms delay introduced in netem box B. The subscription rate is 1 Mbps.
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6. Discussion

In this section, we present the other observed perfor-
mance results, and discuss further optimisations and possi-
ble improvements for the system.

6.1. CPU and memory

Compared to the normal web browsing, extra re-
sources of the mobile device have to be assigned to the
tasks of unbundling and decompression when using the
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Fig. 25. Download time and energy consumption of Medium-sized webpage over different features in 3G. There is 0% packet loss rate introduced by the
netem boxes, 350 ms delay introduced in netem box A and 15 ms delay introduced in netem box B. The subscription rate is 1 Mbps, and the timers are 3 s
and 2 s for T1 and T2.

Table 3
Comparison between Nokia N9 and Galaxy SIII.

Model OS Processor Memory Display Released date

N9 MeeGo R1.2 1G Cortex-A8 1 GB AMOLED 3.900 29.09.2011
Galaxy SIII Android 4.0.4 1.4G Cortex-A9 1 GB AMOLED Plus 4.800 29.05.2012
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proxy. As observed, the CPU usage of the normal web
browsing is about 15.74% when fetching the medium-
sized webpage. In case of having bundling and compres-
sion enabled, the CPU usage increases to 19.17%. The
memory usage only increases 2.22 MB when the proxy
is in use, respectively. The CPU and memory usages vary
across different webpages. The CPU usage increases
among the four webpages are 21.56%, 7.21%, 17.91%
and 9.15% respectively. Moreover, there is no substantial
difference in memory usage, the range of which is within
2.8%.

6.2. Network traffic

The uplink and downlink network traffic through the
mobile device were examined. To determine how much
traffic can be reduced, we recorded the number of bytes
that went through the 3G interface. The pool of tested
webpages was selected from Alexa top 100 global sites
and the webpages were determined by pareto distribution
based on their ranks. There were 1000 requests for the cho-
sen webpages sent for each case. The EEP approach is ex-
tremely efficient and causes 62.7% reduction in terms of
the number of bytes sent out from the mobile device, since
only one EEP request and TCP acks for downloading EEP re-
plies are needed. For the downlink traffic, the amount re-
duce 6% due to the compression. Overall, there is 11%
traffic reduction for total number of bytes transmitted over
the air. The traffic reduction relieves the network burden
and especially alleviates the possibility of peak traffic dur-
ing rush hour. Moreover, considering the current cost of
international roaming charges ranges are from $4.08 in
Greece to $24.06 in Canada per megabyte of data, and
the average price of OECD is $9.27 in 2011 [49], the proxy
is also helpful to reduce the expense of users spent on web
service when being abroad.

One more thing worth discussing is the statistical
properties of web traffic, especially Self-Similarity (SS)
and Long-range Dependence (LRD), which are largely
verified properties of Internet traffic, severely affecting
network queuing performance. SS is the property show-
ing an object’s appearance is unchanged regardless of
the scale of time. When this property is observed at a
wide range of time scales, it can exhibit LRD, meaning
values of any instant are positively correlated with val-
ues at all future instants. Since the bundling transfers
traffic pattern into FTP-alike traffic, which shows a hea-
vy-tailed distribution, the traffic would still maintain
self-similar. But the aggregated file transfer can affect
the degree of exhibited characteristics of self-similarity
[50]. Moreover, the proxy would also change web traffic
models, like ON/OFF model, where self-similar traffic
can be built by multiplexing a large number of ON/
OFF sources that have ON and OFF period. Bundling
would change ON times corresponding to the transmis-
sion duration of individual web objects, since all the
web objects arrive at the same time. However, if a
HTTP request matches a bundle, the traffic can still be
modelled with ON/OFF model with different ON and
OFF periods.

6.3. Cookies

One of the reasons to design the system in such way is
to keep all necessary information (cookies, ETag, etc.)
embedded in HTTP headers delivered from web server to
mobile client. The cookies are commonly used as the most
important way to keep consistency of web services for
remembering browsing histories and user login states.
However, the way how the mobile device works with the
proxy breaks the consistency of the cookies. After the EEP
request is received by the proxy, the mobile device is not
able to associate its cookies to the HTTP requests, which
are sent from the proxy to the web server. Hence, the proxy
needs maintaining databases to make sure that correct
cookies for each particular web browser are associated
with the HTTP requests. When the proxy receives HTTP re-
sponses from the web server, it records all the cookies into
the database associated with the browser it sent the HTTP
request on the mobile device. When the proxy receives the
EEP request, it appends the cookies to each HTTP request
sent to the web browser. The databases are created per
web browser basis, and which browser an EEP request is
sent from can be identified by a hash index, which is the
value of a string consisting a Local Proxy ID and browser’s
name. Since only hashed values are stored in the proxy, the
user information is kept anonymously. The Local Proxy
also creates a database to ensure the reliability of the con-
sistency. The database is always consistent with the data-
base in the Remote Proxy, since it inherits same design
principle. The Local Proxy crosschecks its own cookie data-
base with the web browser’s cookie database. If there is
any mismatching, two HTTP header fields defined as
‘‘CookieToAdd’’ and ‘‘CookieToDel’’ are used to notice the
Remote Proxy which cookies should be added to the data-
base and which cookies should be removed.

6.4. Deployment and scalability

In this paper, the EEP is deployed on a stand-alone
proxy to provide energy-efficient and fast web content
delivery for end devices. The proxy can be a service offered
by an independent third party, or, for example, a telecom
operator’s serving gateway could integrate the technology
to provide the service for their customers. It can also be a
solution for customer premises equipment or femtocells
to serve home or corporate users. A further deployment
scenario would be to integrate our technology directly into
the content server; this way the energy efficient delivery of
content can be offered by the content provider without a
third party in the middle.

In order to provide an overview of the scalability of the
solution, we performed a stress test of the EEP. The server
machine where the EEP was installed, was equipped with
Intel Xeon E5520 4-core, 2.27 GHz CPU, 3 GB memory
and 320 GB SATA-II hard disk. We recorded CPU and mem-
ory usage of the server while concurrent requests were
coming to the proxy. The test clients were initialising mul-
tiple connections to fetch the test page ‘‘Copernicus’’
through the proxy. When there were 500 connections
and the concurrency of connections was 50, the consumed
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memory was around 10 MB and CPU usage was around
12–15%.

When integrating the solution, device or service owners
need to take the additional power consumption into ac-
count. The power supply for the server is 200 W. However,
we need to point out that the operating power highly de-
pends on the use case and the underlying hardware. For
example, a home router can serve less users that the server
above, and the operating power of such device could be
within 10–20 W. The operating power also varies dramat-
ically depending on the architecture of hardware platform.
For example, in the study of benchmarking two web server
architectures [51], a EnergyCore server was compared with
an Intel Core server. At full CPU utilisation, the EnergyCore
server consumed only around 5 W and the Intel Xeon plat-
form consumed over 100 W, while the difference in perfor-
mance was only around 20%.

7. Conclusion

Our work has shown that delivery of web content is not
optimal for mobile devices. To enable the system and radio
interface to save power, we have to transmit data in quick
bursts instead of a continuous bursty low bit rate stream.
Since we use Internet services more and more from bat-
tery-powered devices, the bundling concept we have pre-
sented could have a huge impact in people’s lives. In the
paper, we also analyzed and discussed how radio links
and RRC inactivity timers affect energy consumption and
content delivery time, demonstrating that significant sav-
ings can still be achieved on careful adaption to the radio
links and their power saving features and timers.

Our concepts could be well implemented directly into
web servers in the future and the client side would be part
of web browsers. Current implementation works with
most web pages and services on the Internet. In order to
cater to emerging web technologies and services, more
work is required to make them work properly in our sys-
tem. In the future, we will put more focus on qualitative
analysis of battery lifetime improvements. Furthermore,
with the increasing LTE coverage, we need to investigate
how this new mobile technology affects the energy-sav-
ings potential of our concepts.
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