Alexandrou, Anna Maria; Saarinen, Timo; Mäkelä, Sasu; Kujala, Jan; Salmelin, Riitta

The right hemisphere is highlighted in connected natural speech production and perception

Published in:
NeuroImage

DOI:
10.1016/j.neuroimage.2017.03.006

Published: 15/05/2017

Document Version
Publisher's PDF, also known as Version of record

Published under the following license:
CC BY-NC-ND

Please cite the original version:
The right hemisphere is highlighted in connected natural speech production and perception

Anna Maria Alexandroua,b, Timo Saarinena,h, Sasu Mäkeläa, Jan Kujalaa, Riitta Salmelina,b

a Department of Neuroscience and Biomedical Engineering, Aalto University, P.O. Box 12200, FI-00076 AALTO, Espoo, Finland
b Aalto NeuroImaging, Aalto University, Espoo, Finland

\section*{A R T I C L E I N F O}

Keywords:
Natural speech
Speech production
Speech perception
Right temporo-parietal junction
Magnetoencephalography
Functional neuroimaging

\section*{A B S T R A C T}

Current understanding of the cortical mechanisms of speech perception and production stems mostly from studies that focus on single words or sentences. However, it has been suggested that processing of real-life connected speech may rely on additional cortical mechanisms. In the present study, we examined the neural substrates of natural speech production and perception with magnetoencephalography by modulating three central features related to speech: amount of linguistic content, speaking rate and social relevance. The amount of linguistic content was modulated by contrasting natural speech production and perception to speech-like non-linguistic tasks. Meaningful speech was produced and perceived at three speaking rates: normal, slow and fast. Social relevance was probed by having participants attend to speech produced by themselves and an unknown person. These speech-related features were each associated with distinct spatiospectral modulation patterns that involved cortical regions in both hemispheres. Natural speech processing markedly engaged the right hemisphere in addition to the left. In particular, the right temporo-parietal junction, previously linked to attentional processes and social cognition, was highlighted in the task modulations. The present findings suggest that its functional role extends to active generation and perception of meaningful, socially relevant speech.

\section*{Introduction}

The current view of cortical speech processing, obtained both through evidence from patients (e.g. Dronkers et al., 2004; Mirman et al., 2015) and healthy individuals (for a review, see e.g. Indefrey and Levelt, 2004) and reflected in neurocognitive models (Hickok and Poeppel, 2007; Hickok, 2012), is primarily based on studies of the production or perception of single words or sentences. However, recent reports suggest that real-life speech production and perception may rely on additional cortical substrates (Hultén et al., 2014; Koskinen et al., 2013; Silbert et al., 2014). For instance, hemodynamic evidence suggests that linguistic aspects of continuous speech production are not predominantly processed in the left hemisphere, which traditionally has been associated with linguistic processing (e.g. Binder et al., 2009; Blank et al., 2002), but instead engage cortical areas bilaterally (Silbert et al., 2014).

These differences in cortical processing appear as a logical consequence of the inherent qualities of natural connected speech which, unlike decontextualized linguistic stimuli, is a continuous stream of meaningful utterances that features a salient temporal structure, also referred to as rhythm (Alexandrou et al., 2016). Speech rhythm is tied to habitual speaking rates which manifest as typical production frequencies of words (2–3 Hz) and syllables (4–5 Hz) (Alexandrou et al., 2016; Levelt et al., 1999; Poeppel et al., 2008). Speech rhythm is also physically quantifiable through spectral analysis of muscular and acoustic signals (Alexandrou et al., 2016). The notable inter-individual constancy of word and syllable production frequencies supports the role of spoken language in communication (Cummins and Port, 1998; Kohler, 2009). The regular occurrence of linguistic units provides a frame onto which a linguistic message featuring semantic, syntactic and phonological information is embedded (Port, 2003). Hence, natural connected speech is not merely a quasi-periodic sequence of isolated words and sentences, but a complex entity which combines linguistic, cognitive and social processes (e.g. Flavell, 2000). As such, real-life speech represents a fundamental human behaviour which is a vital aspect of social interaction across cultures and languages (Flavell, 1968; Levinson, 2016). One’s own speech must be differentiated from the socially more relevant utterances of an interlocutor. This is reflected, for instance, in suppression of auditory cortical activity during one’s own speech production (Houde et al., 2002;
Martikainen et al., 2005). The present study aims to provide a data-driven functional characterization of the neural correlates underlying natural speech production and perception based on modulations in three fundamental, complementary speech-related features: the amount of linguistic content present in an utterance, speaking rate and social relevance.

We use magnetoencephalography (MEG) to measure task-dependent changes of neural engagement, quantified as modulation of neurophysiological spatiotemporal patterns. Cortical signals recorded with MEG typically contain detectable frequencies up to ~100 Hz. Some frequency ranges have been linked to aspects of speech processing. For instance, the theta-band (4–7 Hz) spontaneous oscillatory neural activity that seems to align with the syllabic rate (~5 Hz) is thought to support cortical processing of spoken language (for a review, see Peelle and Davis (2012)). Comprehension may be compromised when the syllabic rate is artificially increased to exceed the upper frequency limit of theta-band oscillations (Ahissar et al., 2001). Speech processing has further been associated with gamma-band oscillatory activity (~2 Hz; e.g. Giraud et al., 2007; Morillon et al., 2012) as well as more arrhythmic broadband activity (>60 Hz; e.g. Towl et al., 2008).

In this study, neural engagement is quantified as task-related local modulations of MEG signal power in different frequency bands, across the cortex. Such modulations of band-limited cortical signal power are observed as a consequence of cognitive activity (Wang, 2010) and have been shown to reflect functional processes underlying speech processing (e.g. Ahissar et al., 2001; Obleser and Weisz, 2012).

Here, speech production and perception were examined in the same group of individuals using naturalistic experimental tasks. Experimental variations were induced to the pattern with which linguistic information is produced and perceived (speaking rate) and, at the normal speaking rate, to the nature of the produced and perceived linguistic information (amount of linguistic content, social relevance). Speech production and speech perception engage the neurocognitive system in markedly different ways: speech production consists of organizing complex motor output to convey a linguistic message, whereas during speech perception a linguistic message is extracted from an incoming acoustic signal. Therefore, the modulations of linguistic content were implemented separately for each speech modality. In speech production, the non-linguistic control task was an attentive listening to amplitude-modulated white noise (~2 Hz (Ruspantini et al., 2012), which coincides with the spontaneous neural activity that seems to align with the syllabic rate (~5 Hz) is thought to support cortical processing of spoken language (for a review, see Peelle and Davis (2012)). Comprehension may be compromised when the syllabic rate is artificially increased to exceed the upper frequency limit of theta-band oscillations (Ahissar et al., 2001). Speech processing has further been associated with gamma-band oscillatory activity (~2 Hz; e.g. Giraud et al., 2007; Morillon et al., 2012) as well as more arrhythmic broadband activity (>60 Hz; e.g. Towl et al., 2008).

In this study, neural engagement is quantified as task-related local modulations of MEG signal power in different frequency bands, across the cortex. Such modulations of band-limited cortical signal power are observed as a consequence of cognitive activity (Wang, 2010) and have been shown to reflect functional processes underlying speech processing (e.g. Ahissar et al., 2001; Obleser and Weisz, 2012).

In speech perception, the non-linguistic control task was attentive listening to amplitude-modulated white noise (e.g. babbling in infants; Davis and MacNeilage, 2000) and habitually occurs at ~2 Hz (Russe et al., 2012), which coincides with the spontaneous word production frequency during natural speech production (Alexandrou et al., 2016). In speech perception, the non-linguistic control task was attentive listening to amplitude-modulated white noise (e.g. babbling in infants; Davis and MacNeilage, 2000) and habitually occurs at ~2 Hz (Russe et al., 2012), which coincides with the spontaneous word production frequency during natural speech production (Alexandrou et al., 2016). In speech perception, the non-linguistic control task was attentive listening to amplitude-modulated white noise (e.g. babbling in infants; Davis and MacNeilage, 2000) and habitually occurs at ~2 Hz (Russe et al., 2012), which coincides with the spontaneous word production frequency during natural speech production (Alexandrou et al., 2016).

Methods

Participants

Twenty healthy, right-handed, native Finnish-speaking adults (11 females; 9 males; mean age 24.5, range 19–35 years) with normal hearing participated in the study. All participants gave their informed written consent before taking part in the experiment, in agreement with a prior approval of the Aalto University Ethics Committee.

Experimental design

All participants took part in a speech production and a speech perception experiment conducted, in this order, as separate measurement sessions at least one week apart. An overview of the experimental paradigm is presented in Fig. 1A.

Speech production experiment

As the main experimental condition, the participants were instructed to produce spontaneous speech at three distinct speaking rates (natural/normal, slow or fast) (example waveforms in Fig. 1B, top) prompted by questions (in Finnish) derived from the themes of own life, preferences, people, culture/traditions, society/policies and general knowledge (see Alexandrou et al. (2016)). The prompts were quite general (e.g. What kind of hobbies do you have or have had during your life? Describe a traditional Christmas holiday. How does the Finnish school system operate?) and considered easy to respond to by all participants and a separate group of 10 individuals. The prompts were only intended to help the participants fluently verbalize their own thoughts. The aim was to successfully modulate speaking rate and to produce fluent, uninterrupted speech at each rate. To avoid repetition and learning effects, each thematic question was presented only once during the experiment. Regarding the slow rate, participants were asked to aim for 50% of their normal speaking rate. For the fast rate, they were instructed to produce fluent, continuous speech at the highest speaking rate possible, however, without rendering the speech unintelligible or committing articulatory errors. After a training phase, during the actual MEG measurement, participants varied their speaking rate without the aid of any external pacing device. Based on transcription analysis, participants were able to produce fluent, coherent speech without notable pauses or excessive use of filler words at all speaking rates. Mean syllable production frequencies were 4.8 Hz for normal rate, 2.1 Hz for slow rate (44% of normal) and 6.3 Hz for fast rate (123% of normal) (for more details, see Alexandrou et al. (2016)). Participants were instructed to aim for small mouth movements in order to reduce contamination of the recorded MEG signals by muscle artifacts.

A single speech production block consisted of a recorded thematic question spoken by a male speaker (duration 3–9 s; mean ± SD 5.6 ± 1.3 s), a 1-s delay before response onset, a 40-s response period, and a 2.5-s rest period between blocks. A signal tone (50-ms, 1-kHz tone) indicated the beginning of a block, and another signal tone (50-ms, 75-Hz tone) signified the beginning and end of the response period. All sounds were presented via panel loudspeakers.

Repeated production of the syllable /pa/, performed at normal rate, served as a control condition (Russe et al., 2012). A /pa/ repetition block consisted of a 40-s repetition period, with a tone signal (50-ms, 75-Hz tone) indicating the beginning and end of the period. Repetition blocks were separated by 10 s of rest, to approx-
imulate the timing of the speech conditions.

Ten participants were randomly chosen to additionally perform normal-rate articulated speech. This task consisted of articulating responses to thematic questions (different from those presented in the speech production condition) without vocalization. This articulation-only task was applied to evaluate whether an observed cortical effect was due to auditory feedback during natural speech production. The temporal structure of the task blocks for this condition was the same as for the speech production blocks.

Speech perception experiment

All twenty participants listened to the speech of an unfamiliar male speaker at normal, slow and fast speaking rates. The speaker responded to the same thematic questions as those presented to the participants in the speech production experiment (example waveform in Fig. 1B, bottom left). The speaker carried out speaking rate modulations following the same training procedure as the participants, resulting in mean syllable production frequencies of 4.6 Hz for normal rate, 2.6 Hz for slow rate (55% of normal) and 6.8 Hz for fast rate (157% of normal). Additionally, participants listened to their own responses to the thematic questions recorded during the speech production experiment at normal, slow and fast speaking rates.

As a control condition, participants listened to unintelligible normal-rate rhythmic noise stimuli (example waveform in Fig. 1B, bottom right). These consisted of amplitude-modulated white noise with the same amplitude envelope and spectral content as the normal-rate speech stimuli of the unknown speaker. The temporal structure of speech perception blocks was the same as that of speech production blocks and the temporal structure of noise perception blocks was the same as that of /pa/ repetition blocks.

All speech and noise stimuli were normalized to an average intensity of 70 dB (SPL) using Praat software (Institute of Phonetic Sciences, University of Amsterdam). Stimuli were presented binaurally through plastic tubes and intracanal earpieces at a comfortable listening level, adjusted individually. Each 40-s auditory stimulus was presented only once to avoid learning effects. To ensure that the participants attended to the stimuli, one of the six stimuli in each condition included a 2-s auditory segment which was repeated 4 times (in a similar manner to a broken record). The repetitive segment occurred at a random time point during the 40-s stimulus. A repetitive segment was indicated with an index finger lift using an infrared response panel. To further verify that the participants attended to the speech stimuli of the unknown speaker, they were asked to fill in a surprise multi-choice questionnaire at the end of the experiment.

On both experimental days, the conditions were performed in a random order. Participants were instructed to keep their gaze on a fixation point projected on a screen at ~1 m from their sitting position. Prior to the first block of each condition a text was presented on the screen informing the participants of the upcoming condition and the speaking rate (for speech production conditions). There were six blocks per experimental condition, thus totalling to 4 min of data for each condition.

Recordings

Audio

During the speech production experiment, audio signals were recorded at 44.1 kHz sampling frequency using an MEG-compatible microphone (Yoga EM-3, Yoga Electronics Co., Taiwan) connected to a portable recording device (FOSTEX FR-2LE Field Memory Recorder, Tokyo, Japan). The speech materials of the unknown speaker were recorded at 44.1 kHz sampling frequency using an MEG-compatible microphone (B-2 PRO, Behringer) using Cool Edit 2000 (Syntrillium).

Electromyographic (EMG) and Electrooculographic (EOG) signals

EMG signals were recorded during the speech production experiment with reusable circular electrodes (E220X-HS, conductive area diameter of 0.4 cm), low-pass filtered at 330 Hz and sampled at 1500 Hz. Bipolar EMG channels (inter-electrode distance 1.5 cm) were used to record activity, first, from the lower lip muscles (orbicularis oris) and, second, from muscles associated with tongue and jaw movements (primarily from genioglossus and mylohyoid muscles, determined via tactile inspection of the chin and lower jaw area). Electrode resistance was <10 kΩ for all participants. Blinks and eye movements (saccades) were monitored by recording EOG.

MEG and MRI

MEG signals were recorded with a Neuromag Vectorview whole-head device (Elekta Oy, Helsinki, Finland) in a magnetically shielded room. Data were filtered at 0.03–500 Hz and sampled at 1500 Hz. The position of the head with respect to the MEG sensor array was

Fig. 1. Summary of the experimental paradigm. A, Flowcharts demonstrating the structure of the speech production (left) and the speech perception (right) experiments and the stimuli used in each experiment. See Methods for a detailed description. B, Examples of waveforms of slow-rate, normal-rate and fast-rate speech generated during the speech production experiment (top) and of speech and noise stimuli used in the speech perception experiment (bottom). Normalized amplitude (in arbitrary units; y-axis) is plotted against time (in seconds; x-axis). Each plot displays a 5-s chunk of data taken from a 40-s auditory file.
determined with the help of five head position indicator coils attached to the scalp that were briefly energized before the measurement. The coil locations were determined with respect to anatomical landmarks (nasion and right/left pre-auricular points) using a 3D digitizer (Isotrak 3S1002, Polhemus Navigation Science). Structural magnetic resonance images (MRIIs; 3 T Siemens MAGNETOM Skrya; Siemens Medical Systems, Erlangen, Germany) were obtained for each participant. During the analysis phase, the MEG coordinate system was aligned with individual MRIIs based on head position coils and anatomical landmarks.

MEG data analysis

External disturbances were first removed from the MEG data using spatiotemporal signal separation (Taulu and Simola, 2006). Artifacts due to movement of facial articulatory muscles during the speech production experiment were subsequently removed from the notch-filtered (50 Hz) and low-pass filtered (at 150 Hz) MEG data by performing an independent component analysis (ICA) decomposition (FastICA; Hyvärinen, 1999) of all MEG gradiometers and the two EMG channels. Each resulting component was visually evaluated and classified as an artifact based on the inspection of four different criteria (De Vos et al., 2010; Henderson et al., 2013; Hipp et al., 2011; Kujala et al., 2013): the topography of the component (location of the component at the edges of the sensor space), its localization in the source space (the center of the location outside the brain), the correlation of the component’s and the two EMG channels’ time series and the relative amount of spectral power in the gamma/high-gamma band for the component. In addition to correlation with the EMG channels, other criteria were included in the classification protocol for two main reasons. Firstly, the EMG channels do not necessarily represent all muscle activity present in the data. The EMG sensors were placed to record activity mainly from the lip and tongue muscles, which were presumed to be the primary sources of artifacts. However, these recordings may not be as informative on the activity of muscles in the cheek area or in the back of the head, which may induce less prominent artifacts. Secondly, in several cases the lip and tongue muscle activity were separated into multiple components instead of a single component, thus leading to lower correlation values with the EMG channels for each component. In these cases, the other criteria were necessary for reliable artifact detection (see Supplementary methods for more details).

MEG signals recorded during speech perception conditions were only mildly contaminated by blink artifacts: blink-contaminated time windows (amplitude of either vertical or horizontal electrooculogram > 150 μV) were excluded from further analysis. In contrast, speech production tasks were all accompanied by frequent blinks (von Cramon and Schur, 1980), rendering a threshold-based blink rejection procedure unsuitable. Consequently, blink artifacts were removed from MEG signals using a principal component analysis (PCA)-based routine (Wold et al., 1987; Huotilainen et al., 1993).

Cortical distribution of signal power is the way to estimate activation for continuous, non-averaged data. The cortical distribution of signal power was determined in eight frequency bands spanning the range 1–90 Hz (1–4 Hz; 4–7 Hz; 7–9 Hz; 8–13 Hz; 13–20 Hz; 20–30 Hz; 35–45 Hz; 60–90 Hz) (e.g., Gross et al., 2013; Jensen et al., 2012; Palva and Palva, 2007; Salmelin and Hari, 1994) for each condition and each participant, using Dynamic Imaging of Coherent Sources (DICS) (Gross et al., 2001) with a spherical head model. The sensor-level cross-spectral density matrices (CSD) required for the estimation were calculated using Welch’s averaged periodogram method (4096-point Hanning windowing; 50% window overlap; 4096-point Fast-Fourier Transform; 0.4 Hz resolution). To enable statistical evaluation of the data at the group level, the cortical-level estimates were obtained in a spatially equivalent search grid across participants. The grid sampled the grey matter surface, excluding the cerebellum (20482 points; atlas brain; FreeSurfer 5.3) (Fischl, 2012). Grid points in the anterior frontal cortex and temporal pole areas, displaying high sensitivity to eye movement artifacts, were excluded from the analysis. This common grid was transformed to each participant’s anatomy via a surface-based transformation (Fischl et al., 1999).

Differences in cortical distribution of signal power between conditions were estimated based on the features of linguistic content (speech production vs. /pa/ syllable repetition; listening to speech vs. noise), speaking rate (e.g. production of normal-rate vs. slow-rate speech) and speech ownership (listening to the unknown speaker’s normal-rate speech vs. own normal-rate speech). Statistical significance was determined using group-level cluster-based statistics (cluster-based permutation procedure performed on the statistically significant results obtained from a two-tailed t-test; 10000 permutations; cluster threshold p < 0.05; weighted distance algorithm for linking adjacent grid points; 10-mm cut-off threshold). For the linguistic content, where the contrasted conditions were quite different from each other, the statistical significance threshold for the t-test was set to p < 0.01 (family-wise error (FWE) corrected). For all other, more modulatory contrasts (e.g., production of normal-rate vs. fast-rate speech), the statistical significance threshold was set to p < 0.05 (FWE corrected).

For each round of the permutation testing, the labels of the two conditions being compared were randomized across subjects, and new t-statistics were computed in all grid points. For each permutation, the largest cluster t-value was stored, leading to distribution of 10000 cluster-level t-values. The original t-statistics were then compared to this distribution. Unique and shared parts of cortical activation patterns between speech production and perception were quantified by examining the grid index overlap of all activated cortical regions across frequencies and contrasts. Talairach coordinates and Brodmann area numbers were obtained for each activated region using the Talairach Daemon (Lancaster et al., 2000).

To further examine whether the spatiostysical cortical patterns resulting from the speech production vs. /pa/ syllable repetition contrast were merely due to increased auditory feedback (as one unavoidably listens to one’s own voice while speaking), regions of interest (ROIs) were identified from this linguistic content contrast. In each ROI, the mean power was estimated for the normal-rate speech production and articulation-only speech production (a task that simulates natural speech production but occurs without vocalization; a subset of 10 participants) conditions, and their power difference assessed (paired two-tailed t-test; p < 0.01).

Furthermore, to examine the potential contribution of voice identity processing (c.f. Belin et al., 2004; Kriegstein and Giraud, 2004) to the spatiostysical patterns resulting from the perception of the unknown speaker’s speech vs. perception of own speech contrast, ROIs were identified from the speech ownership contrast. In each ROI, the difference in power between the two conditions in individual participants was correlated (Pearson’s correlation coefficient; p < 0.05) with the difference in the values of several speaker-specific acoustic features estimated using Praat software (fundamental frequency or pitch; 1st formant frequency; spectral flux; central spectrality). This correlation analysis was carried out for both absolute and relative differences in power and acoustic features. The ROI analysis considered both data from all 20 participants, as well as data only from the 11 female participants. This was done to eliminate any possible confound of male participants, whose acoustic features are closer to the unknown speaker.

Results

Attentional control task during speech perception

Attention was monitored during the speech perception experiment through a repetitive segment detection task. For all speech conditions, all participants (20 out of 20) were able to detect the repetitive segment
embedded in one of the stimuli. For the noise condition, the detection success was 65% (14 out of 20 detected the repetitive segment). The answers to the surprise questionnaire presented at the end of the experiment regarding the content of the unknown speaker’s speech were 100% correct for all 20 participants.

Cortical signal modulations resulting from variations of speech-related features

Variations in linguistic content, speaking rate and speech ownership were found to be associated with distinct spatiotemporal patterns of cortical signal modulations. All areas and frequency bands that showed significant power modulations for the examined contrasts are listed in Table 1 for speech production and Table 2 for speech perception. Significant cortical signal power modulations observed at lower frequencies (<30 Hz) coincided with power spectral maxima (Fig. 2A). At higher frequencies (>35 Hz), the significant effects were detected in the spectral range that does not show salient local maxima (Fig. 2B).

Effect of linguistic content

Bilateral modulations in cortical activity were observed for speech production compared to /pa/-syllable repetition. In the left hemisphere, this effect encompassed frontocentral, superior temporal and temporo-parietal regions (BA 6, 21, 38, 40, 42, 47) (Fig. 3A, top; Table 1). In the right hemisphere, the effect of linguistic content was mainly observed in temporo-parietal and parietal areas (BA 4, 13, 21, 22, 39, 40, 43) (Fig. 3A, top; Table 1). In both hemispheres, modulations in cortical activity were predominantly observed at the high end of the examined frequencies (35–90 Hz) (Table 1). This spatiotemporal pattern did not emerge only due to the auditory feedback associated with vocalization: a ROI comparison between speech production and articulation-only speech conditions found no significant differences (p > 0.01 for all comparisons) in parietal, temporo-parietal or frontocentral regions in either hemisphere (1–4 Hz; 8–12 Hz; 35–90 Hz). In speech perception, the contrast of speech versus acoustically matched white noise yielded significant cortical power differences uniquely in the right hemisphere, in temporal and temporo-parietal areas (BA 2, 12, 21, 22) (Fig. 3A, bottom; Table 2). This effect was observed in the 8–30 Hz frequency range (Table 2).

Effect of speaking rate

In speech production, contrasting normal- to slow-rate speech
revealed enhanced neural activity: significantly increased spectral power was observed bilaterally in temporo-parietal and frontal regions (BA 2, 9, 46) (Fig. 3B, top; Table 1). Additionally, this effect encompassed ventral frontocentral regions and the insular cortex in the left hemisphere (BA 1, 3, 4, 6, 13, 40), as well as the superior temporal cortex in the right hemisphere (BA 22) (Fig. 3B, top; Table 1). Apart from the left pre-central effects, which were observed at low frequencies (1–4 Hz), the other regions demonstrated modulations at higher frequencies (mainly in the 13–45 Hz frequency range) (Table 1).

In contrast, in speech perception, cortical signal power modulations as a result of speaking rate variations were uniquely left-lateralized: power in the left superior temporal cortex (BA 22) was enhanced for slow and fast speaking rates compared to the normal rate (Fig. 3B, bottom). The observed effect was confined to the 35–45 Hz frequency range (Table 2).

Discussion

The present results, based on band-limited cortical power modulations in natural speech tasks, suggest a notable involvement of the right hemisphere in speech processing. The right temporo-parietal junction (rTPJ) was highlighted, as it demonstrated modulations of activity in response to variations of all three speech-related features studied here: linguistic content, speaking rate and speech ownership. The involvement of the left superior temporal cortex (lSTG) in natural speech processing was also emphasized, regarding linguistic content and speaking rate. The three different speech-related features were associated with distinct spatiotemporal modulation patterns that encompassed cortical regions in both hemispheres and occurred at delimited signaling frequencies. Speech production demonstrated a bilateral activation pattern, with power modulation concentrating to frontocentral, parietal and temporo-parietal areas. While speech perception showed bilateral activation as well, it notably and rather unexpectedly emphasized right temporo-parietal and temporal areas. The involvement of the left perisylvian cortex aligns with the traditional view of speech processing. However, the present findings, based on naturalistic tasks, further revealed salient, consistent modulation of activity in the right hemisphere, especially in the rTPJ.

Production of natural, normal-rate speech requires the involvement

<table>
<thead>
<tr>
<th>Talairach coordinates (x, y, z)</th>
<th>Area Label, Brodmann area number</th>
<th>Frequency band (Hz)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Speech complexity: speech > noise</td>
<td></td>
<td></td>
</tr>
<tr>
<td>59 -25 35</td>
<td>Right post-central gyrus, 2</td>
<td></td>
</tr>
<tr>
<td>64 -32 -9</td>
<td>Right middle temporal gyrus, 21</td>
<td></td>
</tr>
<tr>
<td>58 -40 21</td>
<td>Right superior temporal gyrus, 13</td>
<td></td>
</tr>
<tr>
<td>43 -50 18</td>
<td>Right superior temporal gyrus, 22</td>
<td></td>
</tr>
<tr>
<td>Speaking rate: slow > normal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-63 -20 1</td>
<td>Left superior temporal gyrus, 22</td>
<td></td>
</tr>
<tr>
<td>Speaking rate: fast > normal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-63 -32 7</td>
<td>Left superior temporal gyrus, 22</td>
<td></td>
</tr>
<tr>
<td>Speech ownership: unknown speaker’s > own speech</td>
<td></td>
<td></td>
</tr>
<tr>
<td>65 -27 9</td>
<td>Right superior temporal gyrus, 42</td>
<td></td>
</tr>
<tr>
<td>56 -40 17</td>
<td>Right superior temporal gyrus, 13</td>
<td></td>
</tr>
<tr>
<td>61 -9 13</td>
<td>Right transverse temporal gyrus, 42</td>
<td></td>
</tr>
<tr>
<td>62 -37 6</td>
<td>Right middle temporal gyrus, 21</td>
<td></td>
</tr>
<tr>
<td>52 -56 5</td>
<td>Right middle temporal gyrus, 37</td>
<td></td>
</tr>
<tr>
<td>62 -36 13</td>
<td>Right superior temporal gyrus, 22</td>
<td></td>
</tr>
<tr>
<td>58 -18 19</td>
<td>Right post-central gyrus, 43</td>
<td></td>
</tr>
<tr>
<td>39 10 10</td>
<td>Right insular cortex, 13</td>
<td></td>
</tr>
</tbody>
</table>
of an extensive bilateral cortical system to support the generation of intricate articulatory patterns as well as the production of higher-level, linguistic content with semantic and syntactic complexity and phonological variations. The left-hemisphere component of this observed bilateral pattern was an expected observation. Specifically, the production of normal-rate connected speech predictably engaged the left face sensorimotor area as well as premotor and prefrontal regions, which have been previously linked to higher-level aspects of speech production (e.g. Binder et al., 2009; Blank et al., 2002). Moreover, in contrast to a simple oromotor task, production of meaningful speech required the contribution of the left perisylvian areas, including the ISTG; this was also anticipated based on existing models of language function (e.g. Hickok and Poeppel, 2007; Hickok, 2012).

In addition to speech production, the ISTG was also implicated in encoding the rate of perceived speech stimuli, using gamma-band (35–45 Hz) neural signaling. The role of ISTG in speech comprehension has been emphasized through empirical evidence (e.g. Buchsbaum et al., 2001; Friederici et al., 2003; Scott et al., 2000) as well as in neurophysiological models (Hickok and Poeppel, 2000, 2004) and cortical gamma-band activity has been associated with auditory processing of normal-rate speech (e.g. Giraud et al., 2007; Giraud and Poeppel 2012; Morillon et al., 2012). The present results im-

![Figure 2](image1.png)

Fig. 2. Individual-level cortical power spectra for selected cortical areas showing significant task effects. The cortical region of interest is plotted in white. Normalized power (in arbitrary units; y axis) is displayed for all participants (n=20) for two conditions (black, gray) as a function of frequency (in Hz; x axis). The frequency band in which significant group-level power modulations are observed is depicted by an asterisk. *A*, Linguistic content (production): speech vs. /pa/. *B*, Speaking rate (perception): normal speech vs. fast speech.

![Figure 3](image2.png)

Fig. 3. Spatiotemporal maps of significant power modulations in response to experimental modulations in speech-related features. *A*, Linguistic content: Production (above), normal-rate speech vs. /pa/ syllable. Perception (below), normal-rate speech vs. noise. *B*, Speaking rate: Production (above), normal vs. slow rate. Perception (below), normal vs. slow rate and normal vs. fast rate. *C*, Speech ownership: Perception, unknown speaker’s speech vs. own speech. The number of frequency bands in which a given region demonstrates power modulations is represented by different colors (1; dark orange; 2, light orange; 3, yellow). See Tables 1 and 2 for a detailed listing of area labels and frequency information.
In contrast to the expected left-hemisphere effects, the notable right-hemisphere involvement in both natural speech production and perception was an unanticipated right-hemisphere involvement in both natural speech production and semantic processing (Donnelly et al., 2011; Laufer et al., 2011), and the excluded the right middle temporal cortex, previously associated with right hemisphere. This right-hemispheric contribution notably in-singing linguistic content and speech ownership exclusively engaged the meaningful speech as part of a more extensive bilateral system, but its rightTPJ. In fact, the rightTPJ is typically not associated with linguistic content per time unit than natural-rate speech (as manifested by lower syllable and word production frequencies). Hence, it could be suggested that slow-rate speech taxes cognitive resources related to speech generation less than natural-rate speech. This further supports the interpretation that the rightTPJ, and the right hemisphere in general, mediate higher-level cognitive processes supporting the production of meaningful, connected speech.

Furthermore, through the linguistic content and speech ownership contrasts, the rightTPJ emerged as part of a right-lateralized cortical system during the perception of meaningful, socially relevant speech. These effects highlight the 8–30 Hz frequency range, previously linked to lexical access (Brennan et al., 2014), semantic evaluation of speech (Shahin et al., 2009) and cortical connectivity during naturalistic language comprehension (Saarinen et al., 2015). Numerous reports exist on the role of the rightTPJ as a mediator of attentional processes (e.g. Corbetta and Shulman, 2002; Mitchell, 2008), and increased power in the 8–30 Hz range has been extensively associated with attention (e.g., Jensen et al., 2002; Klimesch, 2012). Based on these findings, one might argue that the observed rightTPJ effects reflects increased attention to speech stimuli compared to noise stimuli. However, there is evidence to suggest that listening to noise stimuli is challenging for the auditory system whereas speech, an overlearned input type (Smith, 1992), is processed even in the absence of attention (Wild et al., 2012). This notion is corroborated by the present behavioral results indicating a higher detection success of a repetitive segment when it is embedded in speech than noise. Therefore, while various attentional sub-mechanisms may be involved to some extent, it seems unlikely that the higher rightTPJ power for processing natural speech than noise stimuli would only reflect enhanced attentional effort as such. Instead, we suggest that the observed rightTPJ power modulations could rather reflect cortical mechanisms of social cognition (Lawrence et al., 2006; Saxe and Kanwisher, 2003; Saxe and Baron-Cohen, 2006) and, for the speech ownership contrast, indicate that this area is also involved in distinguishing oneself from others (e.g. Decety and Sommerville, 2003; Farrer and Frith, 2002; Ruby and Decety, 2001). Hence, these observations suggest that the rightTPJ, through its role as a cortical associative area, supports the comprehension of communicative, socially relevant spoken language.

The present findings highlight a right-hemispheric contribution in processing linguistic content and a left-hemispheric contribution in processing speaking rate. This pattern of sensitivity could be broadly linked to the suggestion that different aspects of an incoming speech stimulus are processed asymmetrically in the cortex (e.g., Giraud et al., 2007; Morillon et al., 2010). According to this framework, the left hemisphere undertakes syllabic parsing, while the right hemisphere is responsible for more integrative processes. More generally, the fact that increased linguistic content of perceived speech emphasizes the right hemisphere corroborates previous reports suggesting that the
right hemisphere is particularly sensitive to the extraction of meaning from natural speech (Horwitz-Kraus et al., 2015; Jung-Beeman, 2005; Koskinen et al., 2013). Indeed, the right hemisphere has been previously suggested to decode abstract, context-dependent linguistic information during the course of a conversation (Federmeier et al., 2008; St George et al., 1999). It is thought to undertake the analysis of general themes and concepts, including the understanding of jokes, metaphors and idioms (e.g. Brownell et al., 1983; Weyman et al., 1989); such colloquial language uses were numerous in our experimental paradigm of naturalistic, free-form language production. Contour and prosody, acoustic features conveying a multitude of extra-linguistic information, such as the affective state of the interlocutor, may also be preferentially processed in the right hemisphere (Bourguignon et al., 2013).

The significance of the present spatiotemporal effects for natural speech production and perception across contrasts is twofold. Firstly, in accordance with recent evidence (Hultén et al., 2014; Simonyan and Fuertinger, 2015; Silbert et al., 2014), these findings point out that while the traditional view of a left-hemisphere specialization for language processing remains valid, the right hemisphere also occupies an important role in processing meaningful speech. The present findings partly align with the dual-stream model of speech production and perception (Hickok and Poeppel, 2007): natural speech production demonstrated a bilateral frontoparietal emphasis, whereas perception engaged, expectedly, more temporal regions. Yet, the notable involvement of the right hemisphere in both the generation and comprehension of meaningful speech argues in favor of an emerging, more integrative view of language processing (Federmeier et al., 2008; Poeppel et al., 2012; Rauschecker and Scott, 2009; Scott and Johnsrude, 2003). Hence, in contrast to the well-established view of a conspicuous left-hemispheric specialization for speech processing (e.g. Blank et al., 2002; Peelle, 2012; McGlone and Scott, 2012), it may be proposed that the production and perception of natural speech, a highly complex and multifaceted entity, requires a balanced engagement of neural resources from both cortical hemispheres.

Secondly, speech production and speech perception show a notable bilateral overlap. Studies examining isolated linguistic forms have previously demonstrated that speech production and speech perception share cortical representations in the left hemisphere (Buchbaum et al., 2001; Cogan et al., 2014; Indefrey, 2011; Price et al., 1996; Watkins et al., 2003). The present electrophysiological findings reveal that such an overlap also occurs for natural speech and that this joint activation pattern is particularly salient in the right hemisphere. These spatially overlapping right-hemisphere areas seem to process speech meaningfulness in both modalities; however, in speech production, fast gamma-band (35–90 Hz) signaling frequencies are highlighted, whereas in speech perception the emphasis is on a lower frequency range (8–30 Hz). This dissociation in the time domain suggests that, in these areas, active generation of complex linguistic content operates on faster timescales compared to the extraction of meaning which requires integration of information over relatively longer periods of time. Unlike the rTPJ, the ISTG was shown to process distinct speech-related features in speech production and speech perception; indeed, anatomically overlapping areas may also have dissimilar functional roles in different aspects of speech processing (Silbert et al., 2014). Overall, the present findings importantly accentuate partly shared large-scale cortical representations for the production and perception of meaningful connected language.

Conclusions

The transition from experimental paradigms employing isolated language forms to more naturalistic set-ups has brought about a shift in the common conceptions of language processing. While the classical notion of the importance of the left perisylvian cortex in language processing remains well-founded, recent years have brought attention to the notable involvement of the right hemisphere in language function. The present neurophysiological view on natural speech processing obtained by modulating three fundamental speech-related features highlights the right hemisphere. Especially rTPJ emerged as a central cortical region in natural connected speech processing, sensitive to socially relevant linguistic content and playing an important role in both the generation and comprehension of natural, communicative language.

Acknowledgements

This work was financially supported by the Academy of Finland (Grants #255349, #256459 and #283071 to RS, #257576 to JK) and Sigrid Juselius Foundation. The authors declare no conflicts of interest.

Appendix A. Supplementary material

Supplementary data associated with this article can be found in the online version at http://dx.doi.org/10.1016/j.neuroimage.2017.03.006.

References

NeuroImage 152 (2017) 628–638

