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Magnetoencephalography (MEG), with its direct view to the cortex through the magnetically transparent
skull, has developed from its conception in physics laboratories to a powerful tool of basic and clinical neu-
roscience. MEG provides millisecond time resolution and allows real-time tracking of brain activation se-
quences during sensory processing, motor planning and action, cognition, language perception and
production, social interaction, and various brain disorders. Current-day neuromagnetometers house hun-
dreds of SQUIDs, superconducting quantum interference devices, to pick up signals generated by concerted
action of cortical neurons. Complementary MEG measures of neuronal involvement include evoked re-
sponses, modulation of cortical rhythms, properties of the on-going neural activity, and interareal connectiv-
ity. Future MEG breakthroughs in understanding brain dynamics are expected through advanced signal
analysis and combined use of MEG with hemodynamic imaging (fMRI). Methodological development pro-
gresses most efficiently when linked with insightful neuroscientific questions.

© 2011 Elsevier Inc.
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Introduction

History of magnetoencephalography (MEG), and of electrophysi-
ology in general, is tightly coupled to the progress of new instrumen-
tation and signal analysis techniques. For example, sensitive mirror
galvanometers were originally developed for detection and amplifica-
tion of signals from the transatlantic telecommunication cable but
allowed Richard Caton, already in 1875, to perform recordings of
spontaneous brain activity and evoked responses in rabbits and mon-
keys (Caton, 1875).

At the time of the first human electroencephalogram, EEG (Berger,
1929), many important features of the brain's electrical signals—such
as different frequency bands, effects of sleep, anesthesia and death,
arousal, epileptic discharges, and evoked responses to visual, tactile
and auditory stimuli—had already been described (Brazier, 1961).
For decades, the clinical EEG work (Schomer and Lopes da Silva,
2011) was dominated by correlative approaches between scalp-
potential “graphoelements” and brain disorders, without much atten-
tion to the neuronal generation mechanisms. When signal averaging
became feasible, with the introduction of laboratory computers in
the 1960s, evoked potentials emerged as new tools for assessing the
integrity of sensory pathways.

The distortion and smearing of the EEG signals by the poorly-
conducting skull markedly hampered identification of the underlying
generators. Thus, an emerging possibility to record the brain's mag-
netic fields aroused great theoretical and practical interest: as con-
ductivity varies essentially only along the head radius from brain
through skull to scalp, the magnetic field outside of the head should
be unaffected by tissues above the cortex, as was later confirmed em-
pirically (Okada et al., 1999). Yet, recordings of the magnetic fields of
the brain were technically far from trivial as the fields are very weak,
on the order of 10–100 fT. The first successful MEG recording was
performed in the late 1960s using an induction-coil magnetometer
that had 2 million turns of copper wire wound around a ferrite core.
To pick up the strong posterior 10-Hz rhythm (called ‘alpha’ by
Hans Berger), it was necessary to average the MEG with respect to
an EEG reference signal (Cohen, 1968).

Again, inventions in another field of science provided the pivotal
boost. The principle of superconducting tunneling (Josephson,
1962) and the subsequent fabrication of SQUIDs, Superconducting
QUantum Interference Devices (Silver and Zimmerman, 1965),
allowed detection of the brain's magnetic fields without an electric
reference (Cohen, 1972). Over the years, the measurement devices
evolved from single-channel instruments to sensor arrays housing
hundreds of SQUID sensors; the first helmet-type whole-scalp
MEG system with 122 sensors became functional in our laboratory
in 1992 (Ahonen et al., 1993); in 1998, a system with 306 channels
was introduced. With a single-channel device, coverage of the full
field pattern—needed to identify, e.g., the cortical generators of re-
sponses to auditory or tactile stimuli—could take days, whereas
with a modern-day whole-scalp system the recording lasts only a
few minutes.

Compared with functional magnetic resonance imaging (fMRI),
MEG has progressed slowly during its first four decades, as measured
by the number of laboratories (in 2011, about 160 worldwide) that
utilize whole-scalp MEG for exploration of normal and abnormal
brain functions. The rapid spread of fMRI to thousands of laboratories
over the course of two decades benefited from the existing clinical
MRI scanners that were easily modified for fMRI use. Compared
with the more readily automated analysis methods of fMRI, MEG re-
quires more user intervention for reliable data analysis.

Space limitations prevent us from citing all relevant literature and,
thus, the reader is encouraged to consult recent review articles and
textbooks (e.g. Aine, 2010; Baillet et al., 2001; Del Gratta et al.,
1999; Hämäläinen and Hari, 2002; Hansen et al., 2010; Hari, 2011;
Hari et al., 2010; Salmelin, 2007).

MEG in brief

Neuronal generation of MEG signals

Electric currents are accompanied by an electromagnetic field. The
main generators of the MEG signals—and of EEG as well—are synchro-
nous postsynaptic (intracellular) currents in the pyramidal neurons
of the cerebral cortex (Hari, 1990). In the (nearly) spherical volume
conductor formed by the head, the orientation of the magnetic field
pattern reflects the direction of the intracellular current.

In cortical pyramidal neurons, the net neural current flows nor-
mally to the local cortical surface. MEG is most sensitive to cortical
currents tangential to the skull, in the walls of cortical fissures,
whereas EEG more readily picks up signals also from the depth of
the brain and from the convexial cortex (Hämäläinen et al., 1993;
Hari, 1990). Notably, as the relevant aspect in MEG is its sensitivity
to the tangential component of the current, tilted currents are also
detected, especially when they are located close to the surface
(Hillebrand and Barnes, 2002). Because of their different sensitivi-
ties to source orientations and locations, MEG and EEG complement
each other.

MEG instrumentation

Modern neuromagnetometers contain helmet-shaped arrays of
more than 300 SQUID sensors that, for operation, have to be im-
mersed in liquid helium at the temperature of 4 K (−269 °C). High-
Tc SQUIDs have been tested for MEG but they suffer from high ther-
mal noise that still limits their usability in brain research. New mag-
netoresistive sensors can pick up magnetocardiographic signals
(Pannetier-Lecoeur et al., 2011) but do not, with their present-day
sensitivity, allow MEG recordings. Atomic magnetometers (Kominis
et al., 2003) have been used to detect auditory-evoked brain re-
sponses (Xia et al., 2006). The recent introduction of SQUID-based
low-field (microtesla) MRI has created a new means of integrating
MEG and MRI information within the same recording, thus raising ex-
pectations for improved spatiotemporal accuracy of the measured
signals (Zotev et al., 2008).

Even visual inspection of the MEG sensor-level data may pro-
vide plausible estimates of the source configuration. It is important
to note, however, that different flux transformers have different
sensitivity profiles. A simple loop, a magnetometer, is most sensi-
tive to source currents a few centimeters outside of the loop. An
axial gradiometer, with two oppositely wound loops along the
same vertical axis, has a sensitivity pattern similar to that of a mag-
netometer but is less sensitive to ambient magnetic interference. A
highly useful flux transformer is a “near-sighted” planar gradiome-
ter with two oppositely-wound in-plane loops. It yields the maxi-
mum signal directly above the source current, thus markedly
facilitating sensor-based estimation of source configuration as the
first step of source analysis.

As a single local source can produce correlated signals on several
sensors, even 10 cm apart—depending on the flux transformer geom-
etry—caution must be exercised in making inferences about the
source locations on the basis of the sensor-level local maxima and,
in particular, in lending functional interpretations to correlations be-
tween sensor-level signals.

Analysis and interpretation of MEG signals

MEG signals are most efficiently interpreted by means of source
models that can yield accurate information on the timing and direc-
tion of current flow; the direction reflects the underlying sulcal struc-
ture and can help to differentiate between spatially and temporally
close but functionally separable source areas.
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The simplest and most transparent, yet powerful, approach is to
model a local population of active neurons with an equivalent current
dipole (ECD). Theoretically, the current dipole is an infinitesimal con-
centration of directed current flow. The strength of an ECD (dipole
moment=current multiplied by the effective distance of the current
flow) typically varies from 2 to 100 nAm. The dipole parameters (lo-
cation, direction, strength as a function of time) can be solved from
the MEG pattern and related to individual anatomy obtained from
structural magnetic resonance images (MRIs). Multiple ECDs can be
identified separately and brought together in a multidipole model
where the activation time courses may be estimated by allowing
each ECD to vary in strength to best account for the signals detected
by all MEG sensors (for a recent review, see Salmelin, 2010).

An alternative approach is to limit the solution space. One may
place a large number of elementary sources (tiny current dipoles)
throughout the cortex and estimate their strengths as a function of
time. Such a distributed estimate has a unique solution if it, in addi-
tion to explaining the recorded MEG signals, involves minimization
of the total current in the sense of, e.g., L2 or L1 norm
(Hämäläinen and Ilmoniemi, 1994; Uutela et al., 1999), resulting
in minimum-norm or minimum-current estimates (MNE/MCE), re-
spectively. Because the minimization favors superficial currents
closest to the sensors, depth weighting is often needed. The MNE/
MCE spatial resolution may be increased by constraining the cur-
rents to the individual cortical anatomy, obtained from MRIs (Dale
et al., 2000; Lin et al., 2006).

Yet another popular approach is beamforming where the brain
volume is scanned by a sequential application of spatial filters that
are optimized to pass activity from a specific brain area with maxi-
mum gain, while suppressing activity from other areas. Beamformers
can be implemented in either time or frequency domain (Gross et al.,
2001; Robinson and Vrba, 1997).

However, none of these source analyses can circumvent the inher-
ent ambiguity between neuronal currents and MEG patterns; the ‘in-
verse problem’ takes a different form in different analysis methods.
Even a pointlike current appears spatially distributed when analyzed
with a distributed model (e.g., MCE), whereas ECD analysis of a spa-
tially distributed source current necessarily yields a focal current di-
pole (Hämäläinen and Hari, 2002). The ECD analysis makes the
minimum number of assumptions (only that the source itself can be
represented by a current dipole) but especially the multi-dipole anal-
ysis requires some expertise, e.g., in selecting sensors for source iden-
tification and rejecting implausible solutions. The more automatic
minimum-norm and beamforming approaches can provide descrip-
tive source-level values for any cortical point. However, the patterns
can be spatially blurred or display ‘ghost’ sources that are difficult to
discern from the real sources.

Sometimes the goal may be to extract the time course of an active
area identified, e.g., by fMRI. However, since even a focal current pro-
duces a spatially widely spread magnetic field, the MEG time course
estimated for a pre-specified volume may, in fact, reflect activity of
a totally different source area. A full MEG-based analysis is necessary
to verify the involvement of the target region.

Source analysis may help to identify subject-related magnetic dis-
turbances (e.g., cardiac artifacts, magnetic material moving with body
movements, eye movements and blinks, muscular activity, tongue
and jaw movements) even when they are not obvious in the
sensor-level signals. For example, source locations outside of the
brain (e.g., close to the eye balls or the tongue) strongly speak for
an artifactual origin. Note that when distributed source analysis con-
strains the solutions to the brain, artifacts may appear as false activa-
tions, especially in brain areas where the sensor array coverage (and,
thus, the signal-to-noise ratio) is poor, such as the temporal poles and
the ventromedial frontal cortex.

Progress of MEG across its first four decades

The MEG method has now been around for four decades, with a
marked speed-up of the progress during the last two decades. We
will briefly discuss the advancement of MEG from the 1970s to
2010s, seeking to highlight the specific nature of MEG, complementa-
ry to that of EEG or fMRI, in understanding human brain function.

Over the years, the focus has moved from technical issues and ex-
amination of isolated sensory areas to a more integrative description
of human brain function, including activation sequences, more so-
phisticated data analysis, and complementary use of other imaging
modalities, especially fMRI.

MEG in the 1970s—first recordings

The 1970s were an era of MEG engineering, with the main interest
to demonstrate the feasibility of the new method (Cohen, 1972). Re-
cordings of evoked responses to visual (Brenner et al., 1975), tactile
(Teyler et al., 1975) and auditory (Hari et al., 1979; Reite et al.,
1978) stimuli demonstrated a likely origin of the signals in the
sensory-specific cortices. However, with the single-channel devices
available at that time the recordings were extremely laborious.

MEG in the 1980s—focus on sensory processing

In the 1980s, MEG was extensively used to pinpoint the cortical
generators of various evoked and event-related potentials. The MEG
source analyses often preceded those with EEG by several years;
however, reflecting the imbalance in the number of EEG vs. MEG

Measured Modelled

N100m

800 ms

100 fT

parietal

frontal

Fig. 1. Left: Averaged magnetic fields (N=330) from parietal and frontal locations to 1-kHz 800-ms tones repeated once every 4 s and measured with a first-order axial gradiom-
eter. Middle: Amplitude distribution of the measured transient (N100m) response in one subject; the sizes of the circles are proportional to the signal strength. Right: A source
model of the signal pattern, with the ECD in the auditory cortex within the Sylvian fissure.
Modified from Hari et al. (1980) and Aittoniemi et al. (1981).
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practitioners at that time, the new findings were often accepted only
after EEG source analysis had been performed. For example, the gen-
eration of the auditory 100-ms response (Fig. 1) in the supratemporal
auditory cortex (Hari et al., 1980) was widely accepted only after the
source analysis of corresponding auditory evoked potentials half a de-
cade later (Scherg and von Cramon, 1985). Similarly, the tangential
source of the 20-ms somatosensory response N20 (N20m) within
the sulcal wall of the primary somatosensory cortex SI (Wood et al.,
1985) was accepted after a long delay as it was in contrast to the
EEG-based view (for reviews, see Hari and Forss, 1999; Kakigi et al.,
2000).

Nevertheless, MEG started to demonstrate its unique power. For
example, MEG successfully differentiated between responses gener-
ated in the primary (SI) vs. secondary (SII) somatosensory cortices
based on response timing, locations and directions of source current
(Hari et al., 1983b; Teszner et al., 1983); positron-emission tomogra-
phy description of the human SII followed a decade later (Burton et
al., 1993). The SI/SII discrimination, and possible SI–SII interaction
(Simões et al., 2003), is central for understanding disorders of the cor-
tical somatosensory network (Forss et al., 2001). MEG's sensitivity to
tangential currents also allowed to demonstrate cortical representa-
tion for acute dental pain within the SII region (Hari et al., 1983c).

Other pioneering observations in the 1980s include, e.g., the first
recordings of the tonotopic organization of the auditory cortex
(Romani et al., 1982), the somatotopic organization of the primary so-
matosensory (Hari et al., 1984b; Okada et al., 1984) and motor (hand
vs. foot) (Deecke et al., 1982; Hari et al., 1983a) cortices, a decade
later accompanied by observations of the retinotopic organization of
the visual cortex (Ahlfors et al., 1992; Aine et al., 1996). Recordings
of auditory cortical responses addressed topics such as the effect of
interstimulus interval (Hari et al., 1982) and the concept of “lifetime”
of the auditory trace (Lu et al., 1992), as well as the effect of attention
(Hari et al., 1989) and stimulus changes (Hari et al., 1984a) on the au-
ditory cortex (for reviews, see Hari, 1990; Näätänen et al., 1994).

The careful groundwork laid in the 1980s, although focused on
rather local cortical processing, has been frequently revisited with
the increasingly available whole-scalp MEG systems.

MEG in the 1990s—brain rhythms and cognitive processing

The decade started with a heated debate about the merits of MEG
vs. EEG (Crease, 1991) that was concluded with a consensus state-
ment written by 15 clinicians and scientists (Anogianakis et al.,
1992) to emphasize the complementary nature of the two methods.

In the 1990s, the introduction of whole-scalp systems finally
transformed MEG into a genuine brain-mapping tool, with focus on
activation sequences, supported by increasingly accurate visualiza-
tion on spatially aligned anatomical MR images. The measurement
times were markedly shortened and the quality of mapping was dras-
tically improved as data were acquired simultaneously from the
whole cortex. As a major step forward, whole-scalp MEG systems fi-
nally opened the path for studies on high-level cognition, such as lan-
guage processing (Salmelin et al., 1994) (to be discussed in more
detail in the section on the 2000s), and characterization of rhythmic
activity throughout the cortex (Hari and Salmelin, 1997).

Sensory and motor systems and brain plasticity
Whole-scalp MEG systems made it possible to address, e.g., the re-

lationship of ipsi- and contralateral auditory-cortex responses in both
hemispheres (Mäkelä et al., 1993; Pantev et al., 1998b), and the influ-
ence of gender and native language on the interhemispheric balance
(Salmelin et al., 1999). Auditory responses were applied to demon-
strate, e.g., that auditory hallucinations involve the auditory cortex
(Tiihonen et al., 1992), to study cortical correlates of directional hear-
ing (McEvoy et al., 1993), and to show that visual input has access to
the auditory cortex during McGurk illusion (Sams et al., 1991).

The spatiotemporal specificity of MEG was also successfully ap-
plied to demonstration of cortical plasticity, such as increased audito-
ry cortical representations in musicians (Pantev et al., 1998a),
modification of auditory pathways after cochlear implantation
(Pelizzone et al., 1991) and unilateral congenital hearing loss
(Vasama et al., 1994), reaction of the auditory cortex to vibration ap-
plied to palms of a deaf person (Levänen et al., 1998), and increased
somatosensory finger representation in string players (Elbert et al.,
1995). Cortical reorganization of somatosensory representations
was linked with phantom-limb pain (Flor et al., 1995).

Brain rhythms
Study of oscillatory brain activity experienced a true renaissance

in the 1990s with MEG whole-scalp spatiotemporal mapping, focus-
ing on frequencies from 5 to 40 Hz (for a review, see Hari and
Salmelin, 1997). The rolandic 20-Hz rhythm (Tiihonen et al., 1989),
similar to intracranial motor-cortex signals (Jasper and Penfield,
1949), was modulated according to the moving body part in a soma-
totopical manner (Salmelin et al., 1995). This 20-Hz component of the
rolandic mu rhythm provided a tool to demonstrate, e.g., motor-
cortex involvement in motor imagery (Schnitzler et al., 1997) and ac-
tion observation (Hari et al., 1998), and differential emphasis of
mouth vs. hand area in speech vs. nonspeech production (Salmelin
& Sams 2011). The neuronal generation mechanisms of this rhythm
are under keen scrutinity (Jones et al., 2009).

Analysis of coherence between the surface electromyogram and
brain signals opened a new line of research (for a review, see
Salenius and Hari, 2003). This corticomuscular coherence manifested
as salient coherence peaks at around 20 Hz (Conway et al., 1995) or
40 Hz (Salenius et al., 1996), with the cortex leading the muscle
(Salenius et al., 1997). The coherence was abnormal in unmedicated
Parkinsonian patients (Salenius et al., 2002). Subsequent choices of
the peripheral reference signals include a continuous record of finger
location (Gross et al., 2002), hand speed (Jerbi et al., 2007), and accel-
erometer measures of hand movement (Bourguignon et al., 2011).

Activity in the gamma range (> 30 Hz) has received much interest
ever since stimulus-dependent interareal coherence at ~40 Hz was
observed in cat visual cortex (Gray et al., 1989). Gamma activity—es-
pecially > 60 Hz—has been promoted as an efficient measure of neu-
ral activation (Jensen et al., 2007; Uhlhaas et al., 2011). Intracranial
recordings show sustained, task-relevant gamma activity both locally
(Tallon-Baudry et al., 2001) and widely across the cortex (Jerbi et al.,
2009). However, gamma appears to be markedly harder to pick up
with MEG (Dalal et al., 2009), with the exception of visual-cortex
gamma activity elicited by large, attention-capturing visual stimuli
(Hoogenboom et al., 2006; Muthukumaraswamy et al., 2009). An in-
terplay between gamma and theta (4–7 Hz) MEG activity has been
taken to reflect encoding and retrieval of short-term (Fuentemilla et
al., 2010) and long-term memories (Osipova et al., 2006).

The systematic suppression of the parieto-occipital 10-Hz activity
with attention directed to different parts of the visual field
(Bahramisharif et al., 2010) might prove to be useful for brain–com-
puter interfaces.

MEG in the 2000s—cognition and connectivity, training and development

MEG user base has been expanding rapidly since the turn of the
century, with a simultaneous shift of focus to higher cognitive func-
tion—such as language and social interaction—as well as to brain de-
velopment, its disorders, and cortical correlates of cognitive training.

Language function
The 1990s saw the identification of the MEG correlate of the

extensively-studied N400 EEG response that is triggered by semanti-
cally incongruent sentence-ending words (Kutas and Hillyard, 1980):
MEG displayed a salient N400m in the left superior temporal cortex
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(Halgren et al., 2002; Helenius et al., 1998; Pylkkänen and Marantz,
2003; Simos et al., 1997) (Fig. 2). While word reading activates mul-
tiple areas in both hemispheres, stimulus manipulation indicated
specific functional roles for a subset of them, such as visual feature
analysis at ~100 ms in the occipital cortex and letter-string analysis
~150 ms in the left occipitotemporal cortex (Tarkiainen et al.,
1999); access to phonology was proposed to engage the left inferior
frontal cortex within 100 ms (Wheat et al., 2010). During speech
perception, activation is mainly concentrated to the superior tempo-
ral cortex, reflecting at 50–100 ms sensitivity to speech-specific
acoustic–phonetic features (Obleser et al., 2004) and at ~150 ms dif-
ferentiation between phonological categories (Näätänen et al., 1997;
Phillips et al., 2000); frontal activation is found in specific paradigms
(Pulvermüller and Shtyrov, 2009), especially when the subject is
prepared to later repeat the word (Biermann-Ruben et al., 2005).

The cortical sequences of auditory and visual word processing con-
verge in the superior temporal cortex (Marinkovic et al., 2003),
with the left-hemisphere activation at 250–450 ms reflecting
lexical-semantic analysis in both sensory modalities (Vartiainen et
al., 2009).

Natural language processing is also starting to be accessed with
MEG. Tracking of the phase pattern of 4–8-Hz MEG signal from the
auditory cortex allowed to discriminate between spoken sentences,
and suggested speech segmentation in ~200-ms windows, at the
level of syllables (Luo and Poeppel, 2007).

Language production, difficult to study with EEG because of the
wide-spread artifacts due to mouth and tongue movement, is better
tractable with MEG. The first language production paradigms de-
scribed the cortical sequence of picture naming (Levelt et al., 1998;
Salmelin et al., 1994), and more recent studies have sought to

Envelope 0.1–1 Hz

Accelerometer signals

Corticovocal coherence at ~0.5 Hz

0 2 4 6 8 10 12 s

Fig. 3. Measurement of “corticovocal coherence” between the listener's brain signals and the speaker's fundamental frequency as monitored with an accelerometer over the speak-
er's throat. Left: 3-dimensional accelerometer signals and their envelope filtered through 0.1–1 Hz. Right: Group-level coherence map (across 10 subjects) computed at 0.5 Hz,
mainly related to phrasing of the reader's voice.
Modified from Bourguignon et al. (in press).

Fig. 2. Cortical dynamics of silent reading. The colored patches represent the group-level anatomically constrained MNE model and the dots individual ECD models. The curves dis-
play the mean time course of activation per area. Activation advances from visual feature analysis in the occipital midline (~100 ms) to letter-string analysis in the left inferior occi-
pitotemporal cortex (~150 ms) and further to activation of the left superior temporal cortex, reflecting lexical-semantic processing (and also phonological and syntactic processing).
Modified from Salmelin et al. (2000a) and Vartiainen et al. (2011).
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associate brain areas and time windows with the theoretically postu-
lated subprocesses, such as semantic analysis in left temporal cortex
(Maess et al., 2002) and phonological processing in left temporal
and frontal cortices (Vihla et al., 2006).

Social interaction and naturalistic stimulation
Moving from single-person measurements to “2-person neurosci-

ence” should facilitate exploration of online interaction and commu-
nication (Hari and Kujala, 2009). Time-sensitive imaging in
naturalistic settings could help to understand, e.g., speaker–listener
coupling (Fig. 3).

Many “mirroring” effects between individuals have been de-
scribed with MEG: Observation of simple hand actions modulates ac-
tivation of the viewer's motor (Hari et al., 1998) and somatosensory
(Avikainen et al., 2002) cortices, with stronger motor-cortex effects
for live than video presentation (Järveläinen et al., 2001). Seeing an-
other person being touched activates the viewer's own SI cortex
(Pihko et al., 2010). Activation sequences occurring 250–400 ms
after visual stimuli can be tracked during observation and imitation
of live (Nishitani and Hari, 2000) and video-presented (Biermann-
Ruben et al., 2008) hand actions and of facial gestures presented as
still images that imply motion (Nishitani and Hari, 2002); signals
are delayed and/or dampened in inferior frontal lobe in subjects suf-
fering from Asperger syndrome (Nishitani et al., 2004).

Naturalistic experimental designs could benefit from frequency
tagging which has rendered slowly-changing visual phenomena trac-
table with MEG, e.g., to study cortical correlates of the visual filling-in
phenomenon (Weil et al., 2007) and, by adding dynamical noise to
the visual stimulus, to elucidate the brain basis of bistable visual per-
cepts (Parkkonen et al., 2008). Frequency tagging has also allowed to
track tone-sequence structure of melodies (Patel and Balaban, 2000)
and to label ipsi- vs. contralateral inputs in the left and right auditory
cortices during binaural listening (Fujiki et al., 2002).

The importance of multimodal interactions—e.g., audiovisual (Raij
et al., 2000), audiotactile (Gobbele et al., 2003), visuotactile (Kida et
al., 2007)—is emphasized in naturalistic environments. Eye tracking
may help to focus MEG analysis to the moments when specific parts
of the visual scene are being attended to (Hirvenkari et al., 2010).

Interareal connectivity
Dynamic Imaging of Coherent Sources, DICS (Gross et al., 2001),

an analysis method based on frequency-domain beamforming, was

initially applied to characterization of the cortico-thalamo-cerebellar
network controlling slow finger movements (Gross et al., 2002)
(Fig. 4). DICS allows estimation of all-to-all connectivity across the
cortex, without a specific seed region (Kujala et al., 2008), and it has
been used to describe, e.g., cortico-cortical connectivity during con-
tinuous reading (Kujala et al., 2007).

An MNE-based coherence analysis successfully tracked slow
cortico-cortical coherence in hand movements (Jerbi et al., 2007). Be-
cause of its linearity, coherence is well suited for reaching from MEG
sensors to the source level. The resulting networks can be character-
ized further, e.g., with causality measures that estimate whether one
signal is likely to drive the other (Kujala et al., 2007). Other proposed
methods include Dynamic Causal Modeling (Kiebel et al., 2009), mu-
tual information (Ioannides et al., 2000), estimation of metrics based
on graph theory (Stam et al., 2009) or a small-world framework
(Bassett et al., 2009). So far, the last two methods have been applied
primarily on sensor-level MEG data; however, a recent study on
working-memory networks combined MNE source-level and graph-
theoretical descriptions (Palva et al., 2010).

In coherence estimation, even activity in brain areas that are fairly
far removed from the sensors, such as the thalamus and the cerebel-
lum, may become detectable due to the selective enhancement of the
signals from those areas (Gross et al., 2002; Schnitzler and Gross,
2005). However, also artifactual commonalities may be accentuated,
particularly at the sensor level (Schoffelen and Gross, 2009).

Connectivity patterns corresponding to the fMRI-derived ‘resting-
state networks’ (for a review, see Raichle, 2010) are less apparent in
MEG/EEG analyses, probably due to the multitude of relevant fre-
quencies (Mantini et al., 2007) and the fast dynamics of MEG/EEG.
Recently, independent component analysis (ICA) has been used for
characterization of functional connectivity in resting-state MEG data
(Hyvärinen et al., 2010); a recent MEG study, applying both beamfor-
mers and ICA, reported patterns highly similar to those seen with
fMRI (Brookes et al., 2011).

Training and development
Brain imaging is increasingly used to assess neural effects of cogni-

tive training. In language training (re-learning) of chronic anomic pa-
tients, behavioral improvements were accompanied by changes in
cortical dynamics (Cornelissen et al., 2003). In healthy subjects, learn-
ing new names for unfamiliar pictured items resulted in enhanced in-
volvement of the left temporal and frontal cortices in naming (Hulten
et al., 2009), and the change of activation by 1 week post-training
predicted howwell the individual remembered the names 10 months
later (Hulten et al., 2010). Spoken word-forms of an (artificial) for-
eign language were integrated rapidly and successfully into existing
lexical and conceptual memory networks (Dobel et al., 2010).

Development, even during the prenatal period, can be studied
with the totally noninvasive MEG. Fetal auditory MEG responses
were first found, at 34–35 weeks gestation, to sounds delivered
through the mothers's abdominal wall (Blum et al., 1985) and
have since then been recorded with increasing sophistication and
success (Draganova et al., 2005; Wakai et al., 1996). Discriminative
responses to speech sounds have been recorded in neonates and
infants (Draganova et al., 2005; Imada et al., 2006). Evoked re-
sponse latencies become shorter and their polarities change during
infancy (somatosensory responses Lauronen et al., 2006) and
childhood (auditory responses Paetau et al., 1995); obvious causes
include myelination of neural pathways and maturation of trans-
mitter systems. Already in 7-year-old children, the neural se-
quence of word reading is remarkably similar to that in adults,
although still notably delayed (Parviainen et al., 2006). The audito-
ry system, however, seems to remain malleable even when visual
language processing already looks largely adult-like (Parviainen
et al., 2011).

Fig. 4. Interareal connectivity during finger movements. Subjects performed continu-
ous lateral movements of the right index finger in the horizontal plane, at a frequency
of 0.5 Hz. Coherence maps with the left motor cortex (M1) as a reference area were
computed in individual subjects in the 6–9-Hz band. Significant group-level nodes
(p b 0.05, corrected; one-sample t-test in SPM99) were identified in the left premotor
cortex (PMC), left thalamus and right cerebellum. The arrows indicate the estimated
directionality within the network.
From Gross et al. (2002).
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Brain disorders and clinical use of MEG

Epilepsy, stroke, chronic pain and preoperative localization
Since the early 1980s, MEG has proved its usefulness in identifying

epileptic foci and differentiating between primary vs. mirror foci
(Barth et al., 1982; Fischer et al., 2005; Hari et al., 1993; Nakasato et
al., 1994; Paetau et al., 1991). Although an MEG assessment of epilep-
tic phenomena has been slow to develop into a routine procedure, re-
ports already exist—including hundreds of epileptic patients—on the
benefits of MEG in the presurgical evaluation of epileptic foci
(Stefan et al., 2003) and in aiding the decision on the most informa-
tive placement of intracranial electrodes (Knowlton et al., 2009).

MEG shows promise in monitoring of stroke recovery (Forss et al.,
2011; Rossini et al., 2007), especially since modified vasomotor reac-
tivity in stroke easily affects the BOLD hemodynamic response but
leaves the MEG signal intact (Rossini et al., 2004).

Clinical research of chronic pain may benefit from the possibility
to differentiate between cortical representations of the first and sec-
ond pain (Ploner et al., 2002) and to selectively stimulate the thin,
slowly conducting C-fibers and the faster conducting Aδ-fibers
(Kakigi et al., 2003; Raij et al., 2004). In patients suffering from com-
plex regional pain syndrome, both the extent of the somatosensory
cortical representation of the painful hand and the reactivity of
motor-cortex rhythms are altered (Juottonen et al., 2002). Long-
term follow-up recordings of such patients have demonstrated
spread of the disorder from one hemisphere to the other (Forss et
al., 2005).

The sensorimotor strip can be reliably indentified preoperatively
either by means of evoked fields or cortex–muscle coherence
(Mäkelä et al., 2001). MEG paradigms of language lateralization that
could replace the highly invasive and complication-prone Wada test
have been developed (e.g., Papanicolaou et al., 2004), and the work
continues (for reviews, see Pirmoradi et al., 2010; Salmelin, 2007).

Dyslexia and stuttering
In adult dyslexics, cortical processing in both reading and speech

perception starts to differ from the normal pattern at the stage of
the earliest language-sensitive processing (Helenius et al., 1999b;
Parviainen et al., 2005), with a marked delay by lexical-semantic pro-
cessing, particularly in reading (Helenius et al., 1999a, 2002). The left
occipitotemporal dysfunction for written words was first detected
with MEG (Salmelin et al., 1996) and later corroborated with hemo-
dynamic imaging (Paulesu et al., 2001).

Dyslectic individuals also display various timing deficits in sensory
processing. For example, the suppression of auditory responses to
successive sounds is diminished (Nagarajan et al., 1999), and re-
sponses to changes in sound pitch indicate impaired change detection
(Renvall and Hari, 2003).

Timing of cortical activation also seems to play a role in other
developmental language disorders, such as stuttering. When reading
words out loud, fluent speakers first activated the left inferior fron-
tal and then (pre)motor cortex but this sequence was reversed in
stutterers, suggesting that they initiated motor programs before ar-
ticulatory planning. Abnormalities emerged in activations involved
in overt speech production rather than core linguistic processes
(Salmelin et al., 2000b).

Multimodal imaging

With an implicit assumption that the MEG and fMRI measures re-
flect the same neural activation, the two methods have been used,
e.g., to characterize the cortical organization of the auditory “what”
and “where” pathways (Ahveninen et al., 2006; Brunetti et al.,
2005) and the time course related to itch (Mochizuki et al., 2009).

Direct comparison of MEG responses and BOLD fMRI of low-level
sensory and motor processing has suggested similarity of activated

areas (Korvenoja et al., 1999; Sharon et al., 2007). In the SI cortex,
the best correspondence between the two measures, for varying
interstimulus intervals, was found by squaring the MEG waveforms
over the entire stimulus train (Nangini et al., 2009).

However, any differences between the methods are more likely to
manifest in complex cognitive processing. Attention to faces vs. hous-
es indicated different functional effects in fMRI and MEG within
200 ms after stimulus onset but similar effects in later time windows
(Furey et al., 2006). In three recent studies of language processing,
with the same subjects and the same exact paradigm in MEG and
fMRI, action vs. object naming revealed largely similar overall activa-
tion patterns and stimulus effects in both imaging modalities
(Liljeström et al., 2009) but speech perception indicated differences
in the hemispheric balance (Renvall et al., 2012) and, in reading,
marked functional differences appeared in the left occipitotemporal,
superior temporal (MEG emphasis) and inferior frontal cortex (fMRI
emphasis) (Vartiainen et al., 2011).

Modulation of rhythmic background activity, in various frequency
bands, can show reasonable spatial agreement with BOLD fMRI (Jerbi
et al., 2009; McDonald et al., 2010; Singh et al., 2002). However, sys-
tematic evidence of such a relationship—and correspondence of stim-
ulus/task effects—directly at the level of the (whole) brain, from
independently analyzed MEG and fMRI data sets is crucially needed.
It is still unclear which of the multiple MEG/EEG features might best
correspond to BOLD fMRI functionality, and under which conditions.

From the neuroscience point of view, consistent differences be-
tween the methods, ideally indicative of sensitivity to specific aspects
of neural processing, would be far more interesting and informative
than merely plugging fMRI locations to MEG analysis and extracting
a time course. Interareal connectivity may well provide a framework
for bringing together apparently (partly) separate MEG and fMRI ac-
tivation patterns (Salmelin and Kujala, 2006). Both MEG and fMRI
have reached the level of maturity where we can—and should—ask
how the different measures may best be exploited, alone and togeth-
er, as informative probes of cognitive processes and their disorders.

MEG: quo vadis?

With present-day neuromagnetometers, it is possible to expand
the frequency range of interest from infra-slow fluctuations
(Leistner et al., 2009) up to very high-frequency (about 600 Hz) oscil-
lations (Curio et al., 1994; Hashimoto et al., 1996). Continuous head-
position monitoring and novel artifact suppression methods (Taulu et
al., 2004) facilitate recordings from poorly cooperative subjects, such
as infants and patients; even artifacts caused by deep brain stimula-
tion can be efficiently suppressed (Airaksinen et al., 2011).

The future MEG studies, building on the solid work of the first
four decades of MEG research, aim for an increasingly comprehen-
sive view of brain function, especially as regards its dynamics. The
studies will explore the added value of combined MEG–fMRI record-
ings, proceed to increasingly real-life-like experimental designs and
multisensory stimulation, and exploit new, efficient computational
methods, such as decoding of task- and stimulus-specific neural pat-
terns (Chan et al., 2011; Toda et al., 2011; Koskinen et al., in press).
Reaching to the genetics of MEG signals also represents a promising
line of ongoing and future studies.

Timing matters from behavior to sensory and cognitive functions,
from infancy to adulthood and aging, and from health to various dis-
orders, with many intermingled time scales (Hari et al., 2010). MEG,
after its long journey that started in physics laboratories, is now avail-
able to address these time-sensitive issues of human brain function.
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