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ARTICLE OPEN

Energy-efficient quantum computing
Joni Ikonen1,2, Juha Salmilehto2 and Mikko Möttönen 1,3

In the near future, one of the major challenges in the realization of large-scale quantum computers operating at low temperatures
is the management of harmful heat loads owing to thermal conduction of cabling and dissipation at cryogenic components. This
naturally raises the question that what are the fundamental limitations of energy consumption in scalable quantum computing. In
this work, we derive the greatest lower bound for the gate error induced by a single application of a bosonic drive mode of given
energy. Previously, such an error type has been considered to be inversely proportional to the total driving power, but we show
that this limitation can be circumvented by introducing a qubit driving scheme which reuses and corrects drive pulses. Specifically,
our method serves to reduce the average energy consumption per gate operation without increasing the average gate error. Thus
our work shows that precise, scalable control of quantum systems can, in principle, be implemented without the introduction of
excessive heat or decoherence.

npj Quantum Information  (2017) 3:17 ; doi:10.1038/s41534-017-0015-5

INTRODUCTION
Quantum bits, or qubits,1 have been realized using, for example,
superconducting circuits,2–4 quantum dots,5, 6 trapped ions,7, 8

single dopants in silicon,9 and nitrogen vacancy centers.10 The
state of a qubit is affected by various sources of error such as finite
qubit lifetime, measurement imperfections, non-ideal initialization,
and imprecise external control. Provided that these errors are
below a certain threshold, they can be corrected with quantum
error correction codes,4, 11, 12 which encode the information of a
logical qubit into an ensemble of physical qubits. Error correction
codes with exceptionally high thresholds, such as surface codes,12

typically require thousands of physical qubits for each fault-
tolerant logical qubit, which calls for a vast amount of physical
resources to realize a computationally useful quantum computer.
Consequently, extensions of the already demonstrated experi-

mental techniques to a large-scale solid-state quantum computer
introduces practical scaling challenges that are not pronounced in
the present prototypes. Along with physical volume limitations,
these issues include excessive heat conduction through the vast
number of required transmission lines and harmful dissipation at
attenuators. This motivates the investigation of control methods
alternative to the present standards, such as generation or
redistribution of the qubit control pulses at the chip level.
See Supplementary Information for more detailed discussion.
Although the overhead related to quantum error correction can

be decreased by implementing more accurate operations, it is
known that the quantum-mechanical uncertainties in very weak
control pulses significantly increase the gate errors.13–19 In the
case of a resonant control pulse, this type of error is inversely
proportional to the pulse energy, and hence may, in principle,
pose a trade-off in the power management of the quantum
computer. Thus it is interesting to study the fundamental
limitations of the quantum gate fidelity arising from finite pulse
energy.
In this work, we first derive the greatest lower bound for the

single-pulse gate error within the resonant Jaynes–Cummings

model.20, 21 The inevitable error originates from the quantum
nature of the drive pulse and becomes dominant in the regime of
low drive powers. In contrast to previous work,15, 16, 19 our
constructive derivation does not assume any particular state of the
system and is applicable to qubit rotations of arbitrary angles. In
addition to the lower bound itself, our method naturally finds the
bosonic quantum states of the pulses that reach the bound. We
explicitly show that single-qubit rotations are optimally realized by
applying a certain amount of squeezing to coherent states.
We also find that back-action-induced correlations between the

control pulse and the controlled qubit can be transferred to
auxiliary qubits (see also Refs. 22–24). Thus, we propose a control
protocol where multiple gates are generated with a single control
pulse which is frequently refreshed using auxiliary qubits. Whereas
previous studies suggest that it is not possible to save energy by
reusing control pulses without sacrificing the minimum gate
fidelity,16 our method exhibits orders of magnitude smaller energy
consumption with no drop in the average gate fidelity.

RESULTS
Semiclassical model
Let us first review the semiclassical formalism of single-qubit
control and the resulting gate errors. The state of a qubit can be
represented as a Bloch vector constrained inside a unit sphere, see
Fig. 1. Single-qubit logic gates Rθ, realized using, e.g., microwave
pulses, rotate the Bloch vector by θ about the axis R. Assuming
that the control pulse is a classical waveform in resonance with
the qubit transition energy ħω, the system may be described in
the rotating frame using a semiclassical interaction Hamiltonian of
the form25

Ĥcl
intðtÞ ¼ �hgðtÞðα ej i gh j þ α� gj i eh jÞ; ð1Þ

where gj i and ej i denote the ground and excited states of the
qubit, respectively, α = |α|eiϕ represents the classical amplitude |α|
and phase ϕ of the control field, g(t) is the coupling constant
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including the pulse envelope, and ħ is the reduced Planck
constant. The gate Rθ is implemented by choosing the interaction
time T and the pulse envelope such that they satisfy
2jαjR T0gðtÞdt ¼ θ. For example, setting θ = π and R along the x-

axis, the temporal evolution operator Ûcl ¼ exp½�i
R T
0Ĥ

cl
intðtÞdt=ħ�

becomes Ûcl ¼ �iσ̂x, where σ̂x ¼ ej i gh j þ gj i eh j is the Pauli X-
operator. Thus, up to a redundant global phase factor, the
interaction implements a perfect NOT gate Xπ.
We assess gate errors by utilizing the state transformation error

Eclðϑ;φÞ ¼ 1� χ0h jK̂yÛcl χ0j i�� ��2; ð2Þ
where the initial qubit state is given by χ0j i ¼ cosðϑ2Þ gj i þ
sinðϑ2Þeiφ ej i and K̂ is the desired gate. In general, the qubit state
is unknown during the computation, and therefore we choose not
to restrict our analysis to any specific state. Instead, we study the
average of a given error measure Ei over a uniform state
distribution on the Bloch sphere, generally given by

E i ¼ 1
4π

Z π

0

Z 2π

0
E iðϑ;φÞ sin ϑdϑ dφ: ð3Þ

Semiclassically, a source of gate error arises from uncertainties
in the phase and the photon number n, which are, for small-phase
fluctuations, fundamentally bounded by quantum mechanics
through the minimal uncertainty relation26 ΔnΔϕ = 1/2. Thus we
consider a control pulse with an average of n ¼ jαj2 photons and
minimal uncertainties Δn ¼ ffiffiffi

n
p

e�r and Δϕ ¼ er=ð2 ffiffiffi
n

p Þ, where r is
a free squeezing parameter. These uncertainties carry on to the
temporal evolution operator Ûcl, and we find from Eq. (3) that the
average gate error becomes inversely proportional to the photon
number. For the Xπ gate for example, we obtain the average gate
error Ecl ¼ ð4e2r þ π2e�2rÞ=ð24nÞ in the limit n ! 1. Interestingly,
the error is minimized with a finite squeezing parameter
r ¼ ln

ffiffiffiffiffiffiffiffi
π=2

p
, a result reproduced in the full quantum treatment

below. An alternative qubit-independent error quantity is the
maximum gate error given by Emax ¼ maxϑ;φEðϑ;φÞ, which obeys
a similar 1=n-dependence.19, 14

Quantum bound for gate error
Let us proceed to the full quantum treatment, where the gate
operation arises from the quantum-mechanical interaction
between the qubit and a single bosonic mode referred to as the
drive. Utilization of such quantum drive27 allows us to account for
the changes in its state arising from the interaction with the qubit.

In practice, qubits are also driven by propagating photons
described by a continuum of modes, but such arrangements do
not save energy in comparison to a well-controlled single mode
(see Supplementary Information). Hence our description below is
expected to yield a fundamental lower bound for the energy
needed for controlling a single qubit at a given fidelity.
To account for the quantum properties of the drive, we replace

the classical Hamiltonian of Eq. (1) with the resonant
Jaynes–Cummings Hamiltonian25 and define the transformation
error as (see Methods)

E½χ̂0; χ̂ðTÞ�¼ 1� Tr½χ̂ðTÞK̂ χ̂0K̂
y�; ð4Þ

where χ̂0 and χ̂ðTÞ are the density operators of the qubit before
and after the interaction with the drive pulse, respectively.
We are able to solve the drive states that minimize the average

or maximum gate error for a given interaction time and a desired
rotation R′θ about an axis in the xy-plane. We find that the error-
minimizing drive states are solutions of eigenvalue equations of
the form

F̂i σ
opt;i
0

��� E
¼ fi σ

opt;i
0

��� E
; ð5Þ

where F̂i is an operator constructed from the temporal evolution
operator, the target gate, and the initial qubit state (see Methods
and Supplementary Information for detailed derivations). The
operator F̂i , and hence the optimal drive state, take different forms
depending on whether we choose to minimize the average gate
error (i = avg) or the maximum gate error (i =max). By definition,
the optimal states σopt;i0

��� E
provide the greatest lower bound for

the error E i.
We solve this eigenvalue equation numerically. Examples of

fidelity-optimal solutions are shown in Fig. 2a using the Wigner
pseudo-probability function.28 We note that the numerically
obtained states are essentially identical to the squeezed coherent

states α; rj i ¼ D̂ðαÞŜðrÞ 0j i, where D̂ðαÞ ¼ eαâ
y�α�â and ŜðrÞ ¼

e
1
2r
�â2�1

2rðâyÞ
2

are the displacement and squeezing operators,
respectively.28 The difference between the numerical and the
exact squeezed state decreases rapidly with increasing α, and the
difference in the gate error produced by these states is negligible.
Importantly, the numerical solutions possess the correct ampli-
tude and phase to satisfy the timing condition 2gT|α| = θ and to
set the desired direction of the rotation axis, without imposing
them explicitly. Furthermore, the average errors, as well as the

Fig. 1 Model system. a Ideal two-level system (bottom) interacting with a harmonic oscillator (top). b Bloch vector representation of the qubit
state χj i and an example Xπ rotation
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optimal squeezing parameters, are equal to those obtained in the
semiclassical approach above.
In the specific case of π-rotations, a sum of two eigenvectors,

i.e., the squeezed cat state28–30

ΣðαÞj i ¼ 1
N α; ln

ffiffiffiffiffiffiffiffi
π=2

p��� E
± �α; ln

ffiffiffiffiffiffiffiffi
π=2

p��� E� �
; ð6Þ

where the positive constant N ensures normalization, is a state
that minimizes both the average and the maximum error
simultaneously (see Supplementary Information). Comparison of
errors produced by such a state and a coherent state is presented
in Fig. 2b.
Generally for R′θ gates, we find solutions with errors that vanish

as 1=n in the limit n ! 1, as shown in the Supplementary
Information. The lower bounds together with errors induced by
non-squeezed coherent states are shown in Table 1. Other gates,
such as the Pauli-Z gate and the Hadamard gate, can be
constructed as sequences of R′θ gates. Recently, it was shown
that squeezing also improves the fidelity of the phase gate in the
dispersive regime.31

Drive-refreshing protocol
All of the fundamental lower bounds derived above are inversely
proportional to the average photon number. Intuitively, a drive
with a large photon number should be capable of inducing

multiple gates without changing substantially, thus decreasing the
required amount of energy per gate for nearly equal error level.
We show below that reusing a drive effectively decreases the
energy consumption well below the lower bound of average gate
error for disposable pulses. Furthermore, the drive can be
corrected between successive gates such that the consumption
drops without essential decrease of the average gate fidelity.
In our protocol, an itinerant control drive cyclically interacts

with a register of resonant qubits and ancillary qubits, see Fig. 3a.
A cycle begins with the drive, initially in a suitable squeezed
coherent state, applying a chosen gate operation with minimal
error on a register qubit. Consequently, the drive state changes
due to the quantum back-action. To undo this, the drive is set to
sequentially interact with corrective ancilla qubits, initialized in a
superposition of ground and excited states, for a time correspond-
ing to a π-rotation. As a result, the purity, energy, and phase of the
drive are restored in successive interactions (see Supplementary
Information). At the end of the cycle, the ancilla qubits are reset
and the refreshed drive is usable for another high-fidelity gate.
Insight into the refreshing mechanism of the ancillary interac-

tions can be obtained by considering the path traversed by the
Bloch vector of the ancillary qubit, as illustrated in Fig. 3b. A drive
lacking energy rotates the vector with smaller angular frequency,
leaving the ancilla slightly biased towards the ground state and
gaining energy in the process. Similarly, excessive energy in the

W

Fig. 2 Optimal drive states and the resulting error. a Numerically solved initial drive states σopt;avg0

�� �
that minimize the average error of

rotations Yπ/2 and Xπ as Wigner distributions above and below the dashed line, respectively. The Wigner function is defined as
WðzÞ ¼ 2

π TrD½D̂ð�zÞ σopt0

�� �
σopt0

� ��D̂ðzÞeiπây â�, where D̂ðzÞ is the displacement operator. The interaction time for each operation Rθ is T= θ/(6g),
which is expected to yield states with n¼ 9. b Gate error for an Xπ operation as a function of the average photon number n of the drive pulse
which is initialized either in the coherent state (red color) or the squeezed cat state (blue color). The highlighted areas indicate the range of
error, depending on the initial state of the qubit, and the solid lines show the error averaged over qubit states distributed uniformly on the
Bloch sphere, E. The inset shows the difference ΔE between the numerically calculated errors and their analytical first-order approximations
(Table 1), with dashed lines indicating the difference in maximum errors

Table 1. Analytical expressions for gate errors using different drive states

R′π R′π=2

State E Emax r E r

Coherent,
ffiffiffi
n

p
eiϕ

�� �
4þπ2

24n (110%) 4þ4πþπ2

16n (210%) 0 8þπ2

96n (100.5%) 0

Squeezed,
ffiffiffi
n

p
eiϕ; r

�� �
π
6n (*) π

2n (200%) e2iϕ ln
ffiffiffiffiffiffiffiffi
π=2

p ffiffi
2

p
π

24n (*) e2iϕ ln
ffiffiffiffiffiffiffiffiffiffiffiffi
π=

ffiffiffi
8

pq
S. cat,

ffiffiffi
n

p
eiϕ; r

�� �
± � ffiffiffi

n
p

eiϕ; r
�� �

π
6n (*) π

4n (*) e2iϕ ln
ffiffiffiffiffiffiffiffi
π=2

p
N/A

Note: Average and maximum errors for gates R′π and R′π=2 to the first order in n�1 , implemented with the drive pulse either in a coherent state, in a squeezed
coherent state, or in a squeezed cat state. Here, R′ lies in the xy-plane forming an angle ϕ with respect to the x-axis. The squeezing parameter, r, is chosen in
each case to minimize the average error E. The percentages denote the error in units of the lower bounds marked with (*)
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drive is transferred to the ancilla due to rotating it closer to the
excited state. This effect is discussed further in the Supplementary
Information.
With increasing number of ancilla qubits, the execution time of

a full cycle increases and thus a single itinerant pulse applies a
gate on the register less frequently. To compensate for this, one
may use as many drive pulses as there are ancillas in the array, and
synchronize their travel times such that each qubit interacts with
one of the pulses at a given time. Such a system is able to apply as
many gates on the register per cycle as there are itinerant pulses
in circulation. However, we restrict our analysis to a single itinerant
pulse.

Simplified implementation with ideally prepared ancilla
During one cycle of our protocol, a single drive first interacts with
a register qubit, followed by M interactions with ancilla qubits
each prepared in the state ð gAj i þ i eAj iÞ= ffiffiffi

2
p

. To gain theoretical
insight into the core idea of the protocol, we first consider a
simplified version where the ancilla qubits are perfectly prepared
and reset for every cycle. Additionally, we assume that the register
qubits are uncorrelated, and that their states are uniformly
randomized over the Bloch sphere.
We numerically simulate the evolution of the drive and evaluate

the average error of the gate Xπ for a register qubit after each
cycle. See Methods for a step-by-step description of the
simulation. During the simplified protocol, the average error E
will increase from its initial lower-bound value at varying rates
depending on the states of the register qubits. We find that after
many cycles, the drive reaches a steady state that generates the
desired gates with a predictable average error. With 1–3 ancillas
per cycle, the average error saturates after a hundred cycles; with
ten or more ancillas, the saturation takes less than ten cycles. If no
corrective ancillas are used, the average error eventually reaches
0.5.
Figure 4a shows how the eventual error level depends on the

number of photons and ancillas. The average gate error
approaches its theoretical lower bound, in the limit of many
drive-refreshing ancilla qubits. For smaller rotation angles,
qualitatively similar results are obtained with more slowly
accumulating error. Thus a single itinerant drive pulse supplied
with ideal ancilla states can generate an infinite number of high-
fidelity gates.

Register in an entangled state
Above, the qubits in the register were assumed to be
essentially uncorrelated. Here we demonstrate the beneficial
performance of our method in the case where the register qubits
are maximally entangled. We initialize the register of
N qubits in the Greenberger–Horne–Zeilinger (GHZ) state
ψGHZj i ¼ ð gj i�N þ ej i�NÞ= ffiffiffi

2
p

. The control method itself is iden-
tical to the one used above: the drive interacts with only one qubit
at a time to implement a single-qubit gate K̂ and is subsequently
refreshed by M ideally prepared ancillas between each such gate.
The target operation on the register is thus K̂�N . After the drive
has interacted with every register qubit once, the state of the
register has transformed into ρ̂′ and the total transformation error
is computed as

EGHZ¼ 1� Tr½ρ̂′K̂�N
ψGHZj i ψGHZh jðK̂yÞ

�N
�: ð7Þ

We divide this error by the number of qubits to obtain the
effective error per gate, Eeff = EGHZ/N.
Results of a simulation for an Xπ/2 gate with the initial drive stateffiffiffiffiffiffiffiffi
100

p
; ln

ffiffiffiffiffiffiffiffi
π=2

p�� E
are shown in Fig. 4b. A behavior similar to

Fig. 4a is observed: with enough ancillary corrections between the
register gates, the error produced by an itinerant drive can be
reduced to the level given by individual optimal pulses. The figure
also suggests that even without corrections, reusing a drive of
certain energy is more beneficial in practice than dividing the
same amount of photons into individual, weaker disposable
pulses. Thus we conclude that regardless of the state of the
register, refreshment of a drive pulse likely serves to improve the
trade-off between gate error and required energy.
The above case of entangled qubits, with the chosen target

gate Xπ/2, provides a way to compare our results to the previous
work by Gea–Banacloche and Ozawa,16 where they studied a
register in a GHZ state that was driven by n photons on average.
They showed that the maximum gate error of the Xπ/2 rotation for
each qubit in this system scales as N=n. This scaling was used to
argue that a pulse of average photon number ntotal cannot
outperform N individual pulses of ntotal=N average photons,
although their performance was not compared explicitly. The
key differences here are that Ref. 16 does not consider the
possibility of using ancillary qubits, and that it employs a
definition of error which also accounts for the infidelity of the
drive state. Our results suggest that the errors due to both reused
and disposable pulses of equal total energy increase sublinearly
with N, the prefactor for reused pulses is much smaller than for

Fig. 3 a Schematic diagram of the drive-refreshing protocol. During a single cycle, the itinerant drive pulse (red) induces a chosen rotation Rθ
on one of the qubits Ci in the register and is then refreshed by sequential Xπ interactions with each ancillary qubit {Aj}. In an ideal setting, each
ancilla is prepared precisely into the state ð gAj i þ i eAj iÞ= ffiffiffi

2
p

and reset after each cycle. Alternatively, the ancilla qubits are initially in their
ground states and their imperfect preparation and reset is implemented by an itinerant corrector pulse (green). b Evolution of an ancilla state
during a refreshing cycle: (i) preparation from the ground state into the state χAj i ¼ ð gAj i þ i eAj iÞ= ffiffiffi

2
p

, (ii) drive refresh as a result the primary
rotation (red), and (iii) ancilla reset. We either assume that the preparative steps (i) and (iii) are ideal or induced by a corrector pulse
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disposable pulses, and the prefactor can be greatly improved by
the refreshing protocol.

Full protocol
The total energy consumption of the protocol can be mean-
ingfully estimated only if the method and energy cost of the
ancilla preparation and reset are specified. To this end, we
propose to prepare the ancillas by an itinerant corrector pulse
shown in Fig. 3a. In the full protocol, the ancilla qubits are first
prepared in their ground state and then controlled by the
corrector pulse from cycle to cycle. With opposite phase and half
the interaction time compared with the drive, the corrector pulse
applies an X−π/2 gate on the ancilla before and after an Xπ gate
introduced by the drive pulse, see Methods for details. The
purpose of the last X−π/2 gate is to return the ancilla qubit close to
the ground state, thus performing an imperfect reset. For
simplicity, we assume that the state of the register is separable.
Since all ancilla qubits are prepared to the ground state, the

energy consumption fully arises from the drive and corrector
pulses, both of which have the initial average energy n�hω. Thus,
the average energy consumption per register gate is E¼ 2�hωn=N,
where N is the number of transformed register qubits, or equally
the number of elapsed cycles. In the case where the drive-
refreshing protocol is not used, M = 0, we have E ¼ n�hω=N.
The evolution of the drive state depends on the randomized

sequence of the initial states of the register qubits. Results from
multiple simulations are averaged and shown in Fig. 5. In contrast
to the ideal case, the system accumulates error over repeated
cycles and the average gate error does not saturate. The
accumulation of error is attributed to imperfect preparations
and resets of the ancillas as well as accumulating entanglement
between the drive and ancilla states. Nevertheless, we find that
with a sufficient number of ancillary qubit interactions between
the register gates, the average error remains nearly constant for a
large number of successive gates. The protocol can be stopped
before the error reaches a desired threshold. This shows that the
total energy cost per register gate is effectively reduced to orders
of magnitude below the lower bound for disposable pulses. In
fact, Fig. 5 suggests that the gate error may be, in theory, reduced

indefinitely without increasing the power consumption by using
more energetic pulses.

DISCUSSION
In this work, we derived the greatest lower bound for the error of a
single-qubit gate implemented with a single resonant control
mode of a given mean energy. In contrast to previous work, our
method for obtaining the bound is not restricted to any particular
gate or state of the qubit–drive system. The method can also be
used to find the quantum state of the drive mode that minimizes

Fig. 4 a Average error E of Xπ gates generated by an itinerant drive pulse which initially had an average photon number n and has reached
the steady state due to ancilla refreshing. The drive is set to interact with M ideal ancillas ð χAj i ¼ ð gAj i þ i eAj iÞ= ffiffiffi

2
p Þ per cycle as indicated,

leading to effective refreshing of the drive state. The dashed line indicates the lower bound of error which is achieved either with a disposable
optimal pulse or with a pulse refreshed by infinitely many ideal ancillas. The inset shows the average gate error as a function of M for n¼ 100.
b State preparation error per qubit Eeff= EGHZ/N for a register of N qubits initially in a GHZ state. The target gate is an Xπ/2 rotation for all qubits
individually, implemented by a squeezed state of n¼ 100 photons (r ¼ ln

ffiffiffiffiffiffiffiffi
π=2

p
) that is refreshed by M ideal ancillas per cycle. The circles

represent the data, whereas the colored lines extend the line segments between the first two data points, to distinguish deviations from linear
behavior. The black dashed line represents the error obtained using N disposable pulses of constant photon number n¼ 100. The dotted line is
the error due to disposable pulses of constant total energy n¼ 100=N

Fig. 5 Average gate error as a function of the photon cost per gate,
2n=N for M> 0 and n=N for M= 0. Here, n is the mean number of
photons in the initial pulses and N is the number of Xπ register gates
generated by the protocol. The ancilla states are non-ideally

prepared by a corrector pulse initially in state � ffiffiffi
n

p
; ln

ffiffiffiffiffiffiffiffi
π=2

p�� E
.

During the protocol, the curve advances from right to left as 1/N
decreases. The results are averaged over multiple simulations. The
dashed line indicates the lower bound of error which is achieved
with a single disposable optimal pulse
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the average gate error, or alternatively the transformation error for
a chosen initial qubit state. Specifically, we found that the lower
bounds for rotations about axes in the xy-plane are achieved by
squeezing the quantum state of a coherent drive pulse by an
amount that depends on the target gate. Together with the recent
result that squeezing also significantly improves the phase gate in
the dispersive regime,31 our results suggest that squeezing may
generally yield useful improvements in different control schemes.
This calls for experimental studies on outperforming the widely-
used coherent state.
Importantly, our results also impose a lower bound on the

energy consumption of qubits controlled by individual disposable
pulses. However, we theoretically introduced a protocol where a
control pulse is used to generate multiple gates and is refreshed
between them to avoid loss of gate fidelity. This protocol exhibits
orders of magnitude lower power consumption than the bound
for disposable pulses. The refreshing process may also prove
useful in correcting the phase and amplitude errors of a noisy
control pulse.
Our protocol can possibly be realized in some form with future

low-loss microwave components such as photon routers,32, 33

circulators, and nanoelectromechanical systems.34 Technical limita-
tions in the quality of these devices will set in practice the trade-off
between the achievable gate fidelity and the dissipated power. In
the future, our work can be extended to error bounds for 2-qubit
gates, state preservation, pulse amplification, and propagating
control pulses composed of a continuum of bosonic modes.

METHODS
Gate error in the Jaynes–Cummings model
The dynamics of the qubit–drive system is generally described by the
Jaynes–Cummings Model,20, 21 which includes the rotating-wave approx-
imation. Assuming resonant interaction, the system is governed by the
interaction Hamiltonian

Ĥint ¼ �hgðtÞð ej i gh j � âþ gj i eh j � âyÞ; ð8Þ
where â is the bosonic annihilation operator of the drive mode. Without
loss of generality, we assume an on-off envelope such that g(t) = const. for
0 < t < T and g(t) = 0 otherwise. Most features of the semiclassical model
are reobtained if |α|→∞ and the drive is in the coherent state

αj i ¼ e�
1
2jαj2
P1

n¼0
αnffiffiffi
n!

p nj i, where nj i is the nth Fock state. For example,
taking the expectation value of Ĥint in the state |α⟩ yields the semiclassical
Hamiltonian in Eq. (1). Thus the coherent state approximately induces a
gate Rθ if the timing condition 2gT|α| = θ is satisfied.
In contrast to the semiclassical model, the evolution of the qubit is not

unitary. After the interaction, the qubit state is extracted by taking a partial
trace over the drive degrees of freedom as

χ̂ðTÞ ¼ TrD½ÛðTÞρ̂0Û
yðTÞ�; ð9Þ

where ρ̂0 and ÛðTÞ denote the arbitrary initial density operator and the
evolution operator of the qubit–drive system, respectively. The error, or
infidelity, between the target and the resulting qubit state is here defined
as

E½χ̂0; χ̂ðTÞ�¼ 1� Tr½χ̂ðTÞK̂ χ̂0K̂
y�; ð10Þ

which can be regarded as a generalization of Eq. (2).

Minimization of gate error
If the initial state of the joint system is separable and pure,
ρ̂0 ¼ χ0j i χ0h j � σ0j i σ0h j, where |χ0⟩ and |σ0⟩ denote the initial qubit and
drive states, respectively, the gate error of Eq. (4) induced by the
Jaynes–Cummings interaction can be written in the general form
(see Supplementary Information for derivation)

E iðσ0Þ ¼ 1� σ0h jF̂i σ0j i: ð11Þ
Here, Ei denotes either the transformation error E(ϑ, φ) of a particular

qubit state, the average gate error E [Eq. (3)], or the maximum gate error
Emax. The information about the desired gate and chosen interaction time

is contained in the corresponding operator F̂i which is denoted either by
F̂ðϑ;φÞ, F̂avg , or F̂max, respectively. An analytical expression for F̂ðϑ;φÞ and
F̂avg can be found for any gate, whereas an expression for F̂max exists for at
least rotations R′π , where the rotation axis R′ is restricted to the xy-plane of
the Bloch sphere. See Supplementary Information for derivations and
detailed expressions. From Eq. (11) we see that the error-minimizing drive
states are the eigenstates of operators F̂i that correspond to the largest
eigenvalue fi,

F̂i σ
opt;i
0

��� E
¼ fi σ

opt;i
0

��� E
ð12Þ

The numerical approach for solving the eigenstates of F̂i has the
disadvantage of truncating the infinite-dimensional state vector to a finite
vector of length Ncut, which might distort or exclude some of the possible
solutions. However, the obtained Gaussian-like solutions are not affected
by changes in the cut-off for Ncut � n � ffiffiffi

n
p

. Raising the cut-off reveals
more energetic solutions, but these correspond to pulses that implement
the chosen gate after an integer number of unnecessary 2π rotations.

Simplified refreshing protocol with ideal preparations
The Hilbert space of the drive-refreshing system is formally a composite
space of the Fock space D of the drive and the two-level spaces {Qk}k =
{Ci,Aj}i,j of the register and ancilla qubits,

S ¼
ONþM

k¼1

Qk

 !
� D ¼

ON
i¼1

Ci

 !
�

OM
j¼1

Aj

 !
� D: ð13Þ

The drive only interacts with one qubit at a time and therefore each
interaction can be calculated in the subspace of the relevant qubit and the
drive, assuming the qubits are not correlated. After the interaction, the
drive state is extracted by tracing over the associated qubit space. Namely,
the ith iteration of the drive state is given by

σ̂iþ1 ¼ TrQi ½Ûið χ ij i χ ih j � σ̂iÞÛy
i �; ð14Þ

where Ûi acts in the subspace of the drive and the ith qubit in the control
sequences described below.
For the target gate Xπ, the simplified protocol without the additional

corrector pulse is executed with the following steps:

(i) The drive state is initialized to the state σ0 ¼
ffiffiffi
n

p
; ln

ffiffiffiffiffiffiffiffi
π=2

p�� E
.

(ii) A new register qubit is initialized in a random pure state, chosen
uniformly from the Bloch sphere.

(iii) The drive interacts with the register qubit for interaction time T ¼
π=ð2gnÞ [Eq. (14)].

(iv) The M ancilla qubits are initialized to χAj i ¼ ð gAj i þ i eAj iÞ= ffiffiffi
2

p
.

(v) The drive interacts with an ancilla qubit for interaction time
T ¼ π=ð2gnÞ. Repeat for all ancillas.

(vi) Evaluate the average error E of a hypothetical Xπ gate with Eqs (3)
and (4) using the current drive state. Continue from step (ii).

For gates other than Xπ, the phases of the drive and ancillas, as well as
the interaction time in step (iii), but not step (v), would be shifted
accordingly.

Register in an entangled state
In the case where the register is initialized in the GHZ state, the temporal
evolution operators must be calculated in the Hilbert space ð�N

i¼1CiÞ � D
or ð�N

i¼1CiÞ � Aj � D for interactions between the drive and a register
qubit, or drive and the jth ancilla, respectively. No partial trace over any
register qubit is taken. Although the physical control scheme is the same
as for the non-entangled register, the simulation differs in steps (ii) and (vi).
To obtain a convenient comparison with Ref. 16, the target gate is chosen
as Xπ/2. The simulation proceeds by the following steps:

(i) The drive state is initialized to the E-minimizing state
σ0j i ¼ ffiffiffi

n
p

; ln
ffiffiffiffiffiffiffiffi
π=2

p�� E
.

(ii) The register is initialized in the GHZ state ð gj i�Nþ ej i�NÞ= ffiffiffi
2

p
(iii) The drive interacts with a register qubit for interaction time

T=2 ¼π=ð4gnÞ [Eq. (14)].
(iv) The M ancilla qubits are initialized to χAj i ¼ ð gAj i þ i eAj iÞ= ffiffiffi

2
p

.
(v) The drive interacts with an ancilla qubit for interaction time

T ¼ π=ð2gnÞ. Repeat for all ancillas.
(vi) Continue from step (iii), unless the drive has interacted with every

register qubit.
(vii) Evaluate the transformation error using Eq. (7).
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Full protocol
In the full protocol, a corrector pulse is added to the system to prepare the
ancilla qubits and we assume that the register is initially in a separable
state. In addition to computing the drive state after each ancilla
interaction, the state of the interacting ancilla qubit is also extracted for
subsequent use by a partial trace over the drive degrees of freedom. This is
justified if the ancilla qubits do not become strongly correlated during the
evolution. This approximation is more accurate the closer the control
pulses are to classical pulses which do not induce entanglement.
The full protocol is given by:

(i) The drive state is initialized to
ffiffiffi
n

p
; ln

ffiffiffiffiffiffiffiffi
π=2

p�� E
, the corrector pulse to

� ffiffiffi
n

p
; ln

ffiffiffiffiffiffiffiffi
π=2

p�� E
and all M ancillas to the ground state.

(ii) A new register qubit is initialized in a random pure state.
(iii) The drive interacts with the register qubit with interaction time

T ¼ π=ð2gnÞ [Eq. (14)].
(iv) An ancilla qubit interacts sequentially with the corrector, the drive,

and the corrector again, with interaction times T/2, T, and T/2,
respectively. Repeat for all other ancillas.

(v) Evaluate the average error E of a hypothetical Xπ gate with Eqs (3)
and (4) using the current drive state. Continue from step (ii).

ACKNOWLEDGEMENTS
We thank Paolo Solinas and Benjamin Huard for useful discussions. This work was
supported by the European Research Council under Starting Independent Researcher
Grant No. 278117 (SINGLEOUT) and under Consolidator Grant No. 681311 (QUESS).
We also acknowledge funding from the Academy of Finland through its Centers of
Excellence Program (grant nos 251748 and 284621) and grant (no. 286215) and from
the Finnish Cultural Foundation.

COMPETING INTERESTS
The authors declare no competing interests.

REFERENCES
1. Preskill, J. Reliable quantum computers. Proc. R. Soc. Lond. A 454, 385–410 (1998).

http://rspa.royalsocietypublishing.org/content/454/1969/385
2. Nakamura, Y., Pashkin, Y. A. & Tsai, J. S. Coherent control of macroscopic quantum

states in a single-cooper-pair box. Nature 398, 786–788, doi:10.1038/19718
(1999).

3. Barends, R. et al. Superconducting quantum circuits at the surface code threshold
for fault tolerance. Nature 508, 500–503, doi:10.1038/nature13171 (2014).

4. Kelly, J. et al. State preservation by repetitive error detection in a super-
conducting quantum circuit. Nature 519, 66–69, doi:10.1038/nature14270 (2015).

5. Bonadeo, N. H. et al. Coherent optical control of the quantum state of a single
quantum dot. Science 282, 1473–1476 (1998). http://science.sciencemag.org/
content/282/5393/1473

6. Veldhorst, M. et al. A two-qubit logic gate in silicon. Nature 526, 410–414,
doi:10.1038/nature15263 (2015).

7. Sackett, C. A. et al. Experimental entanglement of four particles. Nature 404,
256–259, doi:10.1038/35005011 (2000).

8. Debnath, S. et al. Demonstration of a small programmable quantum computer
with atomic qubits. Nature 536, 63–66, doi:10.1038/nature18648 (2016).

9. Pla, J. J. et al. A single-atom electron spin qubit in silicon. Nature 489, 541–545,
doi:10.1038/nature11449 (2012).

10. Togan, E. et al. Quantum entanglement between an optical photon and a solid-
state spin qubit. Nature 466, 730–734, doi:10.1038/nature09256 (2010).

11. Terhal, B. M. Quantum error correction for quantum memories. Rev. Mod. Phys.
87, 307–346, doi:10.1103/RevModPhys.87.307 (2015).

12. Fowler, A. G., Mariantoni, M., Martinis, J. M. & Cleland, A. N. Surface codes: towards
practical large-scale quantum computation. Phys. Rev. A 86, 032324, doi:10.1103/
PhysRevA.86.032324 (2012).

13. Ozawa, M. Conservative quantum computing. Phys. Rev. Lett. 89, 057902,
doi:10.1103/PhysRevLett.89.057902 (2002).

14. Gea-Banacloche, J. Minimum energy requirements for quantum computation.
Phys. Rev. Lett. 89, 217901, doi:10.1103/PhysRevLett.89.217901 (2002).

15. Gea-Banacloche, J. & Ozawa, M. Constraints for quantum logic arising from
conservation laws and field fluctuations. J. Opt. B 7, S326 (2005). http://stacks.iop.
org/1464-4266/7/i=10/a=017

16. Gea-Banacloche, J. & Ozawa, M. Minimum-energy pulses for quantum logic
cannot be shared. Phys. Rev. A 74, 060301, doi:10.1103/PhysRevA.74.060301
(2006).

17. Gea-Banacloche, J. & Miller, M. Quantum logic with quantized control fields
beyond the 1/n limit: mathematically possible, physically unlikely. Phys. Rev. A 78,
032331, doi:10.1103/PhysRevA.78.032331 (2008).

18. Karasawa, T., Gea-Banacloche, J. & Ozawa, M. Gate fidelity of arbitrary single-qubit
gates constrained by conservation laws. J. Phys. A 42, 225303 (2009). http://
stacks.iop.org/1751-8121/42/i=22/a=225303

19. Igeta, K., Imoto, N. & Koashi, M. Fundamental limit to qubit control with coherent
field. Phys. Rev. A 87, 022321, doi:10.1103/PhysRevA.87.022321 (2013).

20. Jaynes, E. T. & Cummings, F. W. Comparison of quantum and semiclassical
radiation theories with application to the beam maser. Proc. IEEE 51, 89–109
(1963).

21. Shore, B. W. & Knight, P. L. The jaynes-cummings model. J. Mod. Opt. 40,
1195–1238 (1993).

22. Layden, D., Martn-Martnez, E. & Kempf, A. Universal scheme for indirect
quantum control. Phys. Rev. A 93, 040301, doi:10.1103/PhysRevA.93.040301
(2016).

23. Slosser, J. J., Meystre, P. & Braunstein, S. L. Harmonic oscillator driven by a
quantum current. Phys. Rev. Lett. 63, 934–937, doi:10.1103/PhysRevLett.63.934
(1989).

24. Åberg, J. Catalytic coherence. Phys. Rev. Lett. 113, 150402, doi:10.1103/
PhysRevLett.113.150402 (2014).

25. Nakahara, M. & Ohmi, T. Quantum computing: From linear algebra To physical
realizations (CRC Press, 2008).

26. Pegg, D. T. & Barnett, S. M. Phase properties of the quantized single-mode
electromagnetic field. Phys. Rev. A 39, 1665–1675, doi:10.1103/PhysRevA.39.1665
(1989).

27. Salmilehto, J., Solinas, P. & Möttönen, M. Quantum driving and work. Phys. Rev. E
89, 052128, doi:10.1103/PhysRevE.89.052128 (2014).

28. Dodonov, V. V. ‘Nonclassical’ states in quantum optics: a ‘squeezed’ review of the
first 75 years. J. Opt. B 4, R1 (2002. http://stacks.iop.org/1464-4266/4/i=1/a=201

29. Govia, L. C. G., Pritchett, E. J. & Wilhelm, F. K. Generating nonclassical states from
classical radiation by subtraction measurements. New J. Phys. 16, 045011 (2014).
http://stacks.iop.org/1367-2630/16/i=4/a=045011

30. Vlastakis, B. et al. Deterministically encoding quantum information using 100-
photon schrödinger cat states. Science 342, 607–610 (2013). http://science.
sciencemag.org/content/342/6158/607

31. Puri, S. & Blais, A. High-fidelity resonator-induced phase gate with single-mode
squeezing. Phys. Rev. Lett. 116, 180501, doi:10.1103/PhysRevLett.116.180501
(2016).

32. Pechal, M. et al. Superconducting switch for fast on-chip routing of quantum
microwave fields. Phys. Rev. Appl. 6, 024009, doi:10.1103/PhysRevApplied.
6.024009 (2016).

33. Hoi, I.-C. et al. Demonstration of a single-photon router in the microwave regime.
Phys. Rev. Lett. 107, 073601, doi:10.1103/PhysRevLett.107.073601 (2011).

34. Zhou, X. et al. Slowing, advancing and switching of microwave signals using
circuit nanoelectromechanics. Nat. Phys. 9, 179–184, doi:10.1038/nphys2527
(2013).

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in anymedium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this license, visit http://creativecommons.
org/licenses/by/4.0/.

© The Author(s) 2017

Supplementary Information accompanies the paper on the npj Quantum Information website (doi:10.1038/s41534-017-0015-5).

Energy-efficient quantum computing
J Ikonen et al.

7

Published in partnership with The University of New South Wales npj Quantum Information (2017)  17 

http://rspa.royalsocietypublishing.org/content/454/1969/385
http://dx.doi.org/10.1038/19718
http://dx.doi.org/10.1038/nature13171
http://dx.doi.org/10.1038/nature14270
http://science.sciencemag.org/content/282/5393/1473
http://science.sciencemag.org/content/282/5393/1473
http://dx.doi.org/10.1038/nature15263
http://dx.doi.org/10.1038/35005011
http://dx.doi.org/10.1038/nature18648
http://dx.doi.org/10.1038/nature11449
http://dx.doi.org/10.1038/nature09256
http://dx.doi.org/10.1103/RevModPhys.87.307
http://dx.doi.org/10.1103/PhysRevA.86.032324
http://dx.doi.org/10.1103/PhysRevA.86.032324
http://dx.doi.org/10.1103/PhysRevLett.89.057902
http://dx.doi.org/10.1103/PhysRevLett.89.217901
http://stacks.iop.org/1464-4266/7/i=10/a=017
http://stacks.iop.org/1464-4266/7/i=10/a=017
http://dx.doi.org/10.1103/PhysRevA.74.060301
http://dx.doi.org/10.1103/PhysRevA.78.032331
http://stacks.iop.org/1751-8121/42/i=22/a=225303
http://stacks.iop.org/1751-8121/42/i=22/a=225303
http://dx.doi.org/10.1103/PhysRevA.87.022321
http://dx.doi.org/10.1103/PhysRevA.93.040301
http://dx.doi.org/10.1103/PhysRevLett.63.934
http://dx.doi.org/10.1103/PhysRevLett.113.150402
http://dx.doi.org/10.1103/PhysRevLett.113.150402
http://dx.doi.org/10.1103/PhysRevA.39.1665
http://dx.doi.org/10.1103/PhysRevE.89.052128
http://stacks.iop.org/1464-4266/4/i=1/a=201
http://stacks.iop.org/1367-2630/16/i=4/a=045011
http://science.sciencemag.org/content/342/6158/607
http://science.sciencemag.org/content/342/6158/607
http://dx.doi.org/10.1103/PhysRevLett.116.180501
http://dx.doi.org/10.1103/PhysRevApplied.6.024009
http://dx.doi.org/10.1103/PhysRevApplied.6.024009
http://dx.doi.org/10.1103/PhysRevLett.107.073601
http://dx.doi.org/10.1038/nphys2527
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.1038/s41534-017-0015-5

