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ABSTRACT

Mobility fluctuations have been observed to influence 1=f noise in mesoscopic two-dimensional conductors in recent experiments. If such
mobility noise can be assigned to clustering/declustering of defects/impurities, the second spectrum should also display 1=f character. In this
work, we investigate the second spectrum of noise due to mobile impurities on a two-dimensional lattice both using kinetic Monte Carlo sim-
ulations (periodic boundary conditions either in one or two directions) and experiments on suspended graphene in Corbino geometry. The
simulations indicate 1=f d behavior with d ’ 0:8 6 0:15 for the second spectrum of noise, while the experiments on suspended graphene
yield an exponent d ’ 0:7 6 0:3, independent of the amount of adsorbed atoms.

VC 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0153467

In quantum devices and semiconducting heterostructures, 1=f
noise is typically modeled using a collection of two-level systems (TLS)
or trap states,1–3 which have also been found very important for the
loss of coherence in superconducting devices working at microwave
frequencies.4,5 A large collection of such states, having broadly distrib-
uted tunneling parameters, facilitates a wideband of 1=f c noise with
c ’ 1. Such modeling of low frequency noise has been very successful,
e.g., in field-effect transistors.3 The resistance fluctuations in metallic
conductors are determined foremost by fluctuations in charge carrier
mobility.6 Mobility variation can arise due to impurity states with a
fluctuating scattering cross section or lattice scattering induced by
phonons.7 At low temperatures, universal conductance fluctuations
caused by electron interference in disordered material become modi-
fied by defect motion leading to noise.8,9 Furthermore, there are also
1=f c models based on mobile impurities and their agglomeration.10–16

The origin of 1=f noise in graphene is complex, in particular,
near the charge neutrality point (Dirac point).17,18 It is argued to arise

from an interplay of charge traps, atomic defects, short and long range
scattering, as well as charge puddles. Various models have been pro-
posed and qualitative agreement with the data has been reached.19–25

In many graphene devices, even correlations between charge traps and
mobility noise have been found,26,27 which is also common in regular
metallic and semiconducting devices.1,7,28 Suspended clean graphene
removes many of these noise sources and the fundamental elements
can be addressed in a non-disturbed form.

Direct evidence has recently been obtained for the role of mobil-
ity fluctuations in electrical transport in 2D.29,30 For these findings, we
have proposed a model of 1=f noise based on clustering/declustering
of impurities and defects,30,31 which provides intrinsic correlations
without any assumptions on the distribution of tunneling or scattering
parameters. Long-time memory is naturally encompassed due to the
countless number of available reconfigurations among the ensemble of
mobile impurities. This authentic 1=f noise may become overshad-
owed by other noise processes present in the actual investigated device,
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e.g., several single random fluctuators.32,33 However, under favorable
conditions, the noise due to interacting mobile impurities may become
observable. In mesoscopic systems, this noise is stationary with a 1=f
spectrum with upper and lower cutoff frequencies. Hence, the noise of
such noise, the second spectrum S2ð f2; f Þ displays 1=f d

2 dependence
with d¼ 1. Colored second spectrum has turned out to be an impor-
tant tool in studies of interacting TLSs and non-Gaussian fluctuations
as discussed, e.g., in Refs. 34–44

In the present work, we address the second spectrum of the noise
in both experimental and theoretical model systems where the
clustering/declustering of defects or impurities plays an important
role. We discuss first the results of kinetic Monte Carlo (kMC) simula-
tions of small 2D systems of 2500 lattice sites, both an infinite box and
a Corbino disk, i.e., using periodic boundary conditions in both x and
y or only x directions, respectively.45 We will compare simulations
with experimental results of a suspended graphene Corbino disk at 4
and 15K, measured under current-annealed conditions31,46 as well as
with adsorbed neon. The simulated second spectrum displays 1=f d

behavior with d ’ 0:86 0:15. In the experiments, d ’ 0:76 0:3. We
find lognormal and normal distributions, respectively, for noise mag-
nitudes and exponents, derived from extensive time series of noise
spectra (�1000 spectra). Similar non-Gaussian behavior is also found
in simulations.

According to the model discussed in Refs. 30 and 31, the power
spectral density of 1=f fluctuations can be related to the fluctuations in
lm, which describes the mobility limited by mobile impurities alone;
the corresponding conductivity is rm ¼ enlm, where n is the density
of charge carriers. According to this model, the spectral density of 1=f
noise Smð f Þ is given by (here hDr2

mi refers to variance),

Smð f Þ ¼
hDr2

mi
hrmi2

¼ hDl2
mi

l2
m
¼ sm

1
f
; (1)

where sm can be viewed as an experimentally determined parameter
which, in theory, has a fixed mean value hsmi ¼ const: (provided that
the number of impurities is fixed30). This formulation differs from
Hooge’s6,47 law, which states that the 1=f noise due to mobility fluctu-
ations is inversely proportional to the total number of charge carriers
Ne. Thus, this approach parallels those of Refs. 9 and 48.

In a bounded, isolated system, where noise is governed by a finite
number of configurations of the hopping scatterers, the 1=f noise
spectrum does not extend to zero frequency and the (total) noise spec-
trum can be written in the following form:30

Sm fð Þ ¼ s�m
fd

f 2 þ ffu þ fufd
(2)

with s�m ¼ sm � ð fu=fdÞ. Here, the upper cutoff fu is given by the hop-
ping frequency and the lower cutoff fd reflects the stationarity of the
small system. For the spectrum in Eq. (2) with genuine 1=f correla-
tions, the low frequency values of 1=f reflect the deviation of averaged

current fluctuations 1
T

Ð T
0 ðIðtÞ � hIðtÞiÞdt from the long-time mean of

current hIðtÞi. These averages preserve the 1=f noise nature and, thus,
the second spectrum should also display 1=f character.

Apart from mobile impurities, the conductance is influenced by
immobile impurity scattering, either due to short-ranged scatterers or
Coulomb impurities, resulting in a mobility li; here, we assume suffi-
ciently low temperatures so that electron–phonon scattering can be

neglected. The graphene conductivity is then 1
rg
¼ 1

ne ð 1li
þ 1

lm
Þ, in

accordance with the Mathiessen rule of adding scattering rates.
Consequently, the conductance fluctuation of graphene can be written
as

Sgð f Þ ¼
hDr2

gi
r2
g
¼

lg

lm

� �2

s�m
fd

f 2 þ ffu þ fufd
’

lg

lm

� �2

sm
1
f
; (3)

where 1
rg
¼ 1

ne
1
lg

and the last approximate equality is valid when

fd � f � fu. The actual emerging noise, thus, depends on the signifi-
cance of lm with respect to the total graphene mobility lg. If there are
only a few mobile impurities, lm � li and the 1=f noise becomes
small.

Kinetic Monte Carlo simulation49,50 is a powerful tool to investi-
gate particle dynamics on a 2D lattice in the presence of particle–
particle interactions. Our simulated system consists of a 50� 50
square lattice (2500 sites) with about 25 impurities (density of 1%), ini-
tially randomly positioned on the lattice sites. We impose periodic
boundary conditions either in both x and y directions (“infinite box”)
or only in x direction (strip of cylinder emulating a “Corbino disk”).
All lattice sites are taken as equivalent for impurity atoms, i.e., we
neglect the influence of strain deformations induced by the impurities
in the graphene membrane. We also neglect possible repulsion of the
impurities at short distances and simply allow the particles to occupy
the nearest unoccupied neighbor sites without overlapping. For details
of the simulation, we refer to Ref. 31.

A defect can hop to any of its eight adjacent sites on a square lat-
tice by thermally activated hopping. The average hopping rate without
any change or with an increase (decrease in system energy) in the
coordination number is given by r ¼ fA exp ð�EdkBT

Þ, where fA is the
attempt frequency, Ed is the activation energy for the hopping path,
and T is the temperature. If the coordination number decreases (e.g., a
particle dissociates from a cluster), the relevant interaction energy
change DE has to be included.31 Thus, there is an increase in the acti-
vation energy for dissociation but not for agglomeration. In our pre-
sent simulations, we have set fA ¼ 1; Ed ¼ 4 (for real parameter
values, see Refs. 51–54) and kBT ¼ 1:2 or kBT ¼ 2. The most impor-

tant parameter is the ratio �ðEdþDEÞ
kBT

, which governs the hopping rate
with coordination with edges, immobile, and other mobile defects. In
fact, the hopping barrier for entering a cluster could be different from
free hopping. However, what matters for the clustering dynamics is
the difference between the in- and out-hopping barriers which can be
specified using one parameter DE.55 Noise generation by clustering/
declustering of impurities can work also at room temperature.

To calculate noise spectra, one needs resistance values at preset
time instances separated by Dt, which we determine using continuum
modeling. We set the conductivity of impurity sites 10�5 times smaller
than the background conductivity. We employed finite element
method56 for resistance evaluation, which is computationally quite
demanding.31 In order to save computational resources, the resistance
values were calculated only at sampling times needed for the intended
frequency range (up to 1=2Dt) of the first spectrum SRð f Þ. Second
spectra S2ð f2; f Þ were calculated from a time series of integrated noise

AjðtjÞ ¼
Ð f1
f0
SRð f ; tjÞdf , where f0 and f1 were chosen to reside mainly

between the corner frequencies fd and fu, producing effectively a 1=f 0:8

type characteristics in the second spectra. When working with spectral
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frequencies fd < f < fu, the calculated S2ð f2; f Þ was found indepen-
dent of f and, consequently, we denote these second spectra as S2ð f2Þ.

Figure 1(a) displays the power spectral density of resistance fluc-
tuations obtained for simulations performed for temperature
kBT ¼ 1:2, with strong resistance at the scattering sites; practically,
the same behavior is obtained by setting large conductance at the
impurity sites. The shape of the power spectral density agrees well
with the form in Eq. (2), which is depicted in Fig. 1(a) as the solid
green curve. There is clearly a tendency toward a plateau at the lowest
frequencies below fd ’ 1 mHz and a crossover to 1=f 2 spectrum above
the hopping frequency corresponding here to fu ’ 0:05Hz. The step-
like behavior of the calculated noise spectra arises due to computa-
tional resource limitations, i.e., the sampling frequency near the steps
falls below the Nyquist frequency of the data and, thus, the spectra are
distorted by aliasing.

In order to investigate the variation of noise magnitude in
time, we have calculated a sequence of noise spectra in the range of
frequencies displayed in Fig. 1(a). The time step Tstep between the
spectra sets the upper frequency fmax

2 ¼ 1=2Tstep for the calculated
second spectra S2ð f2Þ obtained from the time series of the noise
integrals AjðjTstepÞ. By varying Tstep, different frequency spans of
S2ð f2Þ were investigated. Figure 1(b) displays a second spectrum of
noise compiled using three different Tstep’s. A 1=f d fit to the second
spectrum yields d ’ 0:86 0:15. This agrees quite well with the
simulated second spectrum, which supports long-time correlations
beyond a collection of two-level systems for which low-frequency
S2ð f2Þ is white.36,57

Figure 1(c) displays the cumulative distribution function of a cal-
culated time series of noise integrals AjðjTstepÞ. The distribution has a
more pronounced wing at larger noise values than at the beginning of
the curve. This asymmetry of wings signifies the non-Gaussian nature
of the clustering/declustering induced fluctuations in the simulation.
The fitted curve displays lognormal behavior. The lognormal behavior
is often observed for processes, which depend on a product of several
different probabilities. Then, log of the total probability becomes

normally distributed owing to the law of large numbers.58 In our simu-
lation, probability of different clusters can be viewed as leading to a
product-like probability of the global state.

A scanning electron microscope picture of our graphene Corbino
sample with Cr/Au electrodes is illustrated in the bottom left inset of
Fig. 2: the size of the disk is 4.5mm in the outer diameter and 1.8mm
in the inner diameter. The gate voltage dependence of the conductance
GðVgÞ of our sample (see top right inset of Fig. 2) yielded for the resid-
ual charge carrier density n0 ¼ 0:1� 0:4� 1014 m�2. Details of the
sample and its fabrication can be found in Ref. 59. Contact resistance
Rc � 500X varied slightly depending on the induced strain due to

FIG. 1. (a) Simulated resistance noise power spectrum SRðf Þ of an infinite box obtained for kBT ¼ 1:2. Four different time steps were employed in resistance sampling to
cover the whole range of frequencies. (b) Power spectral density of second spectrum S2ðf2Þ � 1010 of the scaled resistance noise integral AðtjÞ ¼

Ð f1
f0
SRðf ; tjÞdf calculated

for infinite box using three different time steps Tstep between the simulated noise power spectra (tj ¼ jTstepÞ. Integration limits f0 and f1 were chosen within the 1=f range from
fd ¼ 3 mHz to fu ¼ 0:05 Hz determined from Fig. 1(a). (c) Cumulative distribution function for the scaled resistance noise integral data AðtjÞ of Corbino geometry simulated for
kBT ¼ 2 as well as for the noise magnitude s of the noise spectra measured near the Dirac point at Vg ¼ �1:20 V (n ¼ �1:22� 1010cm�2) at 4 K (magenta trace and bot-
tom scale, the data illustrated in Fig. 3) and 15 K (red trace and top scale). The dashed and dashed–dotted curves illustrate lognormal fits to the data. The inset displays cumu-
lative distribution function of noise exponent c of 4 and 15 K data with normal distribution fits.

FIG. 2. Noise power spectral density SI vs frequency f near the Dirac point at
Vg ¼ �1:20 V (n ¼ �1:22� 1010 cm�2) using a bias voltage corresponding to
current I ¼ 12:9 lA. The solid line depicts a fit 1=f c with c ¼ 1:01. The bottom left
inset displays a false-color scanning electron micrograph of the employed sample.
The top right inset displays the gate voltage dependence of the conductance GðVgÞ.
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adsorbed atoms on graphene.31,59 Mobility of the sample �105 cm2/s,
most likely limited by hydrocarbon residues.

Figure 2 displays measured current noise power spectral density
SI vs frequency f near Dirac point at Vg ¼ �1:20V using voltage bias
corresponding to a current I ’ 13lA. Our data can be fit by
SIðIÞ ¼ s I

b

f c, where c ’ 1; b ’ 2, and s describes the noise magnitude.
The noise magnitude s ¼ fSIðIÞ=I2 ’ 2� 5� 10�10 is approximately
constant and is similar compared with the best low-noise graphene
devices.23,31 As discussed in Ref. 31, the measured 1=f noise contains
contributions from the contact resistance besides graphene. In this
work, we do not consider separation of them but assume that the noise
is dominated by graphene near the Dirac point while, at large gate
voltage Vg � 40V, the noise is dominated by the contact.

We monitored noise at nearly unaltered experimental conditions
over long periods of time, typically on the order several hours up to 1
day. We have excluded rare events60 as we are interested in determin-
ing whether the second spectrum is white or colored. A typical record
of noise magnitude is illustrated in Fig. 3. The magnitude was deter-
mined by fitting the 1=f c spectrum with c¼ 1 to all individual spectra.
We also analyzed the statistics of variations in the noise power spectral
shape using unconditioned 1=f c fits to the data. These noise exponents
as a function of time are displayed as the upper trace in Fig. 3. Non-
Gaussian character of the measured graphene noise magnitude is evi-
dent already in Fig. 3. The excursions from the mean value are more
limited below than above. Hence, the distribution cannot be Gaussian.

Figure 4(a) displays the second spectrum of the measured 1=f
noise, i.e., power spectral density of the time traces of noise magnitude
sj illustrated in Fig. 3. Figure 4(a) includes data at T¼ 4 (clean gra-
phene) and 15K (graphene with adsorbed neon). The second spectra
are proportional to 1=f d, i.e., colored, but no appreciable distinction in
the exponent d is found under the applied different conditions. On
average, our experiments yield d ¼ 0:76 0:3. The error estimate cov-
ers two weighting schemes for the data points: (1) equal weight for all
points and (2) same weight for points in each octave [see Fig. 4(a) for
the fitted spectra]: the obtained exponents are d ¼ 0:42=0:68 at 4K
and d ¼ 0:63=0:97 at 15K, respectively.

Conclusions of the non-Gaussian character can be quantified
from the cumulative distribution functions displayed in Fig. 1(c) for
the data at 4 and 15K. The distributions display a clear, smooth tail
toward larger magnitudes. Fitting the distribution, we find quite accu-
rate correspondence with the lognormal distribution, which is illus-
trated by the dashed–dotted curves. The values of exponents c
determined separately are normally distributed [see the inset in Fig.
1(c)] with a mean of hci ¼ 1:005 (0.918) and a standard deviation of
hri ¼ 0:0649 (0.0578) for data at 4K (15K).

Altogether, our kMC simulations turned out to provide an effi-
cient mean to investigate noise phenomena arising due to the dynam-
ics of impurities on 2D materials. Our simulations can be viewed as
applicable to various adsorbed atom species in a temperature regime,
where the hopping frequency between adjacent lattice sites becomes a
few orders of magnitude larger than experimental frequencies. Our
simulations indicate presence of long-time correlations, which corre-
spond to a 1=f spectrum with upper and lower cutoff frequencies [see
Eq. (2)]. This result was found to be valid both for the infinite box and
the Corbino disk geometries. For the second spectrum, our simula-
tions yielded 1=f d spectrum with an exponent d ’ 0:86 0:15.

Our experiments indicate that the second spectrum of low fre-
quency noise of suspended graphene is colored, with an exponent
d ’ 0:76 0:3. This appears to be rather independent of temperature
and the amount of weakly absorbed impurities on graphene. The
recorded data on SIðtÞ displayed strong rare events, which led to irre-
coverable level change in the noise magnitude. Unless these events are
excluded, the second spectrum would display spectra 1=f d with
1 < d < 2. The reason for these jumps remained unclear in the course
of our experiments. One option in suspended graphene is flipping
of local buckling, which might take place because adsorbed

FIG. 3. Noise magnitude sðtjÞ ¼ 1
f1�f0

Ð f1
f0

f�SI ðf ;tj Þ
I2 df (lower trace, left scale) and

exponent c (upper trace, right scale) of the fits to the measured noise spec-
tra (f0 ¼ 1 Hz and f1 ¼ 35 Hz) in the course of a �25-h-long measurement at
4 K; an 8 h timescale bar is included.

FIG. 4. (a) Measured, scaled second noise power spectral density S2 vs frequency
f near the Dirac point at Vg ¼ �1:20 V (n ¼ �1:22� 1010 cm�2). The black data
trace was measured at 4 K in annealed state while the blue trace was obtained at
15 K with neon adsorbants. The indicated power law fits with d ¼ 0:42=0:68 at 4 K
are obtained using different weighting schemes (see text for details). (b) Simulated,
scaled second noise power spectral density in Corbino geometry obtained for
kBT ¼ 1:2 (black) and kBT ¼ 2 (blue) using time series of resistance noise inte-
gral AðtjÞ ¼

Ð f1
f0
SRðf ; tjÞdf . Red traces are power law fits with d ¼ 0:75 for both

kBT ¼ 1:2 and kBT ¼ 2.
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atoms/molecules induce local strain in the membrane and the distribu-
tion of adsorbants varies with time. Consequently, it would be interest-
ing to improve the statistics by performing similar experiments in
hBN-encapsulated graphene.
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