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Discrete-time quantum walks, quantum generalizations of classical random walks, provide a framework for
quantum information processing, quantum algorithms, and quantum simulation of condensed-matter systems.
The key property of quantum walks, which lies at the heart of their quantum information applications, is the
possibility for a parametric quantum speedup in propagation compared to classical random walks. In this work we
study propagation of quantum walks on percolation-generated two-dimensional random lattices. In large-scale
simulations of topological and trivial split-step walks, we identify distinct prediffusive and diffusive behaviors
at different timescales. Importantly, we show that even arbitrarily weak concentrations of randomly removed
lattice sites give rise to a complete breakdown of the superdiffusive quantum speedup, reducing the motion to
ordinary diffusion. By increasing the randomness, quantum walks eventually stop spreading due to Anderson
localization. Near the localization threshold, we find that the quantum walks become subdiffusive. The fragility
of quantum speedup implies dramatic limitations for quantum information applications of quantum walks on
random geometries and graphs.

DOI: 10.1103/PhysRevResearch.5.023150

I. INTRODUCTION

The concept of a random walk occupies a central role in
physics, mathematics, statistics, and information processing.
In the looming quantum information era, it is no surprise
that quantum-mechanical generalizations of the random walk,
quantum walks, have become a subject of broad interest
for physicists with various specializations [1–7]. Combining
ideas from quantum information processing to condensed
matter physics and beyond, discrete-time quantum walks
(DTQW) have been proposed as a general framework for a
variety of quantum algorithms and studying condensed-matter
phenomena [8–18]. The wide range of possible applications
of quantum walks include quantum computing, quantum
cryptography, quantum search algorithms on the quantum in-
formation side, and a simulation of fundamental properties of
quantum phases of matter on the condensed-matter side, some
of which have already seen experimental realization [19–26].

The main attractive feature of quantum walks is the possi-
bility of a parametric quantum speedup of propagation relative
to a classical random walk [27–30]. While random walks in
general give rise to a diffusive motion, characterized by a
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mean-square displacement (MSD) �2X ∝ t which grows lin-
early in the number of time steps t , quantum walks on regular
lattices and graphs may reach a quadratic speedup �2X ∝ t2

corresponding to a ballistic spreading. The quadratic quan-
tum speedup can be harnessed, for example, to realize a
version of the celebrated Grover’s search algorithm [31,32]
with a square-root reduction in the execution time compared
to classical algorithms [33–35]. Thus, it is a matter of central
importance for applications of quantum walks to understand
under what circumstances quantum walks can maintain a
speedup compared to the standard diffusion. In particular, can
parametric quantum speedup persist in irregular or random
structures? If so, quantum-walk-based algorithms could be
employed, for example, to speed up element search in large
irregular and random structures.

In this work, we study the propagation of quantum walks
in random lattice geometries through the lens of condensed-
matter physics. We consider a family of DTQWs [36,37]
on infinite random lattices generated by site percolation,
as illustrated in Figs. 1(a) and 1(b). Motivated by the fact
that topological states of matter are generically more robust
to random perturbations, we implement split-step quantum
walks with a tunable topological invariant and explore the
spreading of topological and trivial quantum walks. By car-
rying out large-scale numerical simulations up to t = 104

time steps, we find that prediffusive and transient kinetics
dominate at intermediate timescales tdecay determined by the
degree of randomness. In the long-time limit, we observe
that the configuration-averaged MSD follows the general-
ized diffusion ansatz �2X ∝ tα , and extract the exponent
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FIG. 1. Quantum walks in random geometry. (a) Single realiza-
tion of percolation lattices where each site of a square lattice is
present with probability p (figure corresponds to p = 0.75). (b) Prob-
ability distribution of a quantum walk which started at the origin at
t = 0 and propagated t = 256 steps on a single realization of a p =
0.75 lattice. Color scale logarithmic to improve visibility. (c) Phase
diagram of the asymptotic long-time motion of quantum walks on
the studied lattices. The three regions, in the order of decreasing
randomness, correspond to localized (α = 0), subdiffusive (α < 1),
and diffusive (α = 1) phase. Superdiffusive behavior is restricted to
a pristine square lattice with p = 1, where motion is ballistic.

α. Our findings are summarized in Fig. 1(c), which in-
dicates that even weak randomness will give rise to the
breakdown of the superdiffusive quantum speedup. With in-
creasing random dilution, the quantum walks will eventually
halt due to Anderson localization at the critical density pc.
Moreover, in the vicinity of pc, the system becomes subd-
iffusive. As discussed below, the absence of superdiffusion
implies severe limitations for obtaining quantum speedup
in quantum-walk-based applications on random lattices and
graphs.

II. QUANTUM WALKS ON RANDOM LATTICES

A. Topological walks on regular lattice

Before discussing random geometries, we first explore
the properties of the studied topological split-step walk on
a regular lattice. In general, a DTQW on a square lattice is
defined for a pointlike walker with an internal n-level degree
of freedom referred to as a quantum coin. The quantum state
of a walker belongs to a Hilbert space H = Z2 ⊗ Cn with a
basis |x, y〉 ⊗ |s〉, where |x, y〉 refers to the position states and
|s〉 to the internal coin states. In analogy to a random walk,
a quantum walk is defined as a sequence of quantum coin
operations and conditional translations depending on the coin
state. A walker is initially located at the origin, and a single
step of a walk is generated by a unitary Û which propagates
the walker state as |ψ (t + 1)〉 = Û |ψ (t )〉. Hereinafter we will
assume a spin- 1

2 quantum walk with n = 2. To define the

FIG. 2. Topologically protected three-step quantum walk on a
square lattice. (a) The unitary of the split-step walk consists of three
coin operations followed by translations in three different directions
indicated by the arrows. (b) Topological phase diagram of quan-
tum walks as a function of the two coin parameters θ1, θ2. Colors
correspond to different Chern numbers C = 0, 1, −1. (c) Probabil-
ity distribution of a topologically nontrivial walk (θ1, θ2) = ( π

2 , π

2 )
at t = 256. To enhance visibility, the color scale varies linearly
in ‖ψ‖1/2.

unitary, one needs a translation operator

T̂ (δ) =
∑
r∈Z2

[|r + δ〉 〈r| ⊗ |↑〉 〈↑| + |r − δ〉 〈r| ⊗ |↓〉 〈↓|],

which shifts the position of a walker by the vector ±δ depend-
ing on the coin state, and a coin operator

R̂(θ ) = e− iθ
2 σ̂y .

Following Ref. [36], by introducing the primitive shift
vectors δ1 = (1, 1), δ2 = (0, 1), and δ3 = (1, 0), we define a
split-step unitary as

Û2D(θ1, θ2) = T̂ (δ3)R̂(θ1)T̂ (δ2)R̂(θ2)T̂ (δ1)R̂(θ1). (1)

This unitary is parametrized by two coin angles, θ1 and θ2,
and a single step of the walk consists of three sequential
applications of combined spin flip and shift operations, as
illustrated in Fig. 2(a). The unitary (1) can be represented as
Û2D = e−iĤeff , where the effective Hamiltonian in the momen-
tum space is defined as

Ĥeff =
∫ π

−π

dk|k〉〈k| ⊗ [E (k)n(k) · σ̂ ]. (2)

Here |k〉 denotes the Fourier-transformed position vector
|r〉. While the expressions for E (k) and n(k), derived in
Appendix A, are not particularly illuminating, the effective
Hamiltonian can be analyzed with the tools of topological
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condensed-matter theory to gain further insight on related
quantum walks. In particular, the spectrum of the effective
Hamiltonian is characterized by a topological index, the Chern
number, which can be obtained by

C = 1

4π

∫
	

n(k) · [∂kx n(k) × ∂ky n(k)] dk, (3)

where 	 denotes a torus (kx, ky) ∈ [−π
2 , π

2 ] × [−π
2 , π

2 ]. In
Fig. 2(b) we have presented the topological phase diagram
in terms of the coin parameters. A substantial fraction of
the coin’s parameter space supports nonzero Chern numbers,
a primary motivation to study the walk protocol (1). As
understood during the last four decades in condensed-matter
physics, topological states of matter are extraordinarily robust
to disorder and Anderson localization. Electronic bands in in-
teger quantum Hall systems, characterized by nonzero Chern
numbers, are particularly striking examples of this. It is well
known by now that an arbitrarily weak randomness may lead
to Anderson localization in one- (1D) and two-dimensional
(2D) systems [38]. This means that with exponential accuracy,
all the eigenstates of a Hamiltonian and the corresponding
time-evolution unitary have a finite spatial support. Corre-
spondingly, quantum walks defined by a unitary incorporating
effects of disorder similarly give rise to walks that are expo-
nentially confined to their initial position. However, as long
as a system supports a nonzero Chern number, it is guaran-
teed to support at least some extended states [38]. What this
means for quantum walks is that, while protocols with trivial
topology may enable extended walks in the presence of weak
disorder, the topologically nontrivial protocols are always
guaranteed to do so. Qualitatively, one expects topologically
nontrivial systems to tolerate larger random perturbations
before localizing. Since our main focus in this work is on
random systems, it is natural to focus on topological split-step
protocols. The propagation of a topological walk with finite
Chern number on a square lattice is illustrated in Fig. 2(c). In
Appendix C, we also discuss two-step quantum walks which
support topological Floquet-type phases. As shown below,
these walks exhibit qualitatively similar properties on random
lattices.

B. Split-step walks on random lattices

In the condensed-matter setting, it has been recognized
for over half a century that any irregularities in a crystal
lattice typically have dramatic effects on particle dynamics
and transport properties. In particular, random disorder re-
duces a ballistic quantum propagation to diffusive motion. For
quantum walks this implies that small fluctuations in the im-
plementation of the quantum-walk protocol could wipe out the
quantum speedup. This effect has also been studied in quan-
tum walks by incorporating various sources of randomness
in position and coin subspaces [39–47]. Even worse, disorder
can lead to the Anderson localization of all wave functions, so
the spreading of the quantum walk could even stop altogether
[48–52]. Thus, random irregularities could turn the quantum
advantage of quantum walks into a quantum handicap.

To study the fate of quantum walks on random geome-
tries, we now generalize quantum-walk protocols to random
lattices. We consider an extensively studied paradigm of

FIG. 3. Quantum walks on lattices with randomly missing sites.
(a) Walker located in the center cannot hop on missing sites. The
translations to prohibited sites, indicated by red color, are substi-
tuted by spin flips which reflect the walk to the opposite direction.
(b)–(d) Probability distribution of quantum walks on a single real-
ization of random lattices with p = 0.9, 0.8, 0.7 after t = 256 time
steps, shown in logarithmic scale for improved visibility.

random lattices, the site percolation on a square lattice [53].
The ensemble of percolation geometries is generated by as-
signing a probability p for each site of a square lattice to be
independently populated. Equivalently, each site is removed
with probability 1 − p. At low p, a single realization consists
of a collection of disconnected clusters, whereas at high p
close to unity, the lattice resembles a square lattice with rare
randomly missing sites. At the percolation threshold pperc ≈
0.59, the system undergoes a geometric transition above
which the system contains an infinite cluster connected by
populated nearest-neighbor lattice sites [54]. A finite snapshot
of a single realization of the p = 0.75 ensemble is depicted
in Fig. 1(a). As illustrated in Fig. 3(a), to generalize the
protocol (1) to percolation lattices, it is necessary to modify
translation operators when a walker is encountering absent
sites. We implement a prescription where, instead of carrying
out translation from site r to a missing site at r + δ, the
translation is omitted but the coin state of a walker is flipped
to the opposite state |s〉 → |s̄〉. This will prohibit the walker
from entering the missing sites, effectively reflecting it to the
opposite direction. A similar procedure has been employed in
generating reflecting boundaries and boundary modes in topo-
logical quantum walks [36]. Thus, this prescription results
in a random-walk-generating unitary where the translation
operator T̂ is replaced by a spin-flip operation Ŝ when en-
countering randomly missing site. This construction, derived
in detail in Appendix B, preserves the total probability asso-
ciated with the wave function of the quantum walk. Examples
of quantum walks for specific realizations of random lattices
are illustrated in Figs. 3(b)–3(d). The same prescription can
be employed to generalize the two-step walk in Appendix C
to lattices with missing sites.

Naturally, the unitary for a specific random lattice realiza-
tion is not translation invariant and no longer admits a simple
expression in momentum space. Nevertheless, since the
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generating unitary formally resembles a short-range hopping
tight-binding Hamiltonian, the recent works on amorphous
topological insulators [55,56] suggest that it is likely to main-
tain its topological character and avoid Anderson localization
even on substantially diluted random lattices. Indeed, as seen
below, the topologically nontrivial walks with a nonzero
Chern number in the clean limit, are found to be quantitatively
more robust to randomness compared to trivial walks with a
vanishing Chern number.

Being paradigmatic examples of random lattices, aspects
of percolation-type geometries and quantum walks have been
addressed in a number of previous works. These works
have concentrated on 1D systems [57], finite graphs [58],
time-dependent percolation configurations [59–61], directed
percolation [62], and continuous-time walks [63]. To our
knowledge, the only previous work attempting to analyze the
speed of diffusion in unbounded 2D percolation geometries
in the asymptotic long-time limit is Ref. [64]. As discussed
below, this study was restricted to two orders of magnitude
shorter timescales, which made it impossible to disentangle
different kinematic regimes and the asymptotic phase diagram
shown in Fig. 1(c).

III. DIFFUSION AND LOCALIZATION
ON RANDOM LATTICES

In this section we analyze statistical properties of quan-
tum walks in ensembles of lattices corresponding to fixed
random dilution, using fixed occupation probability p. To
characterize the spreading speed, we define a MSD �2X (t ) =
〈ψ (t )|X 2|ψ (t )〉, where the bar denotes a configuration aver-
age over different random lattice realizations with fixed p,
and |ψ (t )〉 represents the quantum state of a walk which is
located at the origin at t = 0 with a specific coin state. Unless
otherwise stated, the coin state at the origin corresponds to
an eigenstate of σ̂y (different initial coin states are considered
in Appendix D with similar conclusions). As suggested by the
diffusive appearance of Figs. 3(b)–3(d), we will see below that
the long-time behavior of quantum walks is captured by the
generalized diffusion ansatz limt→∞ �2X (t ) ∼ Dαtα , where
Dα is a diffusion constant and α is a diffusion exponent. We
focus on the two fundamental issues: (i) What is the asymp-
totic propagation speed parametrized by α? In particular, since
a pristine lattice with p = 1 supports a ballistic spreading
with α = 2, is it possible to maintain a quantum speedup with
superdiffusive α > 1 for some degree of randomness p < 1?
(ii) What is the critical dilution strength 0 < pc < 1 below
which the walk localizes with α = 0? We furthermore explore
how these issues are affected by topology of the walk protocol.

We employ large-scale parallel computing to simulate
quantum walks up to t = 104 time steps and perform con-
figuration averages up to 1000 random lattice realizations. In
general, smaller p values require more configurations to damp
the statistical fluctuations. The lattice size in simulations is
effectively infinite; when the quantum walk approaches the
specified computational boundary in some direction, the lat-
tice size is increased to accommodate for the spreading so
that the walker never encounters the boundaries. We analyze
the quantum-walk spreading in terms of the time-dependent
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FIG. 4. Determining the decay time (length) scale of the walker’s
propagation. The walker experiences a superdiffusive motion up
to the timescale t < tdecay. (a) Shown for different values of p in
the topological phase θ1 = θ2 = π/2. In the clean case p = 1, the
exponent quickly converges to the expected value of α(t → ∞) = 2.
(b) This timescale depends on both the rate of the structural disorder
p and topological feature of the model controlled by the pair (θ1, θ2).
At p = 1 the decay time is tdecay = ∞.

function

α(t ) = d ln �2X (t )

d ln t
, (4)

which, for diffusive motion, reduces to the generalized dif-
fusion exponent in the long-time limit α = limt→∞ α(t ).
However, by employing (4), we do not make any assumptions
about the specific nature of the propagation. The qualitative
behavior of α(t ) at low dilution is presented in Fig. 4(a) which
illustrates that after an initial transient of a few time steps, α(t )
achieves its maximum value. Remarkably, all but the clean
system, which settles to ballistic motion α = 2, are seen to
reduce to diffusive motion within some timescale tdecay. The
decay time diverges as p → 1, however, any finite randomness
p < 1 is seen to reduce the motion to diffusive as discussed
below. In Fig. 4(b) we compare the decay time of a topological
and a trivial quantum walk indicated by a black circle and a
star in Fig. 2(b). For all p, the timescale tdecay for the triv-
ial walk with (θ1, θ2) = ( π

8 , π
2 ) is shorter; that is, the trivial

walks reach the ordinary diffusive steady state quicker. This
is the first indication that the trivial walk is more susceptible
to randomness and could be regarded as a precursor of the
localization behavior discussed below.

To investigate diffusion and localization systematically, in
Fig. 5 we have illustrated the results for two quantum-walk
protocols which, in a clean system, correspond to finite and
zero Chern numbers, respectively. We also plot the function
Dα (t ) = �2X (t )/tα(t ), which approaches the diffusion con-
stant when α(t ) converges to a nonzero constant. The coin
parameters for these walks are indicated by the star and
the circle in Fig. 2(b). In the high-density regime, despite
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FIG. 5. Diffusion parameters for configuration-averaged DTQWs for various occupation probabilities p. (a), (b) In the topological
parameter space with (θ1, θ2) = ( π

2 , π

2 ) and (c), (d) trivial with (θ1, θ2) = ( π

8 , π

2 ) as a function of time steps. (a), (c) Show that the long-time
dynamics in delocalized regime is diffusive for all p < 1. Near the localization threshold p ≈ 0.7 the walk exhibits subdiffusion with α ≈ 0.9.
The MSD data are averaged over 200–1000 independent configurations at each time step.

the initial superdiffusive transient α(t ) > 1, even 1% ran-
dom dilution (p = 0.99) leads to diffusive motion α = 1 in
the long-time limit. This indicates that, in the presence of
random geometry, quantum walks cannot support paramet-
ric quantum speedup compared to usual random walks. As
seen in Fig. 5(a), α(t ) for the topological walk converges
to a constant when the density is higher than the thresh-
old value p > pc ∼ 0.70. For densities p < pc, the value of
α(t ) has a negative derivative which is consistent with local-
ized quantum-walk limt→∞ α(t ) = 0. In contrast, as seen in
Fig. 5(c), the trivial walks localize earlier, around pc ∼ 0.85.
Thus, the studied nontrivial walk can tolerate up to twice the
density of randomly missing sites before localizing, confirm-
ing the general expectation that topological walks are more
robust to random geometry. For low p, the system exhibits
localization, and in this regime diffusion is a poor description
of its behavior; hence, attempting to fit diffusion parame-
ters using the same methods is meaningless and will return
unreliable results. The sharp oscillations are to be viewed
as the onset of localization and breakdown of diffusion as
a useful descriptor. In Appendix D, we present results for
diffusion quantities obtained for cases where α(t ) converges
to a constant, and we also plot results for quantum walks resid-
ing on the topological-trivial phase boundary, which indicate
that their properties interpolate between the above-presented
cases. The localization of quantum walks can be attributed
to Anderson localization, a much-studied condensed-matter
phenomenon that suppresses diffusion of quantum particles
in random systems. By reducing p, percolation lattices also
become geometrically disconnected, which could halt the
quantum walks. However, on a square lattice, the nearest-
neighbor disconnection happens only at lower density pperc ≈
0.59, and is not relevant for the observed localization.

While it is challenging to pinpoint the exact localization
threshold pc and the diffusion exponent at p = pc, quantum

walks near pc exhibit subdiffusive motion with α < 1. This
behavior is clearly observed in Figs. 5(a) and 5(c), and is
supported by the results in Appendix D. Our results indicate
that for Chern walks the diffusion exponent drops down to
α � 0.9 before the system becomes localized. Qualitatively,
the subdiffusive behavior can be regarded as a generic con-
sequence of Anderson localization transitions [65–68]. The
eigenfunctions of the walk-generating unitary are qualitatively
similar to a random tight-binding Hamiltonian which, at the
localization threshold pc, are known to become fractal. The
anomalous diffusion is known to result from the interplay of
diffusion and fractal geometry [54,69–71], both ingredients
that are present at the localization threshold.

The above results stand in contrast to those of Ref. [64],
which also studied diffusion of 2D quantum walks on perco-
lation lattices, with the conclusion that the system supports
continuous spectrum of different diffusion constant 0 � α �
2 depending on p. However, this conclusion was reached
by numerically propagating walks only up to relatively short
times of the order of 102. As clearly seen in Fig. 5, the
transient effects in studied walks are dominating on that
timescale which prevents making definite conclusions regard-
ing asymptotic motion. Hence, while their numerical data
appear broadly consistent with ours for the timescales in-
volved, obtaining a qualitatively correct picture of distinct
dynamical regimes requires propagating walks for orders of
magnitude longer times. Specifically, we see that a reliable
picture of the prediffusive, diffusive, and localized behavior
in the studied system emerges only when analyzing walks up
to 104 time steps.

The results of this section can be summarized by the
generic phase diagram in Fig. 1(c). In total, we obtain four
different diffusion behaviors depending on p as well as the
coin angles θi. In the following we assume the θi are not
fine tuned to a topological phase boundary. For a clean
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system p = 1, we observe superdiffusive behavior, with α =
2.0. This superdiffusion is suppressed for all p < 1. Instead,
as p is lowered, while for a finite time the diffusion appears
to be superdiffusive, the asymptotic behavior will be first dif-
fusive, then for a brief range of p appear subdiffusive, before,
at low p, localization dominates. In topologically nontrivial
quantum walks these transitions may occur at marginally
lower p, but superdiffusion nevertheless only occurs for fi-
nite timescales at all p < 1. To further support our results,
in Appendix C we have studied a different quantum-walk
protocol and analyzed the qualitative features of the diffusive
motion on 2D random lattices. This model also reproduces the
key features observed above in the Chern walks: the absence
of superdiffusion for any amount of randomness, Anderson
localization at pc above the geometric percolation threshold
pperc, and the subdiffusion near the localization threshold.

IV. DISCUSSION

Above we have seen how quantum walks on studied
random lattices unavoidably lose their parametric quantum
speedup compared to ordinary diffusion. This discovery
has dramatic implications for quantum information applica-
tions. Various efficient quantum-walk-based algorithms for
the search of marked items in unstructured databases and
graphs invariably rely on the quantum speedup. For example,
in the pioneering work [8] it was shown that by combining
quantum walks in hypercubic lattices with oracle queries,
it is possible to achieve the quadratic quantum speedup as
in Grover’s algorithm for the unstructured database search.
Similarly, quantum-walk-based search of a 2D grid enjoys
similar speedup with logarithmic correction [34,35]. These
speedups are enabled by the quadratic kinematic speedup
of quantum walks compared to random walks. As a natural
generalization, one could ask whether quantum-walk-based
spatial search algorithms on irregular lattices and random
graphs could enjoy similar parametric speedups. For example,
could quantum walks speed up the search for a marked item
on a random maze generated by a percolation process, such
as the one illustrated in Fig. 1(a)? Our results imply severe
limitations to these hopes.

The fact that the studied topologically protected quantum
walks always reduce to diffusion or subdiffusion in the long-
time limit seems to offer little hope for achieving a parametric
quantum speedup in quantum-walk-based spatial search on
generic random geometries. There are of course caveats: due
to the unlimited possibilities in defining different walk proto-
cols and random lattices, the present work cannot rule out that
a special class of walks and graphs could escape the diffusive
slowdown. However, it is instructive to assess this possibil-
ity through the lens of condensed-matter physics, which has
a long history of studying disordered quantum systems. In
the condensed-matter setting, it has been widely observed
that system-specific properties, such as microscopic details
of disorder and its precise statistical properties are often
irrelevant. The important factors for the qualitative behav-
ior typically are discrete symmetries, spatial dimension, and
topological properties. In fact, if this was not the case, there
would be little hope to model the behavior of realistic mate-
rials, for which the source of imperfections and their precise

nature is often incompletely understood. This suggests that
our finding of the asymptotic diffusive slowdown qualitatively
applies to a much more general class of walks and random
lattices and is not particular to the studied systems. More-
over, the experience from amorphous materials suggests that
topological systems are exceptionally robust to the studied
geometric randomness [55,56]. Thus, there are good reasons
to believe that the studied topologically protected walks are
particularly robust examples of possible 2D quantum walks,
and that the diffusive slowdown on random geometries is
generic.

Our results do not mean that quantum-walk-based algo-
rithms on sufficiently small graphs could not outperform the
speed of classical random walks. If one considers a finite
snapshot of a percolation lattice, such as the one depicted in
Fig. 1(a), a quantum walk could very well require less steps
than a random walk to effectively cover it. As seen in the pre-
vious section, quantum walks reduce to diffusive motion after
a finite number of steps quantified by tdecay. This timescale
also sets the linear size up to which quantum walks could
be expected to maintain a possible advantage over diffusion.
However, as seen in Fig. 4, the spreading of the walk begins to
be affected already early on, even as soon as the walker bumps
into the first missing site, which strongly reduces the speed of
propagation. These factors seem to set a rather narrow window
for quantum-walk-based advantages over random walks in
random geometries.

V. SUMMARY

In this work we studied 2D quantum walks on random
lattices generated by site percolation processes. By carry-
ing out large-scale simulations up to 104 time steps, we
identified a phase diagram of different diffusive regimes.
We observed that at long timescales even a small random
dilution gives rise to a complete breakdown of the superdif-
fusive quantum speedup, the hallmark of quantum walks
on regular lattices. Additionally, we also identified a pred-
iffusive regime, dominating at intermediate timescales, as
the most promising setting for quantum walks to have an
advantage over random walks. Increasing the density of ran-
dom defects will eventually halt quantum walks well above
the geometric connectivity transition due to the Anderson
localization. Near the localization threshold, the quantum
walks exhibit subdiffusive spreading. Our observations im-
ply stringent limitations for obtaining quantum speedup
in applications of quantum walks on random lattices and
graphs.
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APPENDIX A: SPLIT-STEP WALKS ON SQUARE LATTICE

Here we outline the derivation of the effective Hamiltonian
(2) for the square-lattice quantum walk. The generating uni-
tary for the studied three-step walk is

Û2D(θ1, θ2) = T̂ (δ3)R̂(θ1)T̂ (δ2)R̂(θ2)T̂ (δ1)R̂(θ1), (A1)
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where the coin operation is given by R̂(θ ) = e− 1
2 iθσ̂y and the

translation operation is defined as

T̂ (δi ) =
∑
r∈Z2

[|r + δi〉 〈r| ⊗ |↑〉 〈↑| + |r − δi〉 〈r| ⊗ |↓〉 〈↓|]

for the three primitive translation vectors δi defined in
the main text. By introducing momentum eigenstates |r〉 =∫
	

dk
(2π )2 eik·r|k〉, the translation operator can be written as

T̂ (δi ) =
∑

k

|k〉〈k| ⊗ eik·δi σ̂z , (A2)

and the generating unitary becomes

Û2D(θ1, θ2) =
∑

k

|k〉〈k| ⊗ eik·δ3σ̂z e− 1
2 iθ1σ̂y eik·δ2σ̂z

× e− 1
2 iθ2σ̂y eik·δ1σ̂z e− 1

2 iθ1σ̂y . (A3)

The product of six Pauli matrix exponents can be combined
into a single exponent through repeated use of the exponential
multiplication rule

eia(n·σ̂ )eib(m·σ̂ ) = eic(p·σ̂ ),

where

p = 1

sin c
[n sin a cos b + m sin b cos a − (n × m) sin a sin b]

and

cos c = cos a cos b − (n · m) sin a sin b.

This process, while technically straightforward, leads to
cumbersome analytic expressions. The final results can be
expressed as Û2D(θ1, θ2) = e−iĤeff , where we have defined an
effective Hamiltonian as

Ĥeff =
∫ π

−π

dk|k〉〈k| ⊗ [E (k)n(k) · σ̂ ]. (A4)

The effective Hamiltonian is determined by the quasienergy
E (k) and the winding vector n(k) which have complicated
expressions in terms of the momentum components ki and
the coin parameters θi. To write them explicitly, we define the
following shorthands for trigonometric functions:

sk
a,b ≡ sin(akx + bky)

ck
a,b ≡ cos(akx + bky)

sθ
α,β ≡ sin

(
αθ1+βθ2

2

)
cθ
α,β ≡ cos

(
αθ1+βθ2

2

)
With this convention, the quasienergy is given by the relation

cos E = cθ
2,0cθ

0,1ck
1,0ck

1,2 − cθ
0,1sk

1,0sk
1,2 − sθ

2,0sθ
0,1

(
ck

1,0

)2
(A5)

and winding vector becomes

n(k) = −1

sin E

×

⎡
⎢⎣

sθ
0,1sk

1,0ck
1,0 − sθ

2,1sk
1,0ck

0,1ck
1,1 + sθ

2,−1sk
1,0sk

0,1sk
1,1

−sθ
0,1

(
sk

1,0

)2 − sθ
2,1ck

1,0ck
0,1ck

1,1 + sθ
2,−1ck

1,0sk
0,1sk

1,1
cθ

0,1ck
1,0sk

1,2 + cθ
2,1sk

1,0ck
0,1ck

1,1 − cθ
2,−1sk

1,0sk
0,1sk

1,1

⎤
⎥⎦.

(A6)

The topological properties of the quantum walk are encoded
in n(k) and can be revealed by evaluating the Chern number
(3) as discussed in the main text.

APPENDIX B: GENERATING UNITARY
ON RANDOM LATTICES

In this Appendix, we derive the position-space represen-
tation of the quantum-walk unitary on randomly diluted 2D
lattices. We consider a finite M × N square lattice such that
|x, y〉 ∈ RMN . With a two-level coin basis |s〉 ∈ C2 associated
to every lattice point, the basis states describing a quantum
walk on a square lattice are given by |ψ〉 = |x, y〉 ⊗ |s〉 ∈
C2MN . The propagator in this representation corresponds to a
unitary matrix Û2D(θ1, θ2) ∈ C2MN×2MN . We now introduce a
random dilution by partitioning the lattice into two disjointed
sets L and P , where L corresponds to the set of lattice sites
available for the quantum walk, while P corresponds to the
set of randomly removed lattice sites. Now, we define shift
operators T̂x ∈ RMN×MN and T̂y ∈ RMN×MN as

T̂x|x, y〉 = |(x + 1) mod M, y〉,
T̂y|x, y〉 = |x, (y + 1) mod N〉, (B1)

where we have incorporated periodic boundary conditions to
preserve the unitarity of the shift operators on a finite lattice.
Diagonal shift is then given by T̂xT̂y. Additionally, we define
the (lattice) identity operator Îlat ∈ RMN×MN as the projector
to the unpartitioned lattice L ∪ P:

Îlat =
∑

(x,y)∈L∪P
|x, y〉〈x, y|. (B2)

Finally, we define the sublattice operator L̂ ∈ RMN×MN , which
acts as the projector on the sublattice L:

L̂ =
∑

(x,y)∈L
|x, y〉〈x, y|. (B3)

Note that the above definitions for Îlat and L̂ allow us to
naturally interpret Îlat − L̂ as the projector to the sublattice
P . With all the relevant definitions in place, translation op-
erators T̂1, T̂2, T̂3 ∈ R2MN×2MN and the coin operator R̂y(θ ) ∈
R2MN×2MN for the topological split-step walk on a diluted
lattice can be written as

T̂1 = L̂T̂xT̂y ⊗ | ↑〉〈↑ | + L̂T̂ †
y T̂ †

x ⊗ | ↓〉〈↓ | + T̂xT̂y(Îlat − L̂)T̂ †
y T̂ †

x ⊗ | ↑〉〈↓ | + T̂ †
y T̂ †

x (Îlat − L̂)T̂xT̂y ⊗ | ↓〉〈↑ |,
T̂2 = L̂T̂y ⊗ | ↑〉〈↑ | + L̂T̂ †

y ⊗ | ↓〉〈↓ | + T̂y(Îlat − L̂)T̂ †
y ⊗ | ↑〉〈↓ | + T̂ †

y (Îlat − L̂)T̂y ⊗ | ↓〉〈↑ |,
T̂3 = L̂T̂x ⊗ | ↑〉〈↑ | + L̂T̂ †

x ⊗ | ↓〉〈↓ | + T̂x(Îlat − L̂)T̂ †
x ⊗ | ↑〉〈↓ | + T̂ †

x (Îlat − L̂)T̂x ⊗ | ↓〉〈↑ |,

R̂y(θ ) = Îlat ⊗
(

cos
θ

2
| ↑〉〈↑ | + cos

θ

2
| ↓〉〈↓ | + sin

θ

2
| ↑〉〈↓ | − sin

θ

2
| ↓〉〈↑ |

)
. (B4)
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FIG. 6. Evolution of the diffusion exponent at different p for
Eq. (C1) with (θ1, θ2) = ( π

2 , 0). The diffusion exponent is calculated
using Eq. (4), where the MSD data are averaged over 300–1000
independent configurations at each point.

From the construction of the translation operators one can see
that the direction of the walker’s shift is spin dependent due to
spin-position entanglement. Furthermore, upon entering a site
that belongs to sublattice P , the walker’s position is reverted
to its preshift state, while its spin state is flipped. We then
obtain the propagator by straightforward multiplication:

Û2D(θ1, θ2) = T̂3R̂y(θ1)T̂2R̂y(θ2)T̂1R̂y(θ1). (B5)

APPENDIX C: TOPOLOGICAL QUANTUM WALKS
WITH FLOQUET INVARIANTS

Here we consider a simpler walk where the diagonal trans-
lation T̂ (δ1) and the corresponding rotation operator R̂y(θ2)
are dismissed:

Û2D(θ1, θ2) = T̂ (δ3)R̂(θ1)T̂ (δ2)R̂(θ2), (C1)

following the same convention as introduced in the main text.
This family of walks [36] has been realized experimentally

[9,17,18] and is characterized by the Rudner winding number
[7]

W [U ] = 1

8π2

∫
dt dkx dky

× Tr(U −1∂t U [U −1 ∂kx U,U −1 ∂ky U ]). (C2)

In Fig. 6, we have plotted the dynamical exponent at
(θ1, θ2) = ( π

2 , 0) for various occupation probabilities p. In
this parameter regime, the Floquet operator (C1) admits a
finite winding number. Qualitatively, such walks exhibit the
same response to the structural disorder, which generalizes
the findings of the main text to quantum walks in different
topological symmetry classes.

APPENDIX D: ADDITIONAL DETAILS
ON TOPOLOGICAL CHERN WALKS

To establish the generic nature of the quantum walk on
random lattices, it is important to exclude any initial state
dependence effects. Since the operation on internal degrees
of freedom is a rotation with respect to the y axis, it is instruc-
tive to show that the behavior is invariant under initial states
other than the one studied in the main text. In this way, we
initialize the walker in an eigenstate of the Pauli spin operator
σ̂x given by 1√

2
[1, 1]. Figure 7 illustrates the response of the

walker to various strengths of the structural disorder starting
from such an initial state. As can be seen, the key results
reported in the main text, such as asymptotic diffusive (clas-
sical) behavior, the existence of a finite region of subdiffusive
spread, and the eventual localization, all hold in this case as
well.

Additionally, we consider the behavior of the walker at
different points on the phase diagram (of the clean case) close
and at the boundary of the topological-trivial transition. The

FIG. 7. The evolution dynamical exponent α(t ) and the diffusion constant Dα (t ) at different occupation probabilities p. Here the walker is
initialized in an eigenstate of σx . (a), (b) In topological phase with (θ1, θ2 ) = ( π

2 , π

2 ) and (c), (d) trivial phase with (θ1, θ2) = ( π

8 , π

2 ). Data are
averaged over 500–700 random configurations.
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FIG. 8. Dynamical exponent α(t ) and the diffusion constant Dα (t ) at different occupation probabilities p. (a), (b) For (θ1, θ2) = ( π

3 , π

2 )
and (c), (d) ( π

4 , π

2 ).

results are shown in Fig. 8, hinting toward an intermediate
behavior between the cases presented in the main text.

Lastly, for high enough occupation probability p, the diffu-
sion exponent α(t ) converges to some value, at least within the
range of 104 time steps. It is straightforward to calculate the
exponent given the wave function at any two points in time. If
for some time t0, sufficiently distant t1, t2 > t0 yield the same
exponent, then this value can be interpreted as α(t → ∞).
For lower values of p, below the localization threshold, the
diffusion exponent does not converge, and the above method
is not applicable. In Figs. 9(a) and 9(b), we show the long-time
behavior of fitting to the diffusion ansatz limt→∞ �2X (t ) ∼
Dαtα , for quantum walkers at p = 0.95 in the topological

phase, corresponding to one of the cases presented in the
paper. Within our calculations, the values for the critical ex-
ponent α and the diffusion constant Dα stay roughly constant
over several thousand time steps, and fall within relatively
narrow regions, and thus the mean values can be inferred quite
accurately. In Fig. 9(c), we show how the mean values change
as we increase the number of unique samples N , showing that
even using just several hundred configurations yields a good
estimate for these quantities. Where applicable, these values
are given in Tables I and II. One could, in principle, also intro-
duce finite-size corrections to the diffusion ansatz (irrelevant
scaling variables), but at 104 time steps these corrections are
likely to affect only the third decimal.

FIG. 9. (a), (b) Distribution of critical exponents α and diffusion constants D, calculated as a long-time fit to the diffusion ansatz, for 2000
configurations. (c) Mean values of α and D as a function of the number of configurations N . The height of the error bars corresponds to the
standard error, which decreases as 1/

√
N .
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TABLE I. Fits for long-time behavior of the diffusion exponent
α(t → ∞) and the diffusion exponent Dα for the generating unitary
(1) in topological parameter regime (θ1, θ2) = ( π

2 , π

2 ).

p α(t → ∞) Dα (t → ∞)

1.0 2.00 1.3
0.99 1.01 69
0.95 1.00 13
0.85 0.98 4.5
0.75 0.93 3.7
0.70 0.88 3.4

TABLE II. Fits for long-time behavior of the diffusion exponent
α(t → ∞) and the diffusion exponent Dα for the generating unitary
(1) in trivial parameter regime (θ1, θ2) = ( π

8 , π

2 ).

p α(t → ∞) Dα (t → ∞)

1.0 2.00 2.3
0.99 1.00 110
0.95 0.99 16
0.85 0.90 7.4
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V. Potoček, C. Hamilton, I. Jex, and C. Silberhorn, A 2D quan-
tum walk simulation of two-particle dynamics, Science 336, 55
(2012).

[20] A. M. Childs and J. Goldstone, Spatial search and the Dirac
equation, Phys. Rev. A 70, 042312 (2004).

[21] E. Flurin, V. V. Ramasesh, S. Hacohen-Gourgy, L. S. Martin,
N. Y. Yao, and I. Siddiqi, Observing Topological Invariants
using Quantum Walks in Superconducting Circuits, Phys. Rev.
X 7, 031023 (2017).

[22] K. Wang, X. Qiu, L. Xiao, X. Zhan, Z. Bian, W. Yi, and P. Xue,
Simulating Dynamic Quantum Phase Transitions in Photonic
Quantum Walks, Phys. Rev. Lett. 122, 020501 (2019).

[23] F. Cardano, M. Maffei, F. Massa, B. Piccirillo, C. De Lisio, G.
De Filippis, V. Cataudella, E. Santamato, and L. Marrucci, Sta-
tistical moments of quantum-walk dynamics reveal topological
quantum transitions, Nat. Commun. 7, 11439 (2016).

[24] L. Xiao, X. Zhan, Z. Bian, K. Wang, X. Zhang, X. Wang, J.
Li, K. Mochizuki, D. Kim, N. Kawakami et al., Observation
of topological edge states in parity–time-symmetric quantum
walks, Nat. Phys. 13, 1117 (2017).

[25] W.-T. Xue, Y.-M. Hu, F. Song, and Z. Wang, Non-Hermitian
Edge Burst, Phys. Rev. Lett. 128, 120401 (2022).

[26] C. A. Ryan, M. Laforest, J. C. Boileau, and R. Laflamme, Ex-
perimental implementation of a discrete-time quantum random
walk on an NMR quantum-information processor, Phys. Rev. A
72, 062317 (2005).

[27] A. M. Childs, R. Cleve, E. Deotto, E. Farhi, S. Gutmann, and
D. A. Spielman, Exponential algorithmic speedup by a quantum
walk, in Proceedings of the Thirty-fifth Annual ACM Symposium

023150-10

https://doi.org/10.1080/00107151031000110776
https://doi.org/10.1103/PhysRevA.48.1687
https://doi.org/10.1103/PhysRevA.58.915
https://doi.org/10.1103/PhysRevB.86.195414
https://doi.org/10.1126/science.1174436
https://doi.org/10.1103/PhysRevX.3.031005
https://doi.org/10.1103/PhysRevA.67.052307
https://doi.org/10.1103/PhysRevLett.121.100502
https://doi.org/10.1103/PhysRevLett.102.180501
https://doi.org/10.1126/science.abg7812
https://doi.org/10.1098/rsta.2006.1901
https://doi.org/10.1088/2399-6528/aafe2f
https://doi.org/10.1103/PhysRevLett.124.050502
https://doi.org/10.1007/s11128-020-02650-4
https://doi.org/10.1103/PhysRevLett.103.090504
https://doi.org/10.1103/PhysRevLett.121.100501
https://doi.org/10.1103/PhysRevLett.129.046401
https://doi.org/10.1126/science.1218448
https://doi.org/10.1103/PhysRevA.70.042312
https://doi.org/10.1103/PhysRevX.7.031023
https://doi.org/10.1103/PhysRevLett.122.020501
https://doi.org/10.1038/ncomms11439
https://doi.org/10.1038/nphys4204
https://doi.org/10.1103/PhysRevLett.128.120401
https://doi.org/10.1103/PhysRevA.72.062317


QUANTUM WALKS ON RANDOM LATTICES: DIFFUSION, … PHYSICAL REVIEW RESEARCH 5, 023150 (2023)

on Theory of Computing (Association for Computing Machin-
ery, New York, 2003), pp. 59–68.

[28] B. C. Travaglione and G. J. Milburn, Implementing the quantum
random walk, Phys. Rev. A 65, 032310 (2002).

[29] A. Geraldi, A. Laneve, L. D. Bonavena, L. Sansoni, J. Ferraz,
A. Fratalocchi, F. Sciarrino, A. Cuevas, and P. Mataloni, Experi-
mental Investigation of Superdiffusion via Coherent Disordered
Quantum Walks, Phys. Rev. Lett. 123, 140501 (2019).

[30] A. Schreiber, K. N. Cassemiro, V. Potoček, A. Gábris, P. J.
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