
This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail.

Powered by TCPDF (www.tcpdf.org)

This material is protected by copyright and other intellectual property rights, and duplication or sale of all or
part of any of the repository collections is not permitted, except that material may be duplicated by you for
your research use or educational purposes in electronic or print form. You must obtain permission for any
other use. Electronic or print copies may not be offered, whether for sale or otherwise to anyone who is not
an authorised user.

Varis, Nuutti; Manner, Jukka; Särelä, Mikko; Kiravuo, Timo
DBridges: Flexible Floodless Frame Forwarding

Published in:
Computer Networks

DOI:
10.1016/j.comnet.2013.08.007

Published: 01/01/2013

Document Version
Publisher's PDF, also known as Version of record

Published under the following license:
CC BY-NC-SA

Please cite the original version:
Varis, N., Manner, J., Särelä, M., & Kiravuo, T. (2013). DBridges: Flexible Floodless Frame Forwarding.
Computer Networks, 57(17), 3601-3616. https://doi.org/10.1016/j.comnet.2013.08.007

https://doi.org/10.1016/j.comnet.2013.08.007
https://doi.org/10.1016/j.comnet.2013.08.007

DBridges: Flexible floodless frame forwarding

Nuutti Varis ⇑, Jukka Manner, Mikko Särelä, Timo Kiravuo
Aalto University School of Electrical Engineering, Department of Communications and Networking, P.O. Box 13000, 00076 Aalto, Finland

a r t i c l e i n f o

Article history:
Received 3 February 2013
Received in revised form 31 July 2013
Accepted 8 August 2013
Available online 23 August 2013

Keywords:
Ethernet
Dht
Network architecture

a b s t r a c t

Ethernet has become the de facto layer 2 transmission technology, partly due to ease of use
and cost efficiency. The cores of most data centers around the world are based on Ethernet,
and large access and core networks are built without IP routing. The inherent simplicity of
Ethernet has several drawbacks, including the overhead of network-wide broadcasting and
the use of the spanning tree protocol. The academia and the industry have presented
numerous solutions to overcome the limitations of Ethernet. Many of these solutions have
deployment constraints and often force a change of the whole network.

In this paper, we present DBridges, an efficient solution for building large-scale Ethernets
based on the IETF-driven RBridges and SEATTLE. DBridges provide loop-safety, dramatic
decrease in broadcast traffic, and resiliency and graceful failover without affecting the
plug-and-play vision of Ethernet. The key contributions of our solution are that we are
backward compatible with RBridges and can support incremental deployment. We analyze
and show these benefits in detail, and present various performance measurements using
our proof-of-concept implementation. We estimate that with DBridges it is possible to
increase the size of Ethernet broadcast domains at least tenfold.

� 2013 The Authors. Published by Elsevier B.V.

1. Introduction

Ethernet was originally envisioned to be a simple, cost-
effective, and zero configuration transmission technology.
Over the years, Ethernet has become the prevalent link
layer network technology in the world, with deployments
ranging in scope from residential homes to massive data
centers. To support the deployment diversity, Ethernet
has been extended with loop prevention mechanisms,
Virtual Local Area Networks (VLANs), and various other
technologies. As a result, today’s cost-effective Ethernet

bears little resemblance to the original vision of a zero-
configuration network technology.

Ethernet networks have several well-known scaling is-
sues that limit the size and topology of the network. Many
scalability issues are related to the operation of the Span-
ning Tree Protocol (STP) [1]. Its primary responsibility is
to build a loop-free forwarding tree from the network
topology, that switches use to forward Ethernet frames
between hosts in the network. A large issue in current,
high-volume Ethernet networks is that the protocol builds
a single forwarding tree to use in the Ethernet network,
that forwards traffic using a single path out of all the
available paths in more mesh-like topologies. Addition-
ally, the original protocol design itself suffers from insta-
bility in large Ethernet topologies. Finally, while STP
offers a loop free forwarding topology in normal opera-
tion, there are cases, such as hardware failure, where
the loop free operation is not guaranteed. This may lead
to uncontrolled frame propagation in the network, causing
end to end service for hosts to be disrupted throughout
the Ethernet network.

1389-1286 � 2013 The Authors. Published by Elsevier B.V.
http://dx.doi.org/10.1016/j.comnet.2013.08.007

⇑ Corresponding author. Tel.: +358 947025480.
E-mail addresses: nuutti.varis@aalto.fi (N. Varis), jukka.manner@aal-

to.fi (J. Manner), mikko.sarela@aalto.fi (M. Särelä), timo.kiravuo@aalto.fi
(T. Kiravuo).

Computer Networks 57 (2013) 3601–3616

Contents lists available at ScienceDirect

Computer Networks

journal homepage: www.elsevier .com/ locate/comnet

Open access under CC BY-NC-SA license.

Open access under CC BY-NC-SA license.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.comnet.2013.08.007&domain=pdf
http://dx.doi.org/10.1016/j.comnet.2013.08.007
mailto:nuutti.varis@aalto.fi
mailto:jukka.manner@aalto.fi
mailto:jukka.manner@aalto.fi
mailto:mikko.sarela@aalto.fi
mailto:timo.kiravuo@aalto.fi
http://dx.doi.org/10.1016/j.comnet.2013.08.007
http://www.sciencedirect.com/science/journal/13891286
http://www.elsevier.com/locate/comnet
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/

Arguably, the most significant scalability issue in Ether-
net networks is also one of the main motivators for the
ubiquitous use of Ethernet in modern networks. Ethernet
uses flooding to reach the recipient in the network, which
guarantees end to end service without any host configura-
tion, and simplifies switch design which leads to a cost
effective solution. Flooding is minimized in switches by
learning the locations of the hosts in the network from re-
ceived frames. This allows the switch to forward the frame
on a specific link, instead of flooding it on a number of
links. Unfortunately, in large or highly dynamic networks,
the number of unknown hosts can be significant. Addition-
ally, the size of the Ethernet network is limited by the size
of the learning database in devices, that scales with the
number of active hosts in the network.

Flooding is also amplified by IP. Hosts must resolve the
higher layer IP addresses to Ethernet addresses using the
Address Resolution Protocol (ARP) [2] or the Neighborhood
Discovery (ND) [3] protocol. Both protocols function by
flooding the address requests throughout the network, sig-
nificantly increasing the flooded traffic in large deploy-
ments. In addition, the network protocol addressing is
typically automatically configured on hosts via a separate
protocol such as the Dynamic Host Configuration Protocol
(DHCP) [4] that also makes use of flooding.

It has also been recently argued that the original vision
of the Ethernet might not even be feasible in large-scale
networks with arbitrary topologies. More specifically, Port-
Land [5] argues that a solution that satisfies loop safety,
broadcast scalability, resiliency, and plug-and-play charac-
teristics may not be possible without restricting the topol-
ogy of the Ethernet or requiring changes to end hosts.

The IETF TRILL working group has introduced its own
solution called Routing Bridges (RBridge) [6,7], which
mainly targets loop safety, the removal of the scalability
and efficiency issues of STP, and enabling the core of the
network to scale to larger deployments. Unfortunately,
RBridges do not solve the broadcast-driven scalability is-
sues in large Ethernets.

At the same time, the SEATTLE [8] design proposes a
radical departure from conventional Ethernet, solving the
broadcast-driven scalability issue of large Ethernets with
a DHT-based approach (discussed in Section 4). SEATTLE
is designed for enterprise networks, where the operators
typically have a higher degree of control over the hosts that
connect to it. To use the design in generic Ethernet net-
works, some of its operational restrictions must be relaxed.

Overall, RBridges or SEATTLE alone do not offer a com-
plete solution to all of the issues plaguing large Ethernet
networks. We attempt to comprehensively solve the scala-
bility issues of Ethernet by extending routing bridges with
the DHT concept from SEATTLE. We call the DHT-enhanced
RBridge ‘‘DBridge’’ to differentiate it from unmodified stan-
dard-based RBridges. The use of the DHT as presented in
SEATTLE effectively removes broadcast traffic from the
network.

We chose to spend much of our effort in designing a
system that can be easily deployed in existing Ethernets.
DBridges work with the existing install base of hosts and
Ethernets switches, including RBridges, can be deployed

incrementally, and supports graceful fail-over in the case
of resource starvation or network faults.

Thus, the contributions of our work are the design,
implementation, and analysis of a new RBridge-based solution
to scalable Ethernet networking. The primary target environ-
ment examined in our work is a data center, however we
also show that our solution offers the same benefits in a
more generic Ethernet-based network. Using our proof-
of-concept implementation we thoroughly evaluate the
DHT scheme as a part of the RBridges, and verify through
measurements that we retain the key benefits of the
approach:

� Up to 99% of the broadcasting in the network is
eliminated,
� DHT specific processing is distributed flexibly to several

different devices in the network, and
� the agressive cleanup of MAC learning tables in the net-

work allows significantly larger Ethernet deployments
without edge switch MAC table overload,
� various network faults and resource starvation are han-

dled gracefully without loss of host connectivity, and
� deployment can be done incrementally with each new

node removing a part of the broadcast traffic.

The rest of the paper is structured as follows. First, Sec-
tion 2 describes some of the previous works that have at-
tempted to solve the Ethernet scalability issues. Next, in
Sections 3 and 4, we go over the IETF routing bridges stan-
dard, and the SEATTLE design in more detail. Next, Sec-
tion 5 describes the introduction of the SEATTLE one-hop
DHT scheme in routing bridges, and our architectural
changes to this scheme. Section 6 describes our software
prototype for RBridges and DBridges and Section 7 de-
scribes our testing environment and tools in detail. In Sec-
tion 8, we go over the results of our testing and analyze
some of our claims in detail, using two different traffic
models. Finally, Section 9 concludes the paper.

2. Related work

Scaling Ethernet broadcast domains beyond a few hun-
dred hosts has been proposed in the past [9] with projects
such as the Smartbridge [10], while routing based on a flat
namespace has been previously explored in work such as
ROFL [11]. There has been a significant research effort to
find scalable solutions for data center networking that
would solve efficiency, safety, and size issues of the Ether-
net network.

The SEATTLE [8] design has been the main inspiration for
our work. DBridges are a fusion of the SEATTLE one-hop DHT
design and TRILL. SEATTLE has several shortcomings, such as
loop-safety and switch forwarding table state, both of which
are either completely or partially mitigated by TRILL and our
DBridge design. Leveraging TRILL allows DBridges to func-
tion alongside RBridges and STP-based switches, while solv-
ing one of the major issues in current Ethernet networks.

Several other solutions have been proposed for data-
center like environments, such as the PortLand [5], Al-fares

3602 N. Varis et al. / Computer Networks 57 (2013) 3601–3616

et al. [12], BCube [13], DCell [14], SPAIN [15], and the Vir-
tual Layer 2 (VL2) [16]. All of these designs use varying de-
grees of topology constraints and end-host modifications
to simplify the control and forwarding plane functionality.
DBridges can be deployed in an arbitrary topology with
RBridges or STP-based switches while retaining the plug-
and-play feature of Ethernet. DBridges set no constraints
on deployment strategy.

PortLand, VL2, and Monsoon implement a generalized
directory service to reduce (ARP and DHCP) broadcasting
in the network, which directly allows the broadcast do-
main size to be increased. PortLand uses a centralized
directory service, while VL2 uses a distributed and hierar-
chical solution for scaling the directory service to larger
Ethernet domains. Monsoon replaces ARP in the host net-
work stack with a custom address resolution protocol,
which breaks legacy application compatibility in the
network.

3. Routing bridges

TRILL is a new Ethernet frame forwarding protocol stan-
dardized by the IETF. The devices running the protocol are
called Routing Bridges (RBridges). RBridges are fully auto-
configurable, and retain the Ethernet plug-and-play nature
of hosts. RBridges are incrementally deployable with span-
ning tree based Ethernet networks, and require no changes
to hosts. Introducing RBridges in an STP-based Ethernet
network will segment it into several smaller isolated
Ethernet networks, each with its own spanning tree. In
contrast to STP-based solutions, RBridges forward Ethernet
frames using shortest path forwarding that is computed
using a modified version of the well-known IS-IS link state
protocol [17]. The forwarding operation is based on an
encapsulation scheme that is added and removed at the
edges of the network.

Fig. 1 presents the forwarding operation for Ethernet
frames entering and exiting the RBridge network (a TRILL
campus). When Host A sends a frame to Host B, it first tra-
verses a normal Ethernet network. Upon reaching the net-
work edge, an ingress RBridge RB1 receives the native
Ethernet frame, encapsulates it as a TRILL Data frame, and
forwards it to the next hop on the path towards the egress
RBridge RB3. The ingress RBridge also performs conven-
tional MAC learning on Host A during the encapsulation
process.

As the frame traverses the TRILL campus, it goes through
a number of transit RBridges, that forward the frame to the
next hop on the path towards the egress RBridge, using the
information contained in the encapsulation header. More
specifically, the identifier of the egress RBridge included in
the encapsulation header is used to index a forwarding table
in the RBridge. The forwarding table contains the next hop
MAC address on the path towards the egress RBridge, calcu-
lated by the shortest path first algorithm.

Upon reaching the egress RBridge RB3, the TRILL Data
frame will be decapsulated, leaving the native Ethernet
frame intact. The frame is then emitted on the port where
Host B is located. The egress RBridge also learns during the
decapsulation process that Host A is located behind the in-
gress RBridge RB1, recording an entry for the MAC address
of Host A, and the identifier of the ingress RBridge in the
local MAC learning database.

3.1. Control plane

RBridges discover the network topology and perform
network autoconfiguration using a modified version of
the IS-IS link state protocol. The link state protocol has a
dual role in the network. First, it is used to negotiate link
local features between neighboring RBridges to ensure
host connectivity. Secondly, it is also used to advertise
RBridge features and neighbor information across the
TRILL campus.

Each RBridge in the TRILL campus is identified by two
separate identifiers. Control plane functionality is driven
by the IS-IS system identifier assigned for each RBridge,
while the forwarding plane uses a separate identifier con-
cept called a nickname. Each RBridge in the TRILL campus
uses one or more nicknames. A nickname is a 16 bit quan-
tity that is used in the encapsulation header to identify the
ingress RBridge, the egress RBridge, or the multicast for-
warding tree root. The link state protocol is responsible
for automatically resolving any possible nickname colli-
sions in the TRILL campus by announcing the used nick-
names in link state protocol messages that are flooded
throughout the campus.

3.2. Forwarding plane

Each TRILL Data frame traversing the TRILL campus is
encapsulated with the format presented in the upper half

Fig. 1. The TRILL encapsulation and forwarding scheme.

N. Varis et al. / Computer Networks 57 (2013) 3601–3616 3603

of Fig. 2 as octets beginning from the start of the Ethernet
frame. The encapsulation process creates TRILL Data
frames by inserting a separate Ethernet header (Outer
Ethernet), and a special TRILL header in front of the native
Ethernet frame (Inner Ethernet, I. VLAN, Payload, etc.). If
VLAN tagging is used on the port, the frame also includes
an outer VLAN tag (O. VLAN).

The lower part of Fig. 2 also includes an expanded view
of the TRILL header, represented in bits. It is six bytes at
minimum, containing enough information to forward the
frame through the TRILL campus, and to guarantee loop
safety within the campus via a hop count field. During
the forwarding operation, RBridges modify the source
and destination address fields in the outer Ethernet header
to properly address the frames to the next hop on the path
to the egress RBridge, and decrement the hop count field.

The forwarding operation uses two separate databases
to send native Ethernet frames between hosts in the net-
work: the MAC learning table, and the forwarding table.
The MAC learning table is used to keep track of host loca-
tions in the network, while the forwarding table contains
the shortest paths to all other RBridges in the TRILL
campus.

The MAC learning table is functionally identical to the
conventional MAC learning table found in Ethernet
switches, however the location of a host in the network
can be of two types. First, a host can be directly attached
to an RBridge through one of its ports. In this case, the loca-
tion is recorded as a port identifier. Secondly, a host may be
located behind another RBridge in the network. In this
case, the location is recorded as the nickname of the re-
mote RBridge. The forwarding table is used to forward
TRILL Data frames towards the egress RBridge. Conceptu-
ally, it contains an entry for each RBridge nickname in
the TRILL campus, and the next hop on the path to that
device.

RBridges retain the Ethernet plug-and-play model of
communication, i.e., if a destination address is unknown
(i.e., not found in the MAC Learning database) during the
encapsulation process, the TRILL Data frame will be
flooded throughout the network using a multicast for-
warding tree.

3.3. Scalability

The intent of RBridges is not to affect Ethernet scalabil-
ity, however the use of a tunneling header in frame for-
warding alleviates some of the scalability issues in
spanning tree based networks. As frame forwarding in
the TRILL campus is based on the nickname information

of RBridges, transit RBridges only need to have a forward-
ing table to guarantee end to end connectivity for hosts.
This is a key distinction in the forwarding process, as the
forwarding table scales with the number of RBridges in
the TRILL campus, compared to the number of hosts in
the network for spanning tree based forwarding. The
RBridges on the network edges still require a conventional
MAC learning table, that scales with the number of active
hosts in the network.

To reduce the flooding that results from unknown des-
tination forwarding, RBridges may optionally run a sepa-
rate protocol on top of the link state protocol to advertise
locally attached hosts to the TRILL campus. The End Station
Address Distribution Information (ESADI) protocol allows
RBridges to periodically multicast host attachments in a
VLAN segment to other RBridges participating in the ESADI
instance for that VLAN. While ESADI can be used to dis-
seminate host information across the Ethernet network, a
proactive and VLAN-segmented multicast model may
quickly lead to significant control plane overhead in large
scale or complex network installations.

4. SEATTLE

SEATTLE introduces a novel way to eliminate some of
the inherent scalability issues in spanning tree based
Ethernet networks. Exchanging the conventional spanning
tree protocol with a link state protocol, and introducing
Distributed Hash Tables (DHT) to the Ethernet networks al-
lows the system to eliminate three major sources of broad-
cast in enterprise networks: ARP, ND, and DHCP. In
addition, the DHT functionality is also used to implement
host mobility support, directly on the link layer.

4.1. Consistent Hashing

Consistent Hashing [18] was first introduced as an effi-
cient method to load balance resource usage in a distrib-
uted system. Since then, the design has been adopted in
a wide variety of systems, ranging from peer to peer appli-
cations to distributed storage systems. For the purposes of
this paper, Consistent Hashing and DHT are used
synonymously.

Conceptually, a DHT stores (key, value) pairs (data ele-
ments) in nodes that are on a circular key space. Each node
represents a networked device, typically server or a host
participating in the DHT system. Each node is assigned a
position on the key space by using a hashing function on
a sufficiently unique identifier of the device, such as a
switch identifier, or a host MAC address. Similarly, data
elements are assigned to nodes in a DHT through a two
phase process. First, the position of the data element on
the key space is computed by using a hashing function
on the data element key. Once the position of the data ele-
ment is known, a mapping function (such as the minimum
distance between the data element and the preceding or
following node) is used to assign the data element to a
node.

Each node participating in the system knows a subset (a
view) of all the nodes in the DHT. Data elements are deliv-

Fig. 2. The TRILL encapsulation format.

3604 N. Varis et al. / Computer Networks 57 (2013) 3601–3616

ered to their assigned nodes using an ‘‘overlay network’’
that forwards the data element to its destination through
a number of nodes using the underlying network primi-
tives [19]. Typically, each node knows of one or more
next-hop neighbors on the key space, and a set of distant
neighbors that can be used to optimize the delivery pro-
cess. Concretely, the data element is delivered towards
the correct node by sending it to the known ‘‘next-hop’’
neighbor on the key space via the underlying network pro-
tocol. The next-hop neighbor then checks whether it is
responsible for storing the data element, or if it must for-
ward the data element to its own next-hop neighbor.

4.2. One-hop Distributed Hash Tables

The following discussion concentrates on a specializa-
tion of the algorithm, where all participants in the DHT
know all other participants with very high probability
[20]. The complete view of the nodes in a key space allows
participants to directly (e.g., by using ‘‘one-hop’’) index the
correct node for a given key. Typically, one-hop DHT sys-
tems have lower lookup latency and lookup failure rates
than multi-hop systems, while the lookup table size grows
linearly with the number of nodes in the system.

The key change in SEATTLE is to replace the conven-
tional spanning tree protocol with a link state protocol.
This allows the switches to advertise their participation
in the DHT processing throughout the network. In a con-
verged link state, this allows each switch to have a consis-
tent view of all the nodes participating in the DHT.
SEATTLE switches store information about directly con-
nected hosts as (key, value) tuples to the DHT. A consistent
view of the DHT is computed by assigning each switch to a
circular key space using a hashing function on the switch
identifier. The switch that is responsible for storing the
information (a resolver switch) is determined by using a
mapping function that selects the closest switch on the
key space in counter-clockwise direction.

SEATTLE stores two types of information about the
hosts in the network. First, host location information is
stored in the DHT as ðMAChost ; IDSi

Þ tuples. The IDSi
repre-

sents the switch level identifier of the first hop device for
MAChost. This information is used by the switches to re-
move flooding from the network, when the destination
MAC address is not found in the local MAC learning data-
base. Secondly, switches also publish IPv4 addressing
information of directly attached hosts to the DHT in the
form of (IPhost,MAChost) tuples. SEATTLE uses the addressing
information to implement proxy ARP behavior, where
broadcast ARP requests are answered by switches on be-
half of the hosts.

Fig. 3 presents an example of the SEATTLE one-hop DHT
scheme in a simple topology. In the figure, the circular DHT
key space spanning [0, . . . ,1] is overlaid on top of a topol-
ogy that contains three switches S1, S2, and S3, and three
hosts a, b, c. The hosts are each directly attached to
switches S1, S2, and S3, respectively.

The DHT key space is first populated by the switches S1,
S2, and S3 using the link state protocol messages that they
receive from each other. In the example, each switch as-
signs all switches (Si, i 2 {1,2,3}) on the circular key space

using a hash function H(Si) 2 [0, . . . ,1] on the unique iden-
tifier of the switch. This operation is done by all switches in
the network, resulting in an identical key space for all
switches when the link state is converged. Each switch
on the circular key space represents a node, where first
hop switches store location and addressing information.

Fig. 3 also presents the operation of storing location
information in the DHT. When switch S1 receives an outgo-
ing frame from its directly connected host a, it will update
the location information of the host in the DHT. The switch
responsible for storing the information is selected by using
a mapping function F(MACa) that hashes the MAC address
of host a, and chooses the closest counter-clockwise switch
(S3) on the circular key space. Concretely, the information
tuple (MACa,S1) is delivered to switch S3 using a unicast
link state protocol message. The process is identical for
the first-hop switches of hosts b, and c, however the resol-
ver switches for the information are S1, and S2,
respectively.

Similarly, IP addressing information of host a is stored
on an address resolution switch, by using the IP address of
the host as the key for the mapping function F. Note that
host location, and addressing information may be mapped
with a different function, and that F(MACa) and F(IPa) may
not map to the same resolver switch.

SEATTLE also automatically updates the DHT state dur-
ing topology changes using Consistent Hashing. When a
switch is added or removed from the topology, all other
switches will automatically see the topology change from
the link state messages. This allows the switches to recom-
pute the resolvers for all information about directly con-
nected hosts.

4.3. Host location and address resolution using DHT

When a SEATTLE switch Sa receives a frame sent to an
unknown host, it will look up the resolver switch from
the DHT using F(MACdestination) = Sr. The frame will be deliv-
ered as unicast traffic to the resolver switch Sr, instead of
being flooded throughout the network. Upon receiving
the frame, the resolver Sr will forward it towards the des-

Fig. 3. Basic operation of SEATTLE one-hop DHT. Solid lines represent
topology links, and the circular key space; dashed lines represent DHT
signaling and metric function operation on the key space.

N. Varis et al. / Computer Networks 57 (2013) 3601–3616 3605

tination, based on the stored location information. As an
optimization, Sr will also signal the location information
of MACdestination to Sa.

SEATTLE switches also respond to broadcast ARP re-
quests on behalf of the hosts in the network by redirecting
the requests as unicast frames to address resolution
switches. Addressing information can be learned from
DHCP messaging, ARP requests and replies, or any IPv4
frame received from hosts. When an ARP frame requesting
the MAC address of host d arrives at switch Sa, the switch
looks up the resolver switch from the DHT using F(IPd) = Sv.
Upon receiving the unicast ARP request, Sv creates an ARP
reply, based on the stored addressing information, and
sends the reply back towards the requesting host. SEATTLE
also optimizes the address resolution process, piggybac-
king location information of host d with the ARP reply.

Both host location and addressing information will be
cached by SEATTLE switches. This reduces the amount of
DHT signaling in the network, and the processing overhead
in resolver switches.

5. DBridges

DHT Routing Bridges (DBridges) extend the base rout-
ing bridges standard with the one-hop DHT concept intro-
duced in SEATTLE. The similarities between the SEATTLE
architecture and routing bridges allow us to integrate the
one-hop DHT scheme with minimal changes to the existing
specification. The primary reason for this is the use of a link
state protocol to discover the network topology, and to
advertise device features across the network. In addition,
both protocols also implement an encapsulation format
that separates control plane traffic from user data frames.
Finally, both protocols are also designed as ‘‘zero-configu-
ration’’ protocols, requiring no administrative intervention
to boot up the network in a default configuration.

DBridges use a simplified version of the one-hop DHT
scheme from SEATTLE. More specifically, DBridges only
cache location information, and leave addressing informa-
tion uncached in the network. This compromise simplifies
the address resolution process when IP addresses of hosts
change, or when there is an address conflict in the net-
work, while increasing the amount of address resolution
related signaling and processing in the network.

The main difference between RBridges and SEATTLE is
backwards compatibility. SEATTLE replaces all switches
in an Ethernet network with new devices, while RBridges
are incrementally deployable in networks with spanning
tree based switches. To retain the incremental deployment
property in DBridges, and by extension the Ethernet plug-
and-play communication model, the SEATTLE one-hop
DHT scheme has to be modified to support mixed networks
with STP based switches, routing bridges, and DBridges.

We solve the incremental deployment problem by
removing the strict requirement of SEATTLE one-hop DHT
scheme, where all of the information about hosts in the
network is always available in the DHT. The more realistic
concept that the DHT does not hold all information has far
reaching implications on the operation of DBridges, and al-
lows us to retain all of the key features of both RBridges

and SEATTLE while still supporting true Ethernet plug-
and-play based communication. In turn, we introduce
some processing and signaling overhead that presents it-
self in the network as flooding.

5.1. Control plane

Due to the similarities of the SEATTLE and RBridges con-
trol planes, the DHT advertisement mechanism fits directly
into the IS-IS control plane operation. We have extended
the advertisement protocol by introducing the concept of
roles. A DBridge may act as a ‘‘client’’ in the DHT system,
that only uses the DHT information to select resolver nodes
for host location and addressing information. In contrast, a
‘‘server’’ in the DHT system can both use the DHT informa-
tion to select resolver nodes, and store information pro-
vided by other DBridges through DHT signaling. This
allows network administrators to exert tighter control over
what DBridges in the network are responsible for informa-
tion storage. Furthermore, allowing devices to only partic-
ipate in the use of the DHT brings benefits on the edges of
the network, where resource starvation (e.g., the capacity
of the MAC learning table) on the devices may become
an issue in large deployments.

5.2. Missing information in DHT

The core difference between the one-hop DHT scheme
in SEATTLE and in DBridges is the method to deal with
missing information in a resolver node. When an address
or a host location frame is sent to a resolver node, the
SEATTLE scheme presumes that the resolver node will have
the information, and can complete the processing. If the
information is not found on the resolver node, SEATTLE
discards the frame, often leading to host service disruption.
This is a reasonable presumption in enterprise networks,
where administrators have better control over the devices
in it. However, as can be seen from the list below, there are
several transient cases where the information may not be
found in the resolver, leading to host service disruption.

� The link state of the network has not yet converged,
� the resolver node suffers from resource starvation (e.g.,

no room to hold DHT information),
� hosts are either in bootstrap phase, or in pathological

cases, receive only hosts, and
� in the case of DBridges in mixed networks, using the

DHT to communicate with a host behind an RBridge.

We have relaxed the ‘‘omniscient’’ DHT requirement by
reverting back to conventional Ethernet broadcasting for
frames that have no related information in the DHT. This
directly leads to increased processing overhead in the net-
work, as we can no longer eliminate all frames that would
otherwise be forwarded through the DHT system. How-
ever, it also allows us to retain the Ethernet plug-and-play
model of communication in all situations.

Technically, whenever host address or location infor-
mation is missing on a resolver, the DBridge simply returns
the frame back to the ingress DBridge that sent the frame
to the resolver. The frame is also modified by the resolver

3606 N. Varis et al. / Computer Networks 57 (2013) 3601–3616

DBridge to indicate that it is return traffic from a failed
DHT operation. Once the ingress DBridge receives the
frame, it changes the frame to a multi-destination TRILL
Data frame and floods it to the network.

Fig. 4 presents an overview of the DHT miss operation
in TRILL campus. When host s sends a frame to host d,
the ingress DBridge DB3 receives it. The MAC address of d
is not found in the local learning database, so the DBridge
computes the resolver of MACd with F(MACd) = DB2, and
encapsulates and forwards the frame. The resolver DBridge
DB2 receives the frame, but cannot find a location informa-
tion entry for the host. It marks the encapsulated TRILL
Data frame as return traffic from a failed DHT query, and
forwards it as unicast back to the ingress DBridge. Upon
receiving the frame, DB3 re-encapsulates it as a multi-des-
tination frame and floods it throughout the network. Final-
ly, the flooded frame is received by the egress DBridge DB1

that decapsulates it and forwards it to host d.

5.3. Incremental deployment with RBridges

DBridges are designed to be deployable in Ethernet net-
works with a mix of conventional spanning tree based
switches and RBridges. Increasing the number of DBridges
allows more host traffic to flow through the DHT, reducing
the broadcast traffic in the network linearly.

When an ingress DBridge is forwarding a frame towards
an unknown host in the network, it will automatically use
the DHT and forward the frame through a resolver DBridge.
If the host is behind an RBridge, the resolver will not have
the location information. Thus, the frame will be returned
to the ingress DBridge, that will flood the frame to the net-
work to guarantee end to end connectivity between the
hosts. As most flows between two hosts are bidirectional,
the ingress DBridge will learn the location of the host be-
hind an RBridge from subsequent message exchanges be-
tween the hosts through normal MAC learning process.
After that, all communication between the hosts is done
using the shortest path forwarding.

ARP requests are the prevalent source of the broadcast
traffic in Ethernet networks. As addressing information is
not cached at edge DBridges, each ARP request sent by a
host connected to a DBridge is processed by an address re-
solver DBridge. Consequently, the address resolver receives
requests for two kinds of addresses: hosts that are con-
nected to DBridges, and hosts that are connected to
RBridges.

Hosts connected to DBridges will have their addressing
information stored at an address resolver DBridge. To opti-
mize the latter case, we also allow DBridges to update
information about hosts behind RBridges to the DHT. Each
time a host behind a DBridge replies to a broadcast ARP re-
quest sent by a host behind an RBridge, we treat the desti-
nation addressing information of the ARP reply as a locally
connected host. Concretely, this causes the DBridge to up-
date the addressing information of the host to an address
resolver DBridge on behalf of the RBridge. This allows the
address resolver DBridges to reply to ARP requests target-
ing hosts behind RBridges, leaving only RBridge-based ARP
request broadcasting active in mixed TRILL campuses. As a
consequence, we also increase the DHT-related processing
in both the address resolver nodes, and the edge DBridges.

5.4. Resource starvation in DBridges

Resource starvation in DBridges may occur due to two
conditions in the network. First, the MAC learning database
of a DBridge may fill up if the number of active hosts in the
network exceeds the maximum size of the database. Sec-
ondly, if the DBridge acts as a resolver node in the TRILL
campus, the node may receive more data elements to store
than the maximum amount of storage space allocated for
storing the DHT specific information. Both cases will cause
a device overload situation, where new information is
either not stored, or information is rapidly replaced in
the DBridge.

If the MAC learning database of the DBridge fills up,
adding new information into the database either becomes
impossible, or causes an existing entry to be evicted. For
the DBridge forwarding process, the resource starvation in-
creases the number of frames that are sent through the
location resolver node for the destination MAC address,
however broadcasting does not increase in the network
as a result of MAC learning database overload. DBridges
prioritize the eviction of entries from the MAC learning ta-
ble, so that the entries for remote hosts are removed before
the entries of locally attached hosts.

If the storage space reserved for the data elements in
the DHT fills up in resolver nodes, new information may
be impossible to insert, or inserting it will cause an existing
entry to be evicted from the DHT store. In both cases, re-
source starvation in resolver nodes reduces back to a case,
where a part of the information is missing from the DHT.
This in turn will increase the number of broadcast frames
in the network. In the case of a location resolver store that
is overloaded, the normal MAC learning process will re-
duce the number of broadcast frames that are sent to the
network. For address resolution, each ARP request that
cannot be responded by the overloaded address resolver
node will revert back to the fallback broadcast operation
presented in Section 5.2.

6. Software implementation

Our proof-of-concept implementation uses two inde-
pendent processes to perform a subset of the RBridges base
specification, and our DBridges extensions. First, theFig. 4. DHT miss operation in DBridges.

N. Varis et al. / Computer Networks 57 (2013) 3601–3616 3607

RBridges control plane is run in the operating system as a
user process, based on the popular Quagga routing suite
[21]. Secondly, the forwarding plane is implemented with
the Click modular router [22], allowing us to flexibly run
the forwarding plane as a part of the operating system ker-
nel, or as a user space process.

6.1. Click modular router

Click router configurations are built from individual
components, called elements. To communicate with other
elements in the router, each element may contain a num-
ber of input and output ports that receive or emit packets.
Additionally, each port has a communication method it
uses to receive or emit packets. A port operating with pull
method will request packets from an upstream input port,
process the packet and pass the packet towards the pulling
element in the processing chain. In contrast, a port operat-
ing in push mode will process received packets and ‘‘push’’
the packets forward (downstream) in the processing chain
through an output port.

Click elements can be combined in arbitrary order to
form a directed, acyclic graph. A simple router configura-
tion is presented in Fig. 5. It contains a FromDevice element,
assigned to a network interface, a Queue element for stor-
ing frames generated by the FromDevice element, and a
ToDevice element for emitting the frames out from a net-
work interface. On the input processing chain, FromDevice
is a pushing element, that outputs the packets downstream
to the Queue element, that stores them. On the output pro-
cessing chain, ToDevice is a pulling element, that requests
the elements from an upstream input port, connected to
the Queue and emits them on the network interface.

6.2. DBridges software architecture

Fig. 6 presents the overall architecture of our prototype.
The control plane of the RBridges base specification is
available in the Oracle OpenSolaris project [23] as a part
of the Quagga package distributed with the operating sys-
tem. We have modified the RBridges specific features to
function outside of OpenSolaris, and implemented the nec-
essary control plane extensions to support DBridges. The
control plane is responsible for the TRILL link state protocol
operation, i.e., it performs the necessary computations to
allow the forwarding plane to correctly encapsulate,
decapsulate and forward traffic in the network. The com-
puted information is published to the forwarding plane
using a standardized interface.

We implemented the forwarding plane of RBridges as a
set of Click elements, dividing the frame processing logic
into small independent functional blocks. The RBridge for-
warding plane consists of approximately 3900 lines of C++
code, and the DBridge extensions add another 3600 lines of
code, which includes all of the DHT related functionality.
The forwarding plane consists of a set of frame processing

elements that are combined into a chain that performs the
complete input and output processing logic, and several
shared elements.

Each frame processing element is implemented in a
way that allows ‘‘drop in’’ replacements to be installed in
the router configuration. This allows us to isolate the
DBridges related changes to individual elements, while
keeping much of the forwarding plane frame processing
identical between the two versions of the device. The divi-
sion of work into individual elements also allows us to split
some of the DBridges related processing (e.g., ARP and
DHCP frame processing) into completely separate ele-
ments, that are simply added to the router through its con-
figuration. An additional benefit of this separation is that
we can forward the related traffic to the elements directly
through the router configuration, instead of performing it
inside the code.

The shared elements include the MAC learning table,
the consistent hash ring (DHT), and the RBridges forward-
ing table. Each of these elements has a well defined service
interface, that other (frame processing) elements in the
forwarding plane can use. This was done to minimize the
number of changes in the forwarding plane configuration
when we transform an RBridge to a DBridge. As with the
frame processing elements, a well defined service interface
between the different versions of shared elements allows
us to use them as ‘‘drop in’’ replacements in the forwarding
configuration, or to test out new functionality or algo-
rithms. In addition, we have designed the shared elements
to minimize exclusive access in the service interface to re-
duce the overhead of locking in multi-cpu forwarding
plane configurations.

6.3. Performance evaluation

While the implementation is a prototype version for re-
search purposes, the system has been designed for parallelFig. 5. A simple example of a Click router configuration.

Fig. 6. Software architecture of the prototype.

Table 1
Throughput results for our implementation and the standard Linux kernel
bridge.

Frame size

Implementation 64 Bytes 1518 Bytes

Software D/RBridge 2.57 Mfps 319 Kfps
Linux bridge 2.43 Mfps 325 Kfps

3608 N. Varis et al. / Computer Networks 57 (2013) 3601–3616

operation across modern multi-core processors for high-
performance use cases. We have also previously measured
the performance of our implementation using 1 Gbps ports
[24], and compared its throughput characteristics against
software based bridging in Linux.

As can be seen from Table 1, our implementation can
match or exceed the offered throughput of the standard Li-
nux bridge module in a test setup using four 1 Gbps ports.
The slightly lower throughput for our implementation with
1518 byte frames is due to the extra bytes required by the
TRILL encapsulation scheme, when both setups reach full
line rate. In the future, we plan to test our implementation
with modern 10 Gbps multi-queue network interface cards
to fully take advantage of the modular design.

7. Evaluation

Our experimental evaluation compares DBridges to
standard RBridges. Software implementations of RBridges
and DBridges inside virtual machines are used to emulate
a data center aggregation network, and a simplified version
of the EBONE topology from Rocketfuel [25]. Furthermore,
we also leverage the ns-3 [26] simulator and its real-time
simulation features on the edges of the emulated networks
to generate real Ethernet traffic in the network.1 Two dif-
ferent traffic models are evaluated.

7.1. Test environment and goals

Our data center topology, presented in Fig. 7, is a simple
three tiered version of the ‘‘canonical’’ data center layered
infrastructure design. The network is divided into core,
aggregation (inter-rack) and access (intra-rack) layers with
redundant paths. Aggregation layer typically contains
many of the complex services of the data center. In our
tests, the five aggregation layer devices act as DBridge
servers, while the access layer contains only DBridge cli-
ents or RBridges.

To show that our solution also offers benefits in a more
generic network topology, we use the EBONE topology
information from Rocketfuel to create a more mesh-like
example topology. The topology was simplified by merging
several nodes for a city to a single node, combining to a to-
tal of 23 node topology. We selected the five highest de-
gree nodes to act as the DBridge servers in the network,
and assigned every DBridge to service an equal portion of
the hosts used in the evaluation.

Our test environment is a server running virtual ma-
chines to create a test network. Fig. 8 presents a high level
overview of the interconnections between the different
components in the test environment. The host operating
system on the server is running several virtual machines,
each representing a single switching device in the network
topology.

Inside each of the virtual machines, we run the forward-
ing plane and control plane implementations of the devices
under test. Each virtual machine is connected to a number
of other virtual machines through virtual interfaces (vif)
that are connected through bridges in the host operating
system to create the links in the virtual topology. The vir-
tual machines together with the links between their virtual
interfaces in the host operating system create our virtual
topology.

The evaluation server is also running ns-3, that is used
as a real-time simulator process, emulating all servers in
our evaluation topology with full IP stack. The NS-3 pro-
cess connects itself with all of the virtual interfaces on
the edge of the topology, and assigns each emulated server
to their respective virtual interface, depending on the posi-
tion of the emulated server in the network. The emulated
servers generate real traffic flows to communicate with
other emulated servers in the virtual network by sending
traffic through the assigned virtual interface.

The goals of the evaluation are twofold. First, we
want to verify that the inclusion of the SEATTLE one-
hop DHT scheme does not adversely affect the operation
of routing bridges, while retaining the benefits of the
floodless communication model. Secondly, we want to
verify that our extensions to the DHT scheme do not
break existing behavior or eliminate its benefits, while
allowing us to support incremental deployment and

Fig. 7. The data center like topology used in our evaluation.

1 Note that ns-3 is only used for traffic generation and not for network
simulation. The evaluation is done with a real, albeit virtual, test network
using our proof-of-concept implementation.

N. Varis et al. / Computer Networks 57 (2013) 3601–3616 3609

certain transient network failures relating to resource
starvation in switches.

To that end, we evaluate the effect of the SEATTLE DHT
scheme inside a TRILL campus by measuring the amount of
broadcast and signaling traffic, and comparing the results
to standard routing bridges in identical environment. We
also evaluate the effect of MAC learning table parameters
(e.g., size, timeout) on the broadcast and signaling traffic
in the network. In addition, we also evaluate our exten-
sions to the DHT scheme by measuring the effect of incre-
mental deployment and switch resource starvation on the
amount of broadcast and signaling traffic in the network.

7.2. Traffic characterization

Recent efforts [27–29] that quantify traffic characteris-
tics in various types of data centers allowed us to build two
realistic traffic models that we used to evaluate our solu-
tion. We identified some common aspects from the re-
search that we used as a basis for the flows we modeled
inside our topologies. Most flows are small (<100 KB) and
last a relatively short time (<10 s). Packet size is a heavily
bimodal distribution, with clusters around 100 and 1500
Bytes. Flow interarrival times at switches and hosts are
characterized by heavy-tailed distributions.

Our first use case loosely models a data center with dis-
tributed computing style applications (e.g. MapReduce
[30]), where traffic flowing between the servers is mostly
confined within a rack. However when the traffic gets
out of the rack, it is directed at a large number of servers
in other racks. The example EBONE topology also uses this
traffic model to evaluate the design in a more generic net-
work. In this case, our intent is to roughly model the flow
initiation behavior of peer-to-peer applications in a hypo-
thetical ‘‘large Ethernet’’ access network.

The second case models the data center of a hosting
company, where user-facing applications (such as web
servers) generate the majority of the traffic. Here, most of
the traffic flows through the core layer to the external net-
work and a small amount of traffic flows between indepen-
dent server pairs.

Both topologies have a total of 400 emulated hosts in
the network, split evenly between all switches that have

end host service enabled. In the data center topology, there
are 10 access layer switches for a total of 40 hosts per
switch, and in the EBONE case there are 23 nodes for a total
of 17 or 18 hosts per switch.

7.2.1. Peer-to-peer traffic model
The first traffic model loosely resembles a traffic matrix

with distributed computing or peer-to-peer applications,
with only intra- and inter-switch traffic. Tasks are created
to model incoming requests at a host, which then connects
to other hosts in the network (as actual traffic flows). The
tasks are generated using a lognormal distribution, simu-
lating a heavy tailed interarrival rate of new requests. We
chose lognormal(l = 2.0,r = 1.0) and lognor-
mal(l = 3.0,r = 1.0) distributions to represent the intra-
and inter-switch task interarrival rate (in seconds).

In addition, based on [27], an exponential distribution is
used to model the number of individual traffic flows in a sin-
gle intra- and inter-switch task. For the intra-switch traffic,
we defined the last percent of the probability density func-
tion as a case for ‘‘contacts nearly all other servers in the
same rack’’, where the number of destinations is selected
as a uniform random distribution of 90% to all but one server
from the same switch. The number of flows for the intra- and
inter-switch tasks are characterized by exp(mean = 2.17)
and exp(mean = 8.695) distributions, respectively.

7.2.2. Web service traffic model
The second case models a traffic matrix with user-fac-

ing applications (e.g., web services). This traffic model is
only evaluated using the data center topology. We add a
single link to an unspecified ‘‘external network’’ from each
of the core switches. These links are used to feed incoming
web service requests to 10% of the hosts (web servers) on
each of the ToR switches. The destinations for the requests
are selected from the set of web servers using a uniform
random distribution. The interarrival rate for the requests
is modeled as an exponential distribution with a mean of
100 ms. This should adequately model Internet-facing traf-
fic on web servers, as observed in [31,32].

The remaining 90% of the hosts are modeled as depen-
dency services for the web servers. Each web server initi-
ates new connections to the dependency services in their
own ToR switch using the same distribution as the external
links use for requests to the web services. The mean of the
distribution is scaled up, proportional to the portion of the
web servers in the full topology.

In addition, to model generic services used by all hosts
in the system, (e.g. file or authentication services), we also
add inter-rack connections from all the hosts, targeting any
non-web service host in the racks. The initiation rate of
these connections is again modeled with an exponential
distribution, using a mean that is proportional to the inter-
arrival rate of external requests to the whole topology,
scaled up by 1.25.

8. Evaluation results

This section presents our results on how DBridges
change the control traffic by measuring the amount of

Fig. 8. Virtual test environment architecture.

3610 N. Varis et al. / Computer Networks 57 (2013) 3601–3616

frames per seconds in the switches. We also analyze how
DBridges affect the broadcast domain size, the scaling of
MAC tables, and incremental deployment. We also analyze
the resiliency of our design.

8.1. Broadcast measurements

Figs. 9 and 10 present the network load of first hop
RBridge and DBridge broadcasting, and DHT signaling in
frames per second for the peer-to-peer traffic model in
fully deployed RBridge and DBridge networks. We use
DHT signaling to describe the unicast Ethernet frames in
the network that DBridges use to manage the information
content stored on the DHT servers. The web service traffic
model shows similar traffic behavior. The broadcast traffic
for RBridges consists of ARP requests that are flooded
throughout the network, while the DBridge broadcasting
is a result of DBridge server lacking the requested IP
?MAC mapping. Note that in the figures, the small amount
of broadcast traffic that occurs with DBridges is a result of
the bootstrapping phase of our test, where the MAC tables
of the network are empty, and hosts are being automati-
cally discovered by the system.

The figures also show that DBridges eliminate most of
the control traffic (TRILL encapsulated broadcasts and
DHT signaling) from the network core, independent of
the topology. Averaged over the whole test duration, the
control traffic in a fully deployed DBridge network reduces
by over 99.5% compared to a fully deployed RBridge net-
work in both topologies. After the short bootstrap phase
(20 s), we completely eliminate the largest source of
broadcast traffic in the core, i.e., ARP requests.

RBridges generate a significant amount of TRILL encap-
sulated broadcasting in both topologies for the whole
duration of the test. This is caused by the ARP operation,
that requires both ends to learn the host IP ?MAC map-
pings. In addition, ns-3 refreshes all active IP ?MAC map-
pings every 120 s, causing a new ARP request/reply
exchange for each of the hosts. The flow of ARP requests

stays high throughout the tests because initially, all hosts
will connect to destinations that cause an ARP request/re-
ply exchange, and later on in the test, the concurrent active
flows from all hosts creates a significant number of refresh
ARP exchanges.

The locations and IP ?MAC mappings for hosts are dis-
covered quickly, as every connection to a new destination
begins with an ARP request that can be used to extract the
information. The bootstrap phase for DBridges in both
topologies only lasts approximately 20 s, after which all
of the host information can be found from the DHT and
DBridge broadcasting is no longer used. The momentary
peak during the bootstrap phase for the fallback broadcast
is below 1000 frames per second in both topologies.

The DHT signaling adds minimal load into the network
during the bootstrap phase and also periodically to refresh
the stored information in the DHT. The signaling load
reaches as high as 200 frames per second during the boot-
strap phase but quickly drops to below 100 frames per sec-
ond. Eventually, as all ingress DBridges have the location
information for the hosts in the network, the signaling
stops completely. The host location and IP ?MAC mapping
information for active hosts in the DHT is also refreshed
using deferred messaging every 200 s. The duration of
the DHT signaling during the bootstrapping of the EBONE
topology is also roughly directly proportional to the num-
ber of switches that have directly attached hosts. This can
be seen in Fig. 10 as a longer period (approximately dou-
ble) of constant DHT signaling, when compared to the
duration of the signaling in the data center topology.

Fig. 11 presents the network-wide control traffic for the
peer-to-peer traffic model in both topologies when the
number of active hosts in the network increases. The num-
ber of ARP requests increases dramatically for both topol-
ogies while the growth of the DHT signaling is
significantly more gradual. Our rough estimation is that
the broadcast domain of a DBridge network can be at least
ten times larger compared to an RBridge network before
DHT related signaling is noticeable in the network.

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0 100 200 300 400 500 600 700

Av
er

ag
e

fra
m

es
 p

er
 s

ec
on

d
on

 s
w

itc
he

s

Time in seconds

RBridge broadcast
DBridge broadcast

ARP requests
DHT signaling

Fig. 9. Packet type load for RBridges, DBridges, and ARP first hop broadcast in the data center topology. Log scale.

N. Varis et al. / Computer Networks 57 (2013) 3601–3616 3611

8.2. MAC table size

As unknown destination frames are no longer broadcast
in fully deployed DBridge networks during normal opera-
tion, unused MAC table entries can be expired aggressively
on first hop DBridges. The entries for the locally attached
hosts use a normal MAC table timeout in the hundreds of
seconds, but the location information of distant hosts can
be removed sooner, depending on the traffic characteristics
of the network. At DBridge servers, the stored information
is held for a longer time, at minimum the duration that the
first hop DBridges use for locally attached hosts.

Our solution allows fully deployed DBridge networks to
lower the MAC table timeout value for distant hosts. Time-
outs as low as 10 s are feasible, allowing networks to serve
roughly 50% more active hosts without significant traffic or
processing overhead on DBridges. Coupled with the granu-
larity of the TRILL IS-IS DHT participation mechanism and
the behavior of DBridges with MAC table overloads, this
should allow edge DBridges to function with lower mem-
ory and processing requirements than edge RBridges.

Fig. 12 presents the average MAC learning table fill level
and location query frequency for edge DBridges with vari-
ous time out values for the MAC table distant host entries.
The fill level is defined as the ratio between the average
number of entries in the MAC tables of the edge devices
and the total number of unique host MAC addresses that
a DBridge can see during the test. The figure presents the
fill level and location query frequency of (1) data center
and EBONE topology edge DBridges in the peer-to-peer
traffic model, and (2) data center topology edge DBridges
in web service traffic model. A location query occurs when
the MAC address of the destination host is missing from
the local MAC table.

Both traffic models exhibit similar behavior in the data
center topology when the MAC table timeout value for dis-
tant hosts is increased. The behavior is related to how
Ethernet MAC learning tables function. When a two-way
connection is initiated between hosts, both ends of the
connection are learned by the edge switches on the path.
The location of a distant host is removed from an edge
switch if the distant host does not communicate with any

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0 100 200 300 400 500 600 700Av
er

ag
e

fra
m

es
 p

er
 s

ec
on

d
on

 s
w

itc
he

s

Time in seconds

RBridge broadcast
DBridge broadcast

ARP requests
DHT signaling

Fig. 10. Packet type load for RBridges, DBridges, and ARP first hop broadcast in the EBONE topology. Log scale.

 0.1

 1

 10

 100

 1000

 10000

100 200 300 400 500 600 700 800

Av
er

ag
e

fra
m

es
 p

er
 s

ec
on

d
on

 s
w

itc
he

s

Number of active hosts in the network

Datacenter # ARP requests
EBONE # ARP requests

Datacenter DHT signaling
EBONE DHT signaling

Fig. 11. Scalability of DBridge features in broadcast domains with the peer-to-peer traffic model. Log scale.

3612 N. Varis et al. / Computer Networks 57 (2013) 3601–3616

of the hosts behind the switch during the distant host MAC
table timeout interval.

The EBONE topology has a lower average fill level, and a
higher number of location queries than the data center
topology. This is a direct result from the fact that the
EBONE topology edge DBridges have less than half the
number of attached hosts, compared to the data center
edge switches. This directly affects the traffic model used
to generate tasks and traffic flows in the network. Conse-
quently, the average fill level is lower, because there are
fewer communicating host pairs per DBridge. This also in-
creases the number of location queries in the network, as
the host location and IP ? MAC mapping information is
propagated more gradually to the edge switches in the
network.

We also measured two special cases for the MAC tables:
no caching (timeout of 0 s), and no changes (timeout of
600 s) to timeout values of distant host locations. With
no caching, ingress DBridges send all distant host traffic
through a DBridge server, and the MAC table fill level stays
constant, i.e., the amount of attached hosts to each of the
edge DBridges. When the distant host location information
has no separate timeout value, we can see that the MAC ta-
bles in all of the edge DBridges are practically full in all
topologies and traffic models.

With no caching, the amount of MAC table misses on
the edge DBridges is between 2200 and 2700 misses per
second in all topologies and traffic models. In an ideal case,
this amounts to 500 DHT operations per second on each of
our DBridge servers. The number of operations in this case
is directly proportional to the amount of traffic in the net-
work. As we were only interested in broadcast minimiza-
tion, the numbers presented here are artificially low. In
most real networks, it is likely that disabling distant host
location learning on edge DBridges is not feasible due to
the processing overhead it will cause on the DBridge serv-
ers in the network.

8.3. MAC database overload

Increasing the number of active hosts (unique MAC ad-
dresses) over the MAC table size creates MAC table misses
on the edge of the Ethernet network, as not all host loca-
tion information can fit in the table. In our RBridge and
DBridge implementations, location information is still
learned from received TRILL encapsulated frames in over-
load situations. This causes a random distant host location
entry to be removed from the MAC table. A table miss in
RBridges causes the frame to be flooded throughout the
network to ensure that it reaches the destination. DBridges
will use the DHT to forward the frame as unicast to the
DBridge server for the destination host MAC address.

Fig. 13 presents the results for a test where the MAC ta-
ble size in edge devices was bound to a maximum of 300
entries, but the number of active hosts in the network
gradually increases from 260 to 440. At 440 active hosts,
each switch MAC table on the edge of the network is over-
loaded by 47% (i.e., ð440�44Þ�ð300�30Þ

ð300�30Þ). After 300 active hosts,
the MAC tables on the network edge begin experiencing ta-
ble misses. As the MAC tables fill up, RBridges begin flood-
ing the unknown destination frames throughout the
network. DBridges replace flooding with unicast forward-
ing through a DBridge server. The operation also causes
the location of the destination host to be signaled back to
the DBridge client using. We can also see that the fallback
broadcasting used by DBridges scales independent of the
MAC table size.

Fig. 14 presents an estimate of the projected scaling of
the relevant control traffic, when the number of active
hosts in the network is increased up to 1000 hosts, while
the MAC table size of the switches is 300 entries. We can
also see that the DHT signaling traffic in the network and
ARP requests sent by hosts scale only gradually, while
the RBridge based flooding due to host ARP requests
increases dramatically as the number of active hosts grow.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

0 10 20 30 40 50 60 70 80 90 600
 4

 8

 16

 32

 64

 128

 256

 512

 1024

 2048

 4096

Av
er

ag
e

M
AC

 T
ab

le
 fi

ll
le

ve
l o

n
ed

ge
 D

Br
id

ge
s

Av
er

ag
e

nu
m

be
r o

f l
oc

at
io

n
qu

er
ie

s
pe

r s
ec

on
d

MAC table timeout for distant hosts (in seconds)

Peer-to-peer fill level
EBONE Peer-to-peer fill level

Web service fill level

Peer-to-peer queries
EBONE Peer-to-peer queries
Web service location queries

Fig. 12. Average MAC table fill level and DHT location queries in access layer DBridges. Right y-axis in log2 scale.

N. Varis et al. / Computer Networks 57 (2013) 3601–3616 3613

Overall, we can see an order of magnitude difference in
control traffic between RBridges and DBridges. Another
benefit of the DHT signaling scheme is that the traffic is
sent as unicast, allowing shortest path forwarding and
multipathing, while RBridge flooding is delivered using
one or more network-wide distribution trees.

8.4. Incremental deployment

Fig. 15 shows the reduction to control traffic in the net-
work, when the number of DBridges in the network in-
creases. In both topologies, we replace random RBridges
in the network that have any attached hosts. Control traffic
consists of broadcast TRILL Data frames, either by RBridges
or DBridges due to a fallback mechanism, and the small
amount of DHT signaling used by DBridges. Each added
DBridge brings another set of hosts into the DHT that in-
creases the likelihood that a pair from the set of all hosts
in the network are connected to DBridges. Overall, the fig-
ure shows a large reduction (two orders of magnitude) in

broadcast traffic, when all hosts are connected to DBridges.
In this case, the only broadcast traffic in our tests is the
brief period of fallback broadcasting at the beginning of
the test. What is also notable is that while the broadcast
traffic is clearly affected by the traffic volume and topology
complexity, the DHT signaling in the network is insignifi-
cant during the incremental deployment.

8.5. DHT resiliency

Figure Fig. 16 presents the control traffic load in the
network when a DBridge (one of the aggregation layer
DBridges in the data center topology) crashes 300 s into
the peer-to-peer traffic model test. The total convergence
time (approximately 30 s) for the TRILL IS-IS link state pro-
tocol is highlighted with gray in the figure. Note that the
relatively long period of link state convergence is a result
of the TRILL protocol.

In the figure, we can see a momentary burst of DHT sig-
naling frames emitted by the ingress DBridges as they con-

 1

 10

 100

 1000

 10000

260 280 300 320 340 360 380 400 420 440Av
er

ag
e

fra
m

es
 p

er
 s

ec
on

d
on

 s
w

itc
he

s

Number of active hosts in the network

ARP requests
RBridge ARP broadcast

RBridge flooding

DBridge ARP broadcast (bootstrap)
DBridge DHT signaling

Fig. 13. Control traffic increase in fully deployed RBridge and DBridge data center network with a MAC table size of 300 entries.

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

320 380 440 500 560 620 680 740 800 860 920 980Av
er

ag
e

co
nt

ro
l f

ra
m

es
 p

er
 s

ec
on

d
on

 s
w

itc
he

s

Number of active hosts in the network

ARP Requests
DHT Signaling
RBridge Flooding
Proj. ARP Requests
Proj. DHT Signaling
Proj. RBridge ooding

Fig. 14. Control traffic scalability of DBridges and RBridges in fully deployed data center network with a MAC table size of 300 entries.

3614 N. Varis et al. / Computer Networks 57 (2013) 3601–3616

verge to the new DHT state and perform a rehash of the
location and addressing information of directly attached
hosts. As a result, the periodic refreshing of the informa-
tion in the DHT is also split into two separate periods that
are seen in the figure as the test progresses.

Additionally, the figure also shows that during the con-
vergence period, DBridges use fallback broadcasting to de-
liver frames to hosts. In the case where an ingress DBridge
has already converged to the new state, and the DBridge
server has not yet received the information, the ingress
node will revert to fallback broadcasting. This guarantees
that end host service still functions, while the DHT state
is gradually corrected as the updated link state information
propagates throughout the network.

The topology change also causes a brief service disrup-
tion (not seen in the figure) due to forwarding table
changes and DHT state inconsistencies. Host service dis-
ruption caused by our DHT extension happens when an in-
gress DBridge attempts to use a DBridge server that has not
yet converged to the new network state, and the informa-
tion is not found. Consequently, the server will not return

the frame to the ingress node for fallback broadcasting be-
cause it does not consider itself to be the server for the
information, i.e., the IP ? MAC mapping for ARP requests,
or the host location information for a MAC address.

9. Conclusions

Extending RBridges with the SEATTLE one-hop DHT
scheme offers tremendous benefits in arbitrary Ethernet
topologies. Furthermore, our extension to the DHT scheme
enables the network to function in transient failure cases
and during switch resource starvation without severely
increasing the processing and traffic overhead in the net-
work. DBridges effectively remove the major sources of
broadcast from Ethernet networks while retaining back-
wards compatibility with standard IETF-based RBridges. Fi-
nally, DBridges require no changes to hosts, preserving the
vision of a plug-and-play Ethernet.

Security features and the mobility of virtual and physical
end hosts are improved, although we leave the details and

 0

 1000

 2000

 3000

 4000

 5000

0 20 30 40 50 60 70 80 90 100Av
er

ag
e

co
nt

ro
l t

ra
ffi

c
pe

r s
ec

on
d

on
 s

w
itc

he
s

Percent of edge DBridges

Peer-to-peer DBridge bcast
EBONE peer-to-peer DBridge bcast

Web service DBridge bcast
Peer-to-peer DHT signaling

EBONE peer-to-peer DHT signaling
Web service DHT signaling

Fig. 15. Effect of incremental deployment of DBridge nodes on control traffic.

 0.01

 0.1

 1

 10

 100

 1000

 0 100 200 300 400 500 600 700

Av
er

ag
e

co
nt

ro
l f

ra
m

es
 p

er
 s

ec
on

d
on

 s
w

itc
he

s

Time in seconds

DBridge broadcast # ARP requests DHT signaling

Fig. 16. Control traffic load during a crash. Link state convergence time highlighted in gray. Log scale.

N. Varis et al. / Computer Networks 57 (2013) 3601–3616 3615

analysis as future work. We will also investigate extending
the one-hop DHT design to additional broadcast-driven pro-
tocols. DBridges are a very promising solution that can be
deployed gradually in existing Ethernet networks.

References

[1] Media access control (MAC) bridges, Standard 802.1D-2004, IEEE
Computer Society.

[2] D. Plummer, Ethernet address resolution protocol, RFC 826, IETF,
November 1982.

[3] T. Narten, E. Nordmark, W. Simpson, H. Soliman, Neighbor discovery
for ip version 6 (IPv6), RFC 4861, IETF, September 2007.

[4] R. Droms, Dynamic host configuration protocol, RFC 2131, IETF,
March 1997.

[5] R. Niranjan Mysore, A. Pamboris, N. Farrington, N. Huang, P. Miri, S.
Radhakrishnan, V. Subramanya, A. Vahdat, PortLand: a scalable fault-
tolerant layer 2 data center network fabric, in: SIGCOMM, ACM,
2009, pp. 39–50.

[6] R. J. Perlman, Rbridges: transparent routing, in: INFOCOM, 2004, pp.
1211–1218.

[7] R. Perlman, D. Eastlake, D. Dutt, S. Gai, A.Ghanwani, Routing bridges
(rbridges): base protocol specification, RFC 6325, IETF, March 2010.

[8] C. Kim, M. Caesar, J. Rexford, Floodless in SEATTLE: a scalable ethernet
architecture for large enterprises, in: SIGCOMM, ACM, 2008, pp. 3–14.

[9] A. Myers, T.E. Ng, H. Zhang, Rethinking the service model: scaling
ethernet to a million nodes, in: HotNets, ACM, 2004.

[10] T.L. Rodeheffer, C.A. Thekkath, D.C. Anderson, SmartBridge: a
scalable bridge architecture, in: SIGCOMM, ACM, 2000, pp. 205–216.

[11] M. Caesar, T. Condie, J. Kannan, K. Lakshminarayanan, I. Stoica, ROFL:
routing on flat labels, in: SIGCOMM, ACM, 2006, pp. 363–374.

[12] M. Al-Fares, A. Loukissas, A. Vahdat, A. scalable, commodity data
center network architecture, in: SIGCOMM, ACM, 2008, pp. 63–74.

[13] C. Guo, G. Lu, D. Li, H. Wu, X. Zhang, Y. Shi, C. Tian, Y. Zhang, S. Lu,
BCube: a high performance, server-centric network architecture for
modular data centers, in: SIGCOMM, ACM, 2009, pp. 63–74.

[14] C. Guo, H. Wu, K. Tan, L. Shi, Y. Zhang, S. Lu, DCell: a scalable and
fault-tolerant network structure for data centers, in: SIGCOMM,
ACM, 2008, pp. 75–86.

[15] J. Mudigonda, P. Yalagandula, M. Al-Fares, J.C. Mogul, SPAIN: cots
data-center Ethernet for multipathing over arbitrary topologies, in:
NSDI, USENIX, 2010, pp. 265–280.

[16] A. Greenberg, J.R. Hamilton, N. Jain, S. Kandula, C. Kim, P. Lahiri, D.A.
Maltz, P. Patel, S. Sengupta, VL2: a scalable and flexible data center
network, in: SIGCOMM, ACM, 2009, pp. 51–62.

[17] Intermediate system to intermediate system intra-domain routeing
information exchange protocol, Standard 10589:2002, ISO/IEC, 2002.

[18] D. Karger, E. Lehman, T. Leighton, R. Panigrahy, M. Levine, D. Lewin,
Consistent hashing and random trees: distributed caching protocols
for relieving hot spots on the World Wide Web, in: STOC, ACM, 1997,
pp. 654–663.

[19] I. Stoica, R. Morris, D. Karger, M.F. Kaashoek, H. Balakrishnan, Chord:
a scalable peer-to-peer lookup service for Internet applications, in:
SIGCOMM, ACM, 2001, pp. 149–160.

[20] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman, A.
Pilchin, S. Sivasubramanian, P. Vosshall, W. Vogels, Dynamo:
Amazon’s highly available key-value store, in: SOSP, ACM, 2007,
pp. 205–220.

[21] The quagga routing suite, <http://www.quagga.net/>.
[22] E. Kohler, R. Morris, B. Chen, J. Jannotti, M.F. Kaashoek, The click

modular router, ACM Trans. Comput. Syst. 18 (2000) 263–297.
[23] OpenSolaris rbridge (IETF TRILL) control plane support, <http://

solaris.java.net/>.
[24] N. Varis, J. Manner, Performance of a software switch, in: HPSR,

2011, pp. 256–263.
[25] Rocketfuel maps and data, <http://www.cs.washington.edu/

research/networking/rocketfuel/>.
[26] Network simulator 3 (ns-3), <http://www.nsnam.org>.
[27] S. Kandula, S. Sengupta, A. Greenberg, P. Patel, R. Chaiken, The nature

of data center traffic: measurements & analysis, in: IMC, ACM, 2009,
pp. 202–208.

[28] T. Benson, A. Anand, A. Akella, M. Zhang, Understanding data center
traffic characteristics, SIGCOMM Comput. Commun. Rev. 40 (1)
(2010) 92–99.

[29] T. Benson, A. Akella, D.A. Maltz, Network traffic characteristics of
data centers in the wild, in: IMC, ACM, 2010, pp. 267–280.

[30] J. Dean, S. Ghemawat, MapReduce: simplified data processing on
large clusters, Commun. ACM 51 (2008) 107–113.

[31] P. Barford, M. Crovella, Generating representative Web workloads
for network and server performance evaluation, SIGMETRICS
Perform. Eval. Rev. 26 (1998) 151–160.

[32] B.D. Allen, Lognormal and pareto distributions in the Internet,
Comput. Commun. 28 (7) (2005) 790–801.

Nuutti Varis is a postgradutate student at
Aalto University. He received his M.Sc. degree
in 2008 from Helsinki University, specializing
in distributed systems and data communica-
tions. His current research interests include
current and next generation Ethernet tech-
nologies, software defined networking, and
commodity hardware based network devices.

Jukka Manner (born 1972) received his M.Sc.
(1999) and Ph.D. (2004) degrees in computer
science from the University of Helsinki. He is a
full professor (tenured) of networking tech-
nology at Aalto University, Department of
Communications and Networking (Comnet).
His research and teaching focuses on distrib-
uted systems and various networking aspects,
most recently on the development of the
Internet and it’s services, particularly in topics
related to energy efficient ICT, networking
beyond IP, multipath connectivity and trans-

port protocols. He is the Academic Coordinator for the Finnish Future
Internet research programme. He is an active peer reviewer and member of
various TPCs. He has contributed to standardization of Internet technologies
in the IETF for over 10 years, and was the co-chair of the NSIS working group.
He has been principal investigator and project manager for over 15 national
and international research projects. He has authored over 80 publications,
including several IETF RFCs. He is a member of the ACM and the IEEE.

Mikko Särelä works as a post-doctoral
researcher at Aalto University. Prior to joining
Aalto University, he worked at Nomadiclab,
Ericsson on information centric network
architecture and future Internet. His current
research interests include ethernet scalability
and security, energy efficiency, and mobility.

Timo Kiravuo (born 1965) is a postgradutate
student in Aalto University. He received his
M.Sc. (1999) from Helsinki University of
Technology. After a career in private sector his
work focuses on Internet security and related
matters. Currently he is researching the
security of Ethernet technologies.

3616 N. Varis et al. / Computer Networks 57 (2013) 3601–3616

http://refhub.elsevier.com/S1389-1286(13)00263-6/h0005
http://refhub.elsevier.com/S1389-1286(13)00263-6/h0005
http://refhub.elsevier.com/S1389-1286(13)00263-6/h0005
http://refhub.elsevier.com/S1389-1286(13)00263-6/h0005
http://refhub.elsevier.com/S1389-1286(13)00263-6/h0005
http://refhub.elsevier.com/S1389-1286(13)00263-6/h0010
http://refhub.elsevier.com/S1389-1286(13)00263-6/h0010
http://refhub.elsevier.com/S1389-1286(13)00263-6/h0010
http://refhub.elsevier.com/S1389-1286(13)00263-6/h0015
http://refhub.elsevier.com/S1389-1286(13)00263-6/h0015
http://refhub.elsevier.com/S1389-1286(13)00263-6/h0015
http://refhub.elsevier.com/S1389-1286(13)00263-6/h0020
http://refhub.elsevier.com/S1389-1286(13)00263-6/h0020
http://refhub.elsevier.com/S1389-1286(13)00263-6/h0020
http://refhub.elsevier.com/S1389-1286(13)00263-6/h0025
http://refhub.elsevier.com/S1389-1286(13)00263-6/h0025
http://refhub.elsevier.com/S1389-1286(13)00263-6/h0025
http://refhub.elsevier.com/S1389-1286(13)00263-6/h0030
http://refhub.elsevier.com/S1389-1286(13)00263-6/h0030
http://refhub.elsevier.com/S1389-1286(13)00263-6/h0030
http://refhub.elsevier.com/S1389-1286(13)00263-6/h0035
http://refhub.elsevier.com/S1389-1286(13)00263-6/h0035
http://refhub.elsevier.com/S1389-1286(13)00263-6/h0035
http://refhub.elsevier.com/S1389-1286(13)00263-6/h0035
http://refhub.elsevier.com/S1389-1286(13)00263-6/h0040
http://refhub.elsevier.com/S1389-1286(13)00263-6/h0040
http://refhub.elsevier.com/S1389-1286(13)00263-6/h0040
http://refhub.elsevier.com/S1389-1286(13)00263-6/h0040
http://refhub.elsevier.com/S1389-1286(13)00263-6/h0045
http://refhub.elsevier.com/S1389-1286(13)00263-6/h0045
http://refhub.elsevier.com/S1389-1286(13)00263-6/h0045
http://refhub.elsevier.com/S1389-1286(13)00263-6/h0045
http://refhub.elsevier.com/S1389-1286(13)00263-6/h0050
http://refhub.elsevier.com/S1389-1286(13)00263-6/h0050
http://refhub.elsevier.com/S1389-1286(13)00263-6/h0050
http://refhub.elsevier.com/S1389-1286(13)00263-6/h0050
http://refhub.elsevier.com/S1389-1286(13)00263-6/h0050
http://refhub.elsevier.com/S1389-1286(13)00263-6/h0055
http://refhub.elsevier.com/S1389-1286(13)00263-6/h0055
http://refhub.elsevier.com/S1389-1286(13)00263-6/h0055
http://refhub.elsevier.com/S1389-1286(13)00263-6/h0055
http://refhub.elsevier.com/S1389-1286(13)00263-6/h0060
http://refhub.elsevier.com/S1389-1286(13)00263-6/h0060
http://refhub.elsevier.com/S1389-1286(13)00263-6/h0060
http://refhub.elsevier.com/S1389-1286(13)00263-6/h0060
http://refhub.elsevier.com/S1389-1286(13)00263-6/h0060
http://www.quagga.net/
http://refhub.elsevier.com/S1389-1286(13)00263-6/h0065
http://refhub.elsevier.com/S1389-1286(13)00263-6/h0065
http://solaris.java.net/
http://solaris.java.net/
http://www.cs.washington.edu/research/networking/rocketfuel/
http://www.cs.washington.edu/research/networking/rocketfuel/
http://www.nsnam.org
http://refhub.elsevier.com/S1389-1286(13)00263-6/h0070
http://refhub.elsevier.com/S1389-1286(13)00263-6/h0070
http://refhub.elsevier.com/S1389-1286(13)00263-6/h0070
http://refhub.elsevier.com/S1389-1286(13)00263-6/h0070
http://refhub.elsevier.com/S1389-1286(13)00263-6/h0075
http://refhub.elsevier.com/S1389-1286(13)00263-6/h0075
http://refhub.elsevier.com/S1389-1286(13)00263-6/h0075
http://refhub.elsevier.com/S1389-1286(13)00263-6/h0080
http://refhub.elsevier.com/S1389-1286(13)00263-6/h0080
http://refhub.elsevier.com/S1389-1286(13)00263-6/h0080
http://refhub.elsevier.com/S1389-1286(13)00263-6/h0085
http://refhub.elsevier.com/S1389-1286(13)00263-6/h0085
http://refhub.elsevier.com/S1389-1286(13)00263-6/h0090
http://refhub.elsevier.com/S1389-1286(13)00263-6/h0090
http://refhub.elsevier.com/S1389-1286(13)00263-6/h0090
http://refhub.elsevier.com/S1389-1286(13)00263-6/h0095
http://refhub.elsevier.com/S1389-1286(13)00263-6/h0095

