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Topological nodal line in superfluid 3He and
the Anderson theorem

T. Kamppinen 1, J. Rysti1, M.-M. Volard1, G. E. Volovik1,2 & V. B. Eltsov 1

Superconductivity and superfluidity with anisotropic pairing—such as d-wave in
cuprates and p-wave in superfluid 3He—are strongly suppressed by impurities.
Meanwhile, for applications, the robustness of Cooper pairs to disorder is highly
desired. Recently, it has been suggested that unconventional systems become
robust if the impurity scatteringmixes quasiparticle states onlywithin individual
subsystems obeying the Anderson theorem that protects conventional super-
conductivity. Here, we experimentally verify this conjecture by measuring the
temperature dependence of the energy gap in the polar phase of superfluid 3He.
We show that oriented columnar non-magnetic defects do not essentially
modify the energy spectrum, which has a Dirac nodal line. Although the scat-
tering is strong, it preserves themomentumalong the lengthof the columnsand
forms robust subsystems according to the conjecture. This finding may stimu-
late future experiments on the protection of topological superconductivity
against disorder and on the nature of topological fermionic flat bands.

Very soon after discovery of superconductivity, H. Kamerlingh Onnes
noticed that addition of impurities to a superconductingmetal does not
change its critical temperature. Explanation of this counterintuitive
effect had to wait until formulation of the Bardeen–Cooper–Schrieffer
theory, basedonwhichP.W.Andersonprovedhis famous theorem1. The
Anderson theorem states that non-magnetic impurities do not modify
static properties of a superconductor with conventional s-wave pairing,
including the critical temperature Tc and value of the superconducting
gap Δ(T). While origin of this robustness is closely linked to the time-
reversal symmetry of the pairing state, a handwaving illustration
is presented by the cartoon in Fig. 1b: Impurity scattering mixes
quasiparticle states with different momentum p directions, but if
ΔðpÞ= const then the “averaged” gap remains unchanged. For uncon-
ventional d-wave or p-wave systems, the Anderson theorem is generally
not applicable. Here the gap is usually anisotropic and often includes
nodes, that is, points or lines inmomentumspacewhereΔ(p) = 0. As the
cartoon in Fig. 1c suggests, scattering then suppresses the gap2,3, while
the effect of disorder on the physics related to the energy nodes
becomes a separate actively investigated problem4–10.

For applications of unconventional and topological super-
conductors, strong suppression of Tc is undesirable and mechanisms
to improve robustness of Cooper pairs in such systems, in particular

through extensions of the Anderson theorem, are now under intensive
study11–16. Here p-wave superfluid 3He provides an ideal platform to
elucidate the effects of disorder: This system is naturally void of any
impurities, while scattering centers, in the form of solid nanoparticles,
can be immersed into the liquid under full experimentalists’ control. In
fact, nanostructured confinement of 3He became a flagship tool to
engineer novel topological phases of matter17–21. Here we focus on the
polar phase22, where the confiningmatrix forms a set of nearly parallel
strands, see Fig. 1. The polar phase is believed to have anisotropic gap
with a Dirac nodal line in the plane perpendicular to strands, Fig. 1a,
although an experimental confirmation for the presence of the node
has so far been missing.

A remarkable feature of the polar phase is that its Tc is suppressed
only marginally compared to the critical temperature Tcb of clean bulk
3He (Fig. 1d), even when the distance between scattering strands is just
a fraction of the coherence length22,23. To explain this robustness, it has
been suggested that the Anderson theorem can be extended to the
polar phase24, provided impurities have the formof infinitely long non-
magnetic strands, which are straight and parallel to each other and the
scattering of quasiparticles is fully specular (see Fig. 1e). The reason is
that the polar phase represents a set of independent two-dimensional
(2D) superfluids with different pz. (Here ẑ is the direction along the

Received: 16 December 2022

Accepted: 6 July 2023

Check for updates

1Department of Applied Physics, Aalto University, POB 15100, FI-00076 AALTO, Finland. 2Landau Institute for Theoretical Physics, 142432
Chernogolovka, Russia. e-mail: vladimir.eltsov@aalto.fi

Nature Communications |         (2023) 14:4276 1

12
34

56
78

9
0
()
:,;

12
34

56
78

9
0
()
:,;

http://orcid.org/0000-0003-1565-3090
http://orcid.org/0000-0003-1565-3090
http://orcid.org/0000-0003-1565-3090
http://orcid.org/0000-0003-1565-3090
http://orcid.org/0000-0003-1565-3090
http://orcid.org/0000-0002-6949-5334
http://orcid.org/0000-0002-6949-5334
http://orcid.org/0000-0002-6949-5334
http://orcid.org/0000-0002-6949-5334
http://orcid.org/0000-0002-6949-5334
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-39977-2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-39977-2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-39977-2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-39977-2&domain=pdf
mailto:vladimir.eltsov@aalto.fi


strands.) For perfect columnar defects the scattering between differ-
entpz states (or 2Dbands) is absent. Such 2D superfluids have the same
properties as s-wave superconductors, including time-reversal sym-
metry, theAnderson theorem is applicable and impurities donot break
the Cooper pairs. Conceptually similar approach was suggested for
extension of the Anderson theorem to multi-band unconventional
superconductors11–14.

Here we verify the applicability of the Anderson theorem to the
polar phase with measurement of the temperature dependence of the
gapΔ(T) at temperaturesT < 0.5Tc.Wefind thatΔ(0) −Δ(T)∝ T3, which
is a signature of the Dirac nodal line. Moreover, the prefactor in this
cubic dependence is close to the theoretical expectation based on the
BCS theory in the clean limit. Generally, disorder in nodal systems is
expected to affect both the power law of the temperature dependence
of various properties and the absolute magnitude of the change, see,
e.g., ref. 25. Agreement of the gap measurements in the polar phase
under strong columnar disorderwith the clean-limit theory is a definite
manifestationof theCooper pair protectionby the extendedAnderson
theorem. The small deviations from ideal clean-limit values in the
magnitude of the gap change at low temperatures and in the critical
temperature are found to have similar pressure dependence. These
deviations probably originate from the real confinement providing
channels for mixing between different pz subsystems, e.g., due to
orientational disorder in confining strands.

Results
Suppression of Tc

In the nafen-243material used for confinement in thiswork, 94% of the
volume is an open space between strands. This is a relatively low level
of porosity: Impurity scattering is strongwith 〈τΔ/ℏ〉≲ 1 at all pressures
and temperatures, see Supplementary Fig. 1. Here τ is the quasiparticle
scattering time. When 3He is confined in silica aerogels of such por-
osity, superfluidity is suppressed completely and even in 98%-open
silica aerogels the superfluid is suppressed at pressures below about 5
bar3. The reason is that more randomly distributed impurities in silica
aerogels do not allow extension of the Anderson theorem to that
system. On the contrary, since the original measurement in the

confinement with columnar defects22, it is known that Tc ≳0.9Tcb in
nafen-243. Our measurements confirm this result, Fig. 1d.

Drastic change of Tc from zero to nearly Tcb is the result of pro-
tection provided by the Anderson theorem. In ideal case of the theorem
applicability, Tc = Tcb independently of the defect density. It is inter-
esting that two measurements in Fig. 1d performed on the samples of
the same nominal density, demonstrate slightly different Tc suppres-
sion. Thus, it is not the density of defects which directly determines
suppression (in accordance with the understanding provided by the
Anderson theorem), but deviations of the scattering properties from
ideal pz-preserving. A simple model accounting for this deviation is
given in ref. 26: Tc =Tcb½1� ðnsξ0 +βξ

�1
0 Þσk�. Here ns = 9.55 × 1014m−2 is

the density of nafen strands, ξ0 is the pressure-dependent coherence
length, β is a parameter related to the strand diameter and σ∥ is the
scattering radius for a quasiparticle moving along the strand. (For ideal
strand σ∥ =0.) We fit two sets of data in Fig. 1d with the same β and
different σ∥. The fit describes the observations reasonably well with
β = −0.1 and σ∥ = 1.7 nm for data from ref. 22 and σ∥ = 1.5 nm for our data.
Note that σ∥≪ 〈d〉. Thus theorientational disorder in strands is relatively
weak. Below we demonstrate that also the low-temperature measure-
ments in the polar phase are described well by the clean-limit theory,
while deviations are relatively small.

Measurement of the gap
The measurement of the gap utilizes spin-orbit interaction in Cooper
pairs, which have total spin 1 and orbital momentum 1. As a result of
this interaction, the precession frequency of spin in nuclear magnetic
resonance (NMR) experiments ω deviates from the Larmor precession
frequencyωL = ∣γ∣H in the normal phase. Here γ ≈ − 2.04 × 106 rad s−1 T−1

is the gyromagnetic ratio of 3He. In our measurements the magnetic
field H is oriented along ẑ and the frequency shift is

ωðTÞ2 � ω2
L = λDN0

γ2

χ
Δ2ðTÞ: ð1Þ

Here λD ~ 10
−6 describes interaction of two magnetic dipoles in a

pair and is approximately constant, N0 and χ are pressure-dependent
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Fig. 1 | Polar phase of superfluid 3He under nanostructured confinement. a The
topology- and symmetry-protected Dirac nodal line in the spectrum of the Bogo-
liubov quasiparticles in the polar phase forms a circle in the pz =0 plane, while the
superfluid energy gap is axially symmetric with respect to ẑ axis and reaches
maxima at pz = ± pF with pF being the Fermi momentum. The Berry phase changes
by π on a path around the nodal line, see Supplementary Note 1. b A cartoon
illustrating the Anderson theorem: In systems with s-wave pairing and isotropic
gap, a quasiparticle (silver ball) changes its momentum direction (blue arrows) on
scattering events, but the effective gap the quasiparticle “sees” remains the same.
Remarkably, similar pictureapplies in thep-wavepolar phase if scatteringpreserves
pz component of momentum. c In general unconventional superconductor with
anisotropic gap, the Anderson theorem is not applicable and the gap is suppressed.
d The phase diagram of superfluid 3He confined in nafen-243 nanomaterial is
occupied by the polar phase, while the suppression of Tc compared to the

transition Tcb in bulk (not confined) 3He is relatively small. The circles are our
measurements and squares are from ref. 22. Lines are fit to themodel of ref. 26, see
the text for details. e Idealized model of the nanostructured confinement used to
engineer the polar phase: A system of randomly distributed columnar defects of
diameter d and spacing D, oriented along the z-axis and providing specular quasi-
particle scattering, which conserves the z-component pz of the momentum. For
suchmodel, the Anderson theorem is extended to a spin-triplet p-wave superfluid—
the polar phase24. f A microphotograph of the nafen-243 material used for 3He
confinement in this work. For this material22 〈d〉 ≈ 9 nm and 〈D〉 ≈ 35 nm. Unlike the
perfect model in panel (e), the real material has orientational disorder of the Al2O3

strands, which somewhat violates the Anderson theorem and results in the small
suppression of Tc in the phase diagram. This imperfection is not under good con-
trol, and the Tc suppression is different for the two sets of data in panel (d),
although the two samples have the same nominal density.
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but temperature-independent density of states andmagnetic suscept-
ibility of normal 3He, respectively, and Δ(T) is the maximum gap in the
energy spectrum of Bogoliubov quasiparticles. Examples of the NMR
spectrameasured in normal helium and in the polar phase at T ≈0.2Tc
at different pressures are shown in Fig. 2a.

In thepolar phase, the gap for arbitrarydirectionofmomentumhas
the form ΔðT ,pÞ=ΔðTÞ cosμ, where μ is the angle between p and ẑ.
Thegapvanishesatμ=π/2,whichgives rise to theDiracnodal lineon the
equator of the Fermi surface. This nodal line is topological since the
Berry phase changes by π on a closed path around an element of
the line for each of the two spin projections of fermions, see Fig. 1a and
Supplementary Note 1. Due to the nodal line, the density of states in the
polar phase as a functionof energy ϵ isN(ϵ)∝ ϵ, which results in the cubic
dependence of the free energy F(T)− F(0)∝T3 at low temperatures
T≪Tc. Such cubic dependence also extends to the gap amplitude27,28:

1� ΔðTÞ
Δð0Þ =a

T3

T3
c

, T≪Tc, ð2Þ

where the dimensionless parameter a in the BCS clean limit is

a≈8:5
kBTc

Δð0Þ

� �3
, ð3Þ

see Supplementary Note 2. With Δ(0) = 2.46Tc in the weak coupling
approximation, the value is a =0.57, see Supplementary Note 3. We
remark that in the case ofWeyl superfluids with point nodes (like the A
phase of superfluid 3He), the expected temperature dependence of the
gap amplitude is ðT=TcÞ4.

From Eqs. (1) and (2) we find that

ωð0Þ � ωðTÞ
ωð0Þ � ωL

= 1� Δ2ðTÞ
Δ2ð0Þ

=2a
T3

T3
c

, T≪Tc, ð4Þ

where we assumed that ω −ωL≪ωL and Δ(0) −Δ(T)≪Δ(0). Thus the
normalized frequency shift is a direct probe of the temperature
dependence of the gap.

Cubic law
We measured the NMR frequency shift in the polar phase at several
pressures between 0.1 and 29.5 bar. The temperature dependence of
the shift at three pressures is shown in Fig. 2b. The data fit very well
with the cubic dependence of Eq. (4). The data for all pressures are
presented in Supplementary Figs. 2 and 3 and the details of the fitting
procedure are discussed in Supplementary Note 4. Combining
uncertainties of the fit with uncertainties of the temperature calibra-
tion (see “Methods”) we determine the confidence interval for the
exponent in the temperature dependence of the gap as 2.9−3.2. Within
this uncertainty, the power law is in full agreement with the theoretical
temperature dependence of the gap in the clean limit, which comes
from the Dirac nodal line.

The prefactor a in the gap temperature dependence varies
between 0.7 at low pressures and 0.3 at high pressures, see Fig. 3. It is
comparable to its theoretical clean-limit value, although deviations
from the weak-coupling value of 0.57 and systematic pressure
dependence are clearly seen. Since a / ðTc=Δð0ÞÞ3, one contribution
to this change is the increase of the Δ(0)/Tc ratio due to strong cou-
pling effects, which in 3He become more important with increasing
pressure29–31. Another possible contribution is a weak violation of the
Anderson theorem due to non-ideal scattering at the strands. That is,
the sameeffect as responsible forTc suppression.Wediscuss these two
contributions in more details below.

We stress that beautiful agreement of the measurements with
the clean-limit theory is achieved despite the fact that in our sample
the impurity scattering is strong with τ≪ ℏ/Δ in the most parts of the
phase diagram. Nevertheless, as seen in Supplementary Fig. 1, at
the lowest temperatures and at higher pressures τΔ/ℏ can reach or
even exceed unity. That opens a possibility of phase transitions to
different superfluid phases, not protected by the Anderson theorem.
We believe that the upward deviation of the points from the fit line for
29.5 bar data at the lowest temperatures in Fig. 3a is an indication of
such transition. The new phase is probably the polar-distorted A phase
as observed in the less dense nafen-90 confinement as well22. The
transition is found also at 11, 15, and 23 bar pressurewith themaximum
extent at 15 bar, see Supplementary Fig. 3. To avoid influence of a
different phase on the polar-phase results, we limited the temperature
range included in the fit in Figs. 2 and 3 to (0.3−0.5)Tc. See Supple-
mentary Note 4 for details.

Discussion
Our demonstrationof the extension of the Anderson theorem to the p-
wave system is applicable for non-magnetic scattering from impurities.
This condition is fulfilled in our experiments by preplating the nafen
strands with a 4He layer. With insufficient 4He coverage, the phase
diagram of superfluid states in nafen changes drastically and, in par-
ticular,Tc gets dramatically suppressed23,32. This property is in linewith
the well-known violation of the Anderson theorem by magnetic
impurities in the s-wave systems.
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Fig. 2 | NMR measurements of the temperature dependence of the gap in the
polar phase. a NMR spectrum of 3He in the polar phase (T < Tc) demonstrates the
frequency shift from the Larmor value ωL, where the spectrum in the normal state
(T > Tc) is located. From the temperature dependence of the shift, the temperature
dependence of the gap Δ(T) can be extracted. The spectra on the plot are nor-
malized so that the total integral of absorption is unity.bTemperature dependence
of the frequency shift in the polar phase at the lowest temperatures at three
pressures (symbols). Lines are fit of the data in the temperature range
0.3 < T/Tc < 0.5 to Eq. (4) usinga andω(0) asfittingparameters. Thefitted values are
shown in Fig. 3b and 4, respectively. Absolute temperatures on the upper x-axis
refer to 29.5 bar pressure.
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While this channel of violation of the Anderson theorem is sup-
pressed in the experiments, it is clear from the data, that some dis-
order violating the theorem remains in our system. The most likely
candidate is the orientational disorder of the strands which breaks
conservation of pz on scattering. The violation is seen in particular
from the suppression of Tc and from difference of a from the weak-
coupling value at the pressure of 0.1 bar where strong-coupling effects
can be ignored. In case of the nodal spectrum, the disorder breaking
the Anderson theoremcan produce the gap in the spectrum33; or it can
renormalize the exponent α in the density of states25, N(ϵ)∝ ϵα. It can
also lead to finite density of states34, α =0, and even to localization35,36.
Different power lawmay come from quasiparticles living on the edges
or bound to the strands of aerogel26, or from the perturbed order
parameter in the vicinity of strands37.

In the Nersesyan et al scenario for nodal-line d-wave
superconductors25, the predicted power law in the density of states is
α = 1/7with disorder insteadofα = 1 in the pure state. This corresponds
to the power law T2.14 instead of T3 in the gap dependence. This sce-
nario (which does not take into account protection by the Anderson
theorem) is clearly not realized in our experiments, see the dashed line
in Fig. 3a.

In the BCS-type model of Hisamitsu et al.38, superfluid 3He is
considered in the strongly anisotropic confinement which provides
small, but finite change of pz momentum on quasiparticle scattering.
When the parameters of the model are tuned to fit Tc with nafen-243
confinement, its low-temperature predictions for the polar phase are
the following: (i) T3 law in the gap dependence is preserved at least
until T =0.5Tc; (ii) coefficient a increases compared to the clean limit,
see diamonds in Fig. 3b; (iii) coefficient a decreases with pressure as Tc
suppressiondecreases. Thesepredictions agreewith our observations,
at least qualitatively. The measured decrease of a is much stronger
than found in this model, but indeed has a similar pressure depen-
dence as Tc suppression, see squares in Fig. 3b.

An explanation for the enhanced pressure dependence of a may
come from the strong-coupling effects in superfluid 3He. These effects

results in the increase of Δ(0)/Tc with pressure and renormalization of
a to smaller values. The correction is well known in the B phase, but its
value cannot explain our observations fully, see the solid line and the
filled triangle in Fig. 3b. In principle, it is not excluded that presence of
confining strands between 3He atoms interacting in a Cooper pair
(since 〈D〉≲ ξ0) may affect the strong-coupling effects. We can find
Δ(0)/Tc from the zero-temperature frequency shift, Fig. 4, using Eq. (1),
see Supplementary Fig. 4. With this correction applied with respect to
0.1 bar data, the observed overall pressure change in a is reproduced,
see stars and an empty triangle in Fig. 3b, although detailed pressure
dependence somewhat differs from the observations. Despite the
agreement, one should be careful, though, that the assumption of
λD = const used in this analysis, may be an oversimplification.

Overall, it is likely that orientational disorder in the strands and
the strong coupling effects together explain the observeddeviations in
the gap temperature dependence from the prediction of the clean-
limit weak-coupling theory. The detailed accounting for these effects
aswell as for the contributionof the strand surface-bound stateswhich
may change the temperature dependence further at the lowest tem-
peratures, remains a task for future. Nevertheless, these effects pro-
vide just relatively small deviations from the clean-limit expectations,
as confirmed by the experiment, while in the absence of protection by
the Anderson theorem, the system behavior would be completely
revamped.

Non-trivial symmetry and topology of the polar phase of superfluid
3He has been used to experimentally demonstrate the analog of the
cosmological Alice string (the half-quantum vortex)39. A realization of
the Kibble–Lazarides–Shafi cosmic wall bounded by strings40 have also
been observed: Thosewalls are formed41 after the phase transition from
thepolar phase to theother phases of superfluid 3He foundwith the less
dense confiningmatrix, where the scattering time is increased to τ ~ 2ℏ/
Δ(0). Our proof for existence of robust nodal line in the polar phase
opens possibilities for uncovering further new physics.

Due to the presence of the node, the Landau critical velocity of
superflow in the polar phase is zero. It has been recently demonstrated

0.2 0.3 0.4 0.5
T /T

c

10-2

10-1
[

(T
 )

]/[
L
]

0.1 bar
7 bar
29.5 bar

0 10 20 30
P, bar

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75
0.9

0.92

0.94

0.96

0.98

1

T
c

/T
cb

a b

Fig. 3 | Experimental verification of robustness of the polar phase of superfluid
3He with its nodal line against strong impurity scattering. a Normalized fre-
quency shift, measuring 1 −Δ2(T)/Δ2(0), shows cubic dependence on temperature.
This is in agreement with Eq. (4), derived in the clean-limit BCS theory, despite
strong impurity scattering imposed by the confining matrix. Cubic power law is
characteristic of the presence of the nodal line. Points and solid lines (with slope 3)
are the same as in Fig. 2b but replotted in appropriate coordinates. Dashed line has
a slope of 2.14 suggested in one of themodels of influence of disorder in nodal-line
systems25. bOn the left y axis: The prefactor a in the T3-dependence of the gap as a
function of pressure (circles). Its overall value agrees with calculations in the clean
limit with no fitting parameters. Theoretical clean-limit value in the weak-coupling
approximation is shown with the dashed line (see Supplementary Note 2). The

statistical error in a is smaller than the point size (see Supplementary Fig. 3).
Pressure dependence of a may originate from different sources, see “Discussion”.
Solid line shows Eq. (3) with Δ(0)/Tc increasing with pressure owing to the strong
coupling corrections as found in the B phase29. The stars show Eq. (3) with Δ(0)/Tc
derived from the zero-temperature frequency shift in thiswork, see Supplementary
Fig. 4. Diamonds are values calculated in a model of strongly anisotropic
confinement38, which is similar, but not identical to nafen-243 used in this work.
Triangles are the 30 bar data from ref. 38 scaled with the strong-coupling correc-
tions, see the text for details. On the right y axis: Suppression of Tc from Fig. 1d
(squares). The scale of the axis is selected to stress similar dependence of a and Tc/
Tcb on pressure.
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that the superflow in polar phase remains nevertheless stable at finite
velocities due to formation of the Bogoliubov Fermi surface (BFS)42.
Such Fermi surface, which emerges in a superconductor or a super-
fluid, has been suggested to exist in various systems43–47. In the polar
phase we expect BFS to have large extent in momentum space and
non-trivial topology, see Supplementary Fig. 5a. The robustness of the
BFS to disorder remains an interesting question for future research,
since in the presence of the superflow the Anderson theorem is not
automatically applicable. The non-thermal quasiparticles located in
the pockets covered by BFS reduce the average gap value. This sup-
pression can be observed, for example, by attaching a piece of nafen
with confined polar phase to a vibrating object immersed in helium or
by rotating the entire sample and detecting the corresponding fre-
quency shift in NMR, as a direct extension of the method used in the
present work.

Another striking consequence of the nodal line is the presence of
the topological flat band at the surface48, normal to the direction
of the confining strands, see Supplementary Fig. 5b. As a result of
the topological phenomenon of bulk-boundary correspondence,
the one-dimensional nodal line in bulk material generates the two-
dimensional surface of zero energy states (a flat band) on the
boundary. Inmetals and semimetals, the singular density of electronic
states in the flat band leads to a linear dependence of the critical
temperature Tc of the superconducting transition on the strength of
the pairing interaction49. Thus, in a flat-band system Tc can be
essentially higher50 than in conventional superconductors, where Tc is
exponentially suppressed as a function of the pairing interaction.
A particular example is provided by the superconductivity in the
twisted graphene layers51,52, while some other experiments with gra-
phite materials demonstrate signatures of superconductivity even at
room temperature53. In the polar phase of 3He, the surface flat band
may give rise to a new superfluid phase on the surface with additional
symmetry breaking.

This work provides an experimental evidence for the exis-
tence of the nodal line in the polar phase and demonstration of the
extension of the Anderson theorem to an unconventional p-wave

system. Quite likely, by varying the geometry of the confinement,
protection of the Anderson theorem can be extended to other
superfluid phases with p-wave pairing, like the chiral A phase in the
planar geometry54. The extension of the Anderson theorem has
also been considered for unconventional and multi-band super-
conductors. Although the superconducting model systems dis-
cussed in refs. 11,12 differ significantly from the polar phase with
columnar defects, the mechanism of the robustness towards dis-
order is the same: impurity scattering between different bands
should be properly suppressed. There are also suggested scenar-
ios in which the disorder leads to enhancement of the transition
temperature due to inelastic scattering55, and to even larger
enhancement of superfluidity due to multifractality56 of the fer-
mion wave functions in the special arrangements of strands. At the
moment we did not see any hints of the enhancement of Tc, but
different classes of disorder can be experimentally constructed in
future by varying synthesis techniques of the confinementmaterial
and its post-processing57,58 or by nanofabrication: with different
arrangements of strands, with different densities, with different
fractal distributions, with different shapes of strands, with differ-
ent bound states, etc. Our work opens the road to future experi-
ments on the protection of topological superconductivity against
disorder, on Bogoliubov Fermi surfaces, on fermionic topological
flat bands, and on the effective metric which allows a transition to
antispacetime59.

Methods
Sample
The 3He sample is confined in a 4 × 4 × 4mm3 cubic container made
from Stycast 1266 epoxy. The container volume is filled with a
nanostructured material called nafen of 0.243 g/cm3 density. The
nafen consists of nearly parallel Al2O3 strands (Fig. 1) and provides
about 94% open space within the structure. The nafen was produced
byAFNTechnology Ltd in Estonia. To avoid formation of paramagnetic
solid 3He layer on the strands, which breaks the requirement of non-
magnetic specular scattering, all surfaces are preplated23 by about 2.5
monolayers of 4He. The 3He pressure is regulated between 0.1 and 29.5
bar through a filling line from a room-temperature gas handling sys-
tem. The container with confined sample is connected to a larger
volume of bulk 3He which in turn is attached to a copper nuclear
demagnetization cooling stage through a heat exchanger made from
sintered silver powder. The temperature is regulated by changing
current in the solenoid creating the demagnetization field. Depending
on pressure, the lowest temperatures reached vary between 0.19 and
0.21Tc or between 200 and 450 μK. The lowest temperature is limited
by the residual heat leak to the sample (about 25 pW) and the thermal
resistance of the sinter enhanced by the 4He layer60.

The SEM photograph of the nafen material in Fig. 1f is acquired
with Jeol JSM-7100Fmicroscope using acceleration voltage of 5 kV and
working distance of 9.3 mm. The imaged sample is from the same
production batch as the one used in confining superfluid 3He, but is a
physically different piece.

Nuclear magnetic resonance measurements
NMR spectrometer includes pick-up coils made from copper wire,
which enclose the sample. The same pair of coils with the axis trans-
verse to the static NMR field H is used both to excite and detect the
nuclear magnetization precession. The coils are part of a tuned tank
circuit, with a Q-value of 150. Signal from the pick-up coils is pre-
amplified with a cold amplifier thermalized to a 4K plate and then fed
for further amplification and detection using a lock-in amplifier loca-
ted at room temperature.

In the measurements, the excitation is continuously applied at
frequency ωrf/2π = 363 kHz, which is fixed to the resonance frequency
of the tank circuit, while themagnitude of themagnetic fieldH is swept
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Fig. 4 | Zero-temperature frequency shift as a function of pressure. Frequency
shift of theNMR line in the polar phase, extrapolated from fit lines in Fig. 2b to zero
temperature (points). The statistical error in the shift is smaller than point size (see
Supplementary Fig. 3). The line shows value from Eq. (1) with λD = 7.5 × 10−7 selected
to fit the points. The main reason for the increase of the frequency shift with
pressure is the increase of Tc. Additionally, the line includes increase of Δ(0)/Tc
ratio with pressure due to strong-coupling corrections accepted for the B phase29.
The data points show systematically stronger pressure dependence than the line,
whichmay indicate larger strong-coupling corrections in thepolar phase compared
to the B phase, see Supplementary Fig. 4.
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around the value of HL =ωrf/∣γ∣ ≈ 11mT to record the NMR spectrum.
Here the Larmor fieldHL corresponds to location of the NMR response
in normal 3He. In the polar phase, the NMR response shifts to lower
fields H <HL. For analysis, we convert the field shift to the equivalent
frequency shift as ω −ωrf =ωrf(1 −H/HL), which is applicable since
the observed shifts are sufficiently small. We ensure that the magnetic
field H is oriented along the nafen strands by rotating the field using
2-axis vector magnet and checking for the maximum value of the
frequency shift.

The inhomogeneity of the applied magnetic field is ΔH/H ≈ 10−4.
This value determines the width of the NMR spectrum in the normal
phase. In the polar phase when the temperature decreases the spec-
trumbecomeswider due to inhomogeneity of the nafen, see Fig. 2a for
spectra examples. To determine the frequency shift of the spectrum
from the normal state to the lowest probed temperature, the first
moment of absorption spectra are compared (the spectra are nor-
malized to unit area). The spectrum shift with respect to the one
measured at the lowest temperature is found by matching the whole
absorption and dispersion profiles recorded at two temperatures
using the relative shift as a fitting parameter. To accommodate the
changing spectrum shape, the shift is determined relatively, within
groups of 10 consecutively measured spectra, where the line shape

does not visually change. To verify that the error in accumulation of
the relative shifts is not significant, we in parallel determine the NMR
peak position by fitting a parabola close to the absorption maximum.
Both methods produce the same overall dependence, but the peak-
findingmethod results in significantly larger scatter, since it usesmuch
fewer data from each recorded spectrum.

For pressures of 0.1, 4, 7, 11, and 15 bars one temperature sweep
with increasing temperature and one with decreasing temperature are
measured, while for 23 and 29.5 bars two pairs of increasing/decreas-
ing temperature sweeps are recorded. All sweeps at the same pressure
are averaged for the analysis.

Thermometry
Near the superfluid transition temperature, the NMR frequency shift of
the bulk 3He (in the B or A phase, depending on pressure) is used as a
thermometer. Small contribution to the NMR spectra from the
unconfined helium is visible due to the geometry of the pick-up coils.
At temperatures belowabout0.7 Tc the bulk signal is however toowide
and too small to be distinguished from the noise. The experiment is
equipped with a quartz tuning fork of nominal 32768 Hz frequency,
which is immersed in bulk 3He. The width of the resonance wf of such
fork is a sensitive probe of the temperature-dependent density of
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Fig. 5 | An example of the measurement with the temperature calibration.
a Dependence of the current I(t) in the magnet of the demagnetization cooling
stage on time t for measurements at pressure of 11 bar (blue line, left y-axis),
temperature T*(t) for ideal cooling in the absence of losses, heat leaks and thermal
resistances (red dotted line, right y-axis), and the temperature of the sample T(t),
calculated using the thermal model (solid red line, right y-axis). b Resonance width
wf of the quartz tuning fork installed in the bulk (B-phase) part of the sample as a

function of the demagnetization current I (green line, upper x-axis) and as a func-
tion of the calculated sample temperature T (blue line, lower x-axis). Lower x-axis
also matches T * values corresponding to upper x-axis. The data measured in the
time interval between 12 h and 46 h in the panel (a) are shown. c Similar plot as in
panel (b) for themeasured frequency shiftω(T) −ωL of the NMR response from the
Larmor value. The data are collected in the time interval between 18.9 h and 43.3 h.
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quasiparticles and it is widely used as a thermometer in superfluid 3He
measurements61. In our experiment, presence of the 4He film on all
surfaces modifies the fork response, in particular with appearance of a
pressure-dependent resonance-like feature seen in Fig. 5b. Thus,
independent calibration of the fork becomes unreliable and
challenging62. Nevertheless, the fork keeps its sensitivity in the whole
studied temperature range, and we developed a procedure which
allowed to recover the temperature assuming that the fork and NMR
responses are reproducible for the same temperature.

The temperature sweep in the experiment is performed with the
sweep of the current I(t) in the demagnetization solenoid. For ideal
cooling in the absence of losses, heat leaks and thermal resistances, the
resulting temperature is T*(t) = Tcb[I(t)/Icb]. Here Icb is the demagneti-
zation current at the moment of crossing Tcb temperature as deter-
mined from the maximum resonance width of the tuning fork
immersed in bulk liquid. To calculate the actual temperature of the
sample T(t) we use a thermal model which includes the nuclear stage
and the sample cell with separate temperatures and the thermal
resistance between them. The heat capacity of the stage and of the cell
are assumed to be known (for the copper stage—from the design, for
the cell—theoretically calculated from the knownvolume). The thermal
resistance is taken as60 RT expðΔ=kBTÞ where Δ is the value of the
superfluid gap in the B phase, which is in the contact with the sinter,
calculated with trivial strong-coupling corrections29, and RT is an
adjustable parameter. Other two parameters of themodel are the heat
leaks to the stage qns and to the sample qsam. We measure the NMR
spectra and the fork resonance while sweeping the temperature up
and down in the range of the interest with different rates. The model
parameters are then selected in such a way, that at the same calculated
temperature of the cell the measured shift of the NMR spectrum and
the width of the fork resonance coincide independently of the direc-
tion and rate of the temperature sweep. An example of such tem-
perature calibration is shown in Fig. 5. Same values of qns = 2 nW and
qsam = 25 pW are used at all pressures. The value of RT we characterize
with the minimum attainable temperature of the sample Tmin as
RT =Tminq

�1
sam expð�Δ=kBTminÞ and use Tmin =0:17Tcb at all pressures.

These values agreewith independentmeasurements of the heat leak to
the nuclear stage and with expectations based on the previous
experiments which had better thermal control of bulk 3He sample63.

To estimate influenceof possible temperature calibration error on
the determination of the gap temperature dependence, we reanalyzed
measurements at 7 bars with about 30 sets of the thermal model
parameters distributed in the range of 0.5 to 2 times the values quoted
above for the heat leaks and from 0.1 to 10 times for the thermal
resistance. This range exceeds possible uncertainty in the parameters,
as the fork and NMR responses become clearly hysteretic at the
boundaries of thedistribution. For all these sets, thefitted values of the
gap power-law exponent are between 2.95 and 3.2 while the values of
the parametera arebetween0.47 and0.58when the fit is performed in
the (0.3−0.5)Tc temperature range.

Data availability
The data generated in this study have been deposited in the Zenodo
database under accession code https://doi.org/10.5281/zenodo.
8055891.

Code availability
The code for the thermal model used in the temperature calibration is
available from the corresponding author upon request.
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