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The conductivity profile of the head has a major effect on EEG signals, but unfortunately the conductivity for
the most important compartment, skull, is only poorly known. In dipole modeling studies, errors in modeled
skull conductivity have been considered to have a detrimental effect on EEG source estimation. However, as
dipole models are very restrictive, those results cannot be generalized to other source estimation methods. In
this work, we studied the sensitivity of EEG and combined MEG + EEG source estimation to errors in skull
conductivity using a distributed source model and minimum-norm (MN) estimation.
We used a MEG/EEG modeling set-up that reflected state-of-the-art practices of experimental research.
Cortical surfaces were segmented and realistically-shaped three-layer anatomical head models were
constructed, and forward models were built with Galerkin boundary element method while varying the
skull conductivity. Lead-field topographies and MN spatial filter vectors were compared across conductivities,
and the localization and spatial spread of the MN estimators were assessed using intuitive resolution metrics.
The results showed that the MN estimator is robust against errors in skull conductivity: the conductivity had
a moderate effect on amplitudes of lead fields and spatial filter vectors, but the effect on corresponding
morphologies was small. The localization performance of the EEG or combined MEG + EEG MN estimator
was only minimally affected by the conductivity error, while the spread of the estimate varied slightly.
Thus, the uncertainty with respect to skull conductivity should not prevent researchers from applying mini-
mum norm estimation to EEG or combined MEG + EEG data. Comparing our results to those obtained earlier
with dipole models shows that general judgment on the performance of an imaging modality should not be
based on analysis with one source estimation method only.

© 2013 The Authors. Published by Elsevier Inc.

Introduction

Electrical activity of the brain can be studied non-invasively using
electro- or magnetoencephalography (EEG, MEG). EEG measures scalp
potential differences of the electric field driven by the neural currents,
and MEG measures the magnetic field outside the head, generated by
both the neural currents and ohmic volume currents driven by the elec-
tric field (Baillet et al., 2001; Hämäläinen et al., 1993). The majority of
the currents stay inside the poorly-conducting skull, and only a fraction
of the electric field generated by the neural activity passes through the
skull to the scalp and electrodes. The EEG signal is thus strongly

influenced by the shape and conductivity of the skull (and scalp),
while the MEG depends less on these features. To estimate the sources
of the measured signals, the conductivity profile of the head needs
to be modeled. The value of skull conductivity is, however, not well
known. The sensitivity of EEG to volume conduction and the poorly-
known skull conductivity are commonly considered detrimental for
EEG and combined MEG + EEG (EMEG) source estimation. However,
earlier studies on the topic have been restricted to dipole models only.
In this work, we assess for the first time the sensitivity of EEG and
EMEG source estimation to errors in skull conductivity using a dis-
tributed source model and minimum-norm estimation.

Any source estimation procedure makes use of a volume conductor
model (VCM) that characterizes the relationship between the source ac-
tivity and resulting signals; it thus plays a crucial role in the estimation
of the neural sources of measured EEG/MEG signals. In an experimental
EEG or EMEG source analysis study, the VCM typically comprises three
homogeneous regions: the brain, skull, and scalp. There is considerable
variance in the estimated skull conductivity: values for the ratio K
between conductivities of soft tissues and skull range between 15 and
40 (Akhtari et al., 2002; Dannhauer et al., 2011; Lai et al., 2005;
Oostendorp et al., 2000; Zhang et al., 2006). One reason for the large
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variation is that the concept of skull conductivity is only a practical
approximation: the skull has a fine-structure of spongy and compact re-
gions that have different conductivities (Akhtari et al., 2002; Dannhauer
et al., 2011), but modeling the fine-structure is laborious and has so far
not been used in experimental brain research. The effect of conductivity
errors on modeled signals in sensor space has been characterized
in (e.g., Haueisen et al., 1997; Vallaghe and Clerc, 2009). In Haueisen
et al. (1997) it was found that differences in tissue conductivities had
large effects on signal strength, while signal topographies changed
less. In experimental work, also the inaccurate segmentation of the
skull leads to errors in modeled signals. Effects of geometry errors on
lead fields have been studied in, for example (Lanfer et al., 2012):
local errors in the upper parts of the skull had a small ormoderate effect
on sources near the erroneous regions, and large-scale errors in the
basal skull regions had a moderate or large effect on inferior sources,
especially those in the cerebellum.

The sensitivity of EEG source estimation to errors in skull conductiv-
ity has so far been studied only with dipole models (e.g., Chen et al.,
2010; Crevecoeur et al., 2012; Vanrumste et al., 2000), resulting
in localization errors between 5 and 8 mm (Chen et al., 2010;
Crevecoeur et al., 2012) and up to 28 mm (Vanrumste et al., 2000)
due to the erroneous skull conductivity. The effects of simplifications
and geometry errors in the skull model on dipole localization have
been studied in (e.g. Dannhauer et al., 2011; Huiskamp et al., 1999;
Lanfer et al., 2012; Steinstraeter et al., 2010; Vanrumste et al., 2000).
Overall, the effect of geometry errors on source localization seems to
be smaller than or of the same order as the effect of conductivity errors
(Huiskamp et al., 1999; Vanrumste et al., 2000). In source space, geom-
etry errors affect mostly sources close to the erroneous regions (Lanfer
et al., 2012; Vanrumste et al., 2000), while conductivity errors seem to
have a more global effect. Furthermore, the effects of geometry errors
also depend on conductivity.

In our experience, results of existing studies seem to have been
understood as general statements about the sensitivity of EEG to errors
in skull conductivity or geometry. These results cannot, however, be gen-
eralized beyond dipole modeling, as there are fundamental differences
across source estimation methods: in classic dipole fitting, there is a
strong assumption on the nature of neural activity (single focal source)
but no prior anatomical information on the location and orientation of
the source, and thefitting is done iterativelywithnon-linear optimization.
In contrast, minimum-norm estimation (Dale and Sereno, 1993; Fuchs
et al., 1999; Hämäläinen and Ilmoniemi, 1984; Lin et al., 2006a,b)
poses no restriction to the number or size of active brain regions, typically
uses anatomical prior information on possible source locations and orien-
tations, and is computed as a single matrix–vector operation.

In this work, we present systematic simulations to assess the sensi-
tivity of EEG and EMEG to error in skull conductivity, when the source
estimation problem is solved with linear minimum-norm estimation
in a three-layer headmodel. To focus on the poorly-knownvalue of con-
ductivity, we omit other modeling errors (e.g., model simplifications,
geometrical errors due to poor segmentation, and sensor coregistration
errors) from this study. First, we carry out an EEG forward-model sensi-
tivity study using realistic source anatomy. Then, for the first time, we
study the sensitivity of the minimum-norm estimator to skull conduc-
tivity errors with both traditional sensitivity measures (for EEG only)
and using intuitive resolution metrics (for both EEG and EMEG).

Models and methods

The analysis was carried out using an existing data set of 14 subjects
that was collected at the MRC Cognition and Brain Sciences Unit using
an Elekta Neuromag Vectorview MEG/EEG scanner (www.elekta.com)
in an experimental brain research project and pre-processed according
to the standard analysis workflow (Hämäläinen, 2009). Of the data set,
only anatomical information and noise statistics were used; the actual
analysis was carried out with computer models.

Anatomical modeling

T1-weighted anatomical magnetic resonance images were acquired
with a 3T Siemens Tim Trio scanner using an MP RAGE sequence. The
imaging data sets were pre-processed and the cortical surface was seg-
mented using FreeSurfer software (Dale et al., 1999; Fischl, 2012; Fischl
et al., 1999). The source space was then defined by decimating the
cortical segmentation with the MNE software (Hämäläinen, 2009),
resulting in sourcemeshes for the left and right hemispheres, comprising
4098 vertices each. The boundary surfaces of the skull and scalp were
automatically segmented with MNE/FreeSurfer using the watershed
algorithm (Segonne et al., 2004), yielding threemeshes with 2562 verti-
ces per mesh. The 70-electrode EEG cap was prepared and the electrode
locations were digitized with an electromagnetic Polhemus Fasttrak
localizer (www.polhemus.com) along with the locations of preauricular
points and nasion as well as about 50–100 additional points randomly
distributed across the scalp. The electrodes and MEG coils were then
co-registered to the MR set and scalp mesh using the MNE software.

For visualization and group analysis, average brain geometry and
morphing-maps from individual brains to the average brain were con-
structed using FreeSurfer software and custom scripts written according
to the principles presented in the MNE manual (Hämäläinen, 2009).
The anatomical models were imported to Matlab (www.mathworks.
com), where the rest of the modeling and analysis was carried out.

Forward computation

Three-shell boundary-element transfer matrices were built for each
subject using state-of-the-art linear Galerkin BEM with Isolated Source
Approach (Stenroos and Sarvas, 2012). The conductivities of the brain,
skull and scalp regions were assumed [1 1/K 1] × 0.230 S/m, where
the skull conductivity contrast K had the value of 15, 25, or 40. The
digitized electrode positions were projected to nearest locations on
the scalp, and potential from model vertices was interpolated linearly
to these positions using the BEM basis functions. The equivalent source
of the EEG/MEG signal, primary current distribution →Jp (Hämäläinen
et al., 1993) was discretized into a set of dipoles placed into the vertices
of the source meshes. For each subject and conductivity ratio, lead-field
matrices Lwere built: the ith columnof the lead-fieldmatrix is the signal
topography produced by a unit-amplitude normally-oriented dipole
placed in the ith vertex of the source mesh. The zero-level of the poten-
tial was set to the mean of the potential of all electrodes. Using the
lead-field matrix L, the signal d generated by a (discretized) source
distribution s can thus be modeled as d = Ls.

Source estimation

In linear estimation, an inverse mapping of the linear measurement
model is sought:

d ¼ Lsþ n→ŝ ¼ Gd;

where n is the measurement noise and G is the source estimator. This
problem is strongly under-determined: in our typical cortex model,
the degree-of-freedom (DoF) of the estimate is 8196, while the DoF of
the EEG and EMEG measurement is here only 69 and 375, respectively.
A standard way for finding a unique solution is to use the minimum-
L2-norm (MN) estimator (Dale and Sereno, 1993; Fuchs et al., 1999;
Hämäläinen and Ilmoniemi, 1984; Hämäläinen and Ilmoniemi, 1994;
Lin et al., 2006a,b), whichminimizes the L2-normof the source estimate
while balancing between the reconstruction of the measured data and
suppression of noise. If all source candidates are treated equally i.e. no
source priors or weights are set, the MN estimator is of the form

G ¼ LT LLT þ λ2C
� �−1

;
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where T is matrix transpose, C is an estimate of the noise covariance
matrix, and λ2 is the regularization parameter that sets the balance be-
tween reproduction of measured data and suppression of noise. In our
data set, C was constructed from measured pre-stimulus data, and λ2

was set as suggested in Lin et al. (2006a,b), assuming the mean power
signal-to-noise ratio of 10. The rows of G are often called spatial filter
vectors: projecting d on the ith row of G yields an estimate of s at ith

vertex that is minimally influenced by other sources. Thus, the ith row
of G can be interpreted as a spatial filter that has pass-band at ith vertex
and stop-band at other source vertices.

Metrics

The forward and inverse models were assessed using two types of
metrics: direct comparisons between topographies (columns) of L and
spatialfilters (rows) ofG builtwith different conductivitieswere carried
out using relative error (RE) and correlation coefficient (CC) measures,
and the overall performance of estimators G was characterized with
resolution metrics. The RE and CC are formulated as

RE ¼ dref−dtestj j
drefj j

CC ¼ dref−dref

dref−dref

���
���
⋅ dtest−dtest

dtest−dtest

���
���
;

where “ref” and “test” label the reference and test solutions, respec-
tively, and d denotes the mean of d. The RE is an overall error measure,
sensitive to both morphology and amplitude differences, while the CC
is sensitive to morphological differences only. These measures are fre-
quently used in the comparison of forward models and in sensitivity
analysis (c.f. Haueisen et al., 1997; Stenroos and Sarvas, 2012).

The results presented in terms of RE and CC may be difficult to
interpret: for example, what does the CC = 0.99 between two signal
topographies or spatial filter vectors mean in practice? In an experi-
mental source imaging study,wewish to localize one ormultiple source
regions and perhaps characterize the time-domain interaction between
different regions. In the case of linear estimators, this performance can
be assessed with resolution analysis (Grave de Peralta Menendez
et al., 1997; Hauk et al., 2011; Menke, 1989; Molins et al., 2008) that
characterizes the peak-localization and spatial spread of the estimators:
the resolutionmatrix is defined R = GL, and the columns and rows of R
are point-spread (PSF) and cross-talk (CTF) functions, respectively.
The ith PSF shows how the estimate of a unit source placed at ith vertex
spreads to the source space, while the jth CTF shows, how unit sources
in all possible positions would contribute or leak to the source esti-
mate at vertex j; for an example PSF/CTF pattern, see (Hauk et al.,
2011). In earlier EEG/MEG resolution analysis studies (Grave de
Peralta Menendez et al., 1997; Hauk et al., 2011; Molins et al., 2008),
the resolution matrix R was constructed assuming the estimator G
built from the correct forward model L. Here we defined R = GtestLref
and varied the skull conductivity used in Gtest If test and reference
conductivities are the same, the resolution kernel of the MN estimator
is symmetric and thus the PSF and CTF for a particular vertex are iden-
tical. Introducing the conductivity error (or any other error) to Gtest or
Lref removes this symmetry, and PSF and CTF need to be studied
separately.

The localization performance of the estimators was assessed by
computing the peak position error (PPE) that measures the distance
between the center-of-mass of the estimate and the true source. For
a source at r

→
true,

PPE ¼ ∑i ŝ ij j r→i

∑i ŝ ij j − r
→

true

�����

�����;

where i runs through all indices, in which s has values above the rel-
ative threshold t, ŝij j≥t ŝ maxjj . Here we used t = 0.5, focusing the met-
ric to strong estimated amplitudes and omitting the low-amplitude
values; the same metric and threshold has been used in Lin et al.
(2006a,b). The spread of the estimate was characterized with spatial
deviation (SD) and cortical area (CA) metrics:

SD ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑i ŝ ij j r

→
i− r

→
true

� �2

∑i ŝ ij j

vuut

CA ¼ ∑
i
Ai;

where Ai is the relative cortical surface area associated with vertex i
and i, again, runs through all indices for which t, ŝ ij j≥t ŝ maxjj . For SD,
we used the thresholds of 0 and 0.5 to distinguish between high-
and low-amplitude values of the estimates, while CA was computed
only with the threshold of 0.5.

Computations and results

First, forward and inverse models were built for each subject. Using
these models, metrics were computed separately for each subject and
source vertex. Then, the distributions of metrics over all subjects were
morphed to the average brain surface, and population mean and stan-
dard deviation of the metrics were visualized on an inflated brain sur-
face. The analysis was done in two stages: 1) comparison of forward
models and source estimators with RE and CCmeasures, and 2) resolu-
tion metrics for point-spread and cross-talk functions. In all compari-
sons across conductivities, the reference conductivity contrast was
chosenK = 25, and the test contrastswere 15 and 40; the test contrasts
are in the opposite ends of the currently accepted range, and the refer-
ence contrast is chosen so that comparisons to relevant conductivities
both larger and smaller than the reference can be done. As the head
anatomy and sensor geometries have high symmetry, we present
results for the left hemisphere only.

Forward model and source estimator

The effect of skull conductivity on signal topographies (columns)
of the forward models L and spatial filter vectors (rows) of source
estimators G was assessed using relative error (RE) and correlation
coefficient (CC) measures: L and G were built using different skull
conductivities (Kref = 25, Ktest = 15 or 40). For each source vertex,
the topographies of L and spatial filter vectors of G were compared
across conductivities. The population means and standard deviations
of both metrics for the forward solutions for all source positions are
shown in Fig. 1. The results show that the largest range of errors is
obtained, when the skull conductivity is overestimated in the inverse
model (Kref = 25, Ktest = 15); the overall RE, presented as “mean ±
standard deviation,” is 0.11 ± 0.04 and the CC 0.998 ± 0.0013.
With underestimated conductivity (Kref = 25, Ktest = 40), the corre-
sponding numbers are RE 0.12 ± 0.03 and CC 0.998 ± 0.0012. The
morphologies of the RE plots for over- and underestimated K are
very similar and the CC plots are almost identical. As a function of
source depth, the smaller and larger errors are obtained with deep
and superficial sources, respectively. The morphological errors of
the topographies are in the same range with results presented in
Haueisen et al. (1997).

Corresponding results for the spatial filter vectors are shown in Fig. 2.
The largest errors are obtained,when the conductivity is underestimated
(Ktest > Kref): RE has then the overall mean 0.27 ± 0.03, and the corre-
sponding CC is 0.998 ± 0.0009. For the overestimated conductivity, the
RE is 0.21 (0.02) and the CC is 0.998 ± 0.0010. The results thus show
that, compared to the modeled signal topographies, the conductivity
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error has overall the same morphological effect and larger amplitude
effect on the spatial filter vectors. In the CC plots, however, the behavior
as function of source depth is different from the forward model: for
source estimator, deep sources tend to have larger errors. In addition,
we directly compared minimum-norm estimates of simulated point
sources; also that analysis showed moderate amplitude errors and
smallmorphological errors (RE b 0.3, CC > 0.995). The high CC between
topographies or spatial filter vectors computedwith different conductiv-
ities means that the errors indicated by the RE measure are mainly of
amplitude, but not of morphological, nature.

Resolution metrics

In themain part of the analysis, we studied the localization and spread
properties of the MN estimator using different skull conductivities. First,
resolution matrices R = GtestLref were built, using K = Kf = 25 for the
Lref and K = Ki = 15, 25 or 40 for the Gtest. Then, metrics were comput-
ed for point-spread and cross-talk functionswith all test conductivities;
the metrics were thus computed with correct, overestimated, and
underestimated skull conductivities. As the results for corresponding
PSFs and CTFs were very similar, we present the results for the
point-spread functions only; the corresponding plots for the CTFs are
available in the supplementary material. Here we show the results for

EEG; the corresponding plots for the EMEG are presented as an
Appendix A. However, the following analysis applies to both EEG and
EMEG, as the overall effects of conductivity errors were the same for
both modalities. With respect to the aim of this work, the essential
information lies in the relative differences or similarities between the
metric distributions obtained with different test conductivities.

The peak position error (PPE) is shown in Fig. 3. The population
means and standard deviations obtained with different test conductiv-
ities are almost identical; the relative change of PPE due to the conduc-
tivity error is small. The overall PPE in the reference case is 15.4 ±
8.0 mm, and in the cases of over- and underestimated K, the overall
change of PPE is−0.09 ± 0.30 mmand 0.14 ± 0.35 mm, respectively.
The largest absolute changes, of the order of ± 2.5 mm, are obtained in
the cingulate cortex and subcortical areas, where the PPE of the reference
model is around 25 mm. The skull conductivity error has thus negligible
overall effect on the localization performance of the MN estimator.

The unthresholded SD results are shown in Fig. 4. The results show
that choosing Ki b Kf slightly increases the spread and Ki > Kf

decreases it. However, when the metric was thresholded at 50% of
maximum (plots not shown), this effect was removed, and plots
with all conductivities looked the same; thus the differences in the
metrics of Fig. 4 are due to the low-amplitude values of the source es-
timates. The CA metric is displayed in Fig. 5; the plots with and

Fig. 1. Relative error (RE) and correlation coefficient (CC) between EEG forward models computed with different skull conductivity contrasts K. The reference K is in all comparisons
25, while the test K is either 15 or 40. The larger and smaller plots show the lateral and medial views of the inflated brain surface, respectively.

Fig. 2. Relative error (RE) and correlation coefficient (CC) between EEG spatial filter vectors with different skull conductivity contrasts K. The reference K is in all comparisons 25,
while the test K is either 15 or 40.
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without conductivity errors look again almost identical. The results
thus show that the spread of high-amplitude values of the source es-
timates is not affected by the conductivity error, while over- and
underestimating the K slightly increases and decreases, respectively,
the low-amplitude ripple of the estimates.

Discussion

We assessed the sensitivity of EEG and EMEG minimum-norm
source estimation to modeling error in skull conductivity in a three-
layer head model. The results showed clearly that the MN estimator is
robust against errors in skull conductivity: the conductivity error has a
moderate effect on the overall amplitude of the lead fields, spatial filter
vectors and inverse solutions, but the effect on the corresponding mor-
phologies is small. The localization performance of the MN estimator
is only minimally affected by the conductivity error, while the low-

amplitude spread of the estimatemay vary slightly. Thus, the uncertainty
with respect to skull conductivity should not prevent researchers from
applying minimum norm estimation to EEG or combined MEG + EEG
data.

The role of amplitude error

Analysis of the forwardmodels and source estimators shown in Sec-
tion 3.1 showed that the skull conductivity error may cause an ampli-
tude error of a few tens of percents. As the minimum-norm estimator
renders the solution unique by giving an estimate that satisfies the
data with minimal source amplitude, the total amplitude of the esti-
mate is oftenmuch smaller than the real source amplitude: for example,
for a focal source with unit amplitude, the resulting minimum-norm
estimate is often widely spread, with the total amplitude of the order
of 10−3. The MN estimator is thus not accurately reconstructing the

Fig. 3. Peak position error PPE (in centimeters) for different EEG inverse model conductivities. The forward solutions were computed with K = Kf = 25 and the inverse solutions
with K = Ki of 15, 25, or 40. The pseudocolor plots show the population mean on the upper row and standard deviation on the lower rowwith all test conductivities (columns). The
results with the reference model, computed with the same conductivities in the forward and inverse models, are in the middle column.

Fig. 4. Spatial deviation (in centimeters) for EEG as function of test model conductivity. Notice that the color scale for the mean does not start at zero. For further explanation, see the
caption of Fig. 3.
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amplitude or extent of the source distribution. An additional overall
amplitude error does thus not seem to have any practical effect.

As the amplitude error depends on source position, it would be
logical to think that it would corrupt source estimation, if multiple
sources are simultaneously active in regions with different amplitude
errors. This effect can be assessed by studying cross-talk functions
that show how much sources at each position contribute to the esti-
mate at the target position. Our cross-talk analysis gave results very
similar to those presented for point-spread functions in Figs. 3, 4, 5
and A1–A3: the change of the CTFs due to the conductivity error
was small (see the supplementary material for visualizations). Thus,
the amplitude errors do not seem to corrupt the source estimation.

In this work, we combined EEG and MEG by using the noise covari-
ancematrix C as regularization operator. This is equivalent to converting
the forwardmodel and signals to signal-to-noise ratios by pre-whitening
with matrix W = C−1/2. As the skull conductivity error causes larger
amplitude errors to the lead fields of EEG than ofMEG, it changes the rel-
ative scaling between EEG and MEG. According to results shown in the
Appendix A, this scaling error does not seem to have affected the source
estimation. Liu et al. (2002) studied the effect of a similar (constant) scal-
ing parameter on cross-talk and reported that the scaling needs to be
correct within a factor of two; the amplitude errors obtained in this
study are well within that limit.

Comparison to previous results obtained with dipole models

At first look, our results are in contrast with those obtained with
dipole modeling: localization errors of up to 28 mm due to wrong skull
conductivity have been presented (Vanrumste et al., 2000). Those ex-
treme results were, however, obtained with a very large conductivity
difference: data were simulated with Kf = 16 and inverted with Ki =
80. There now seems to be consensus that the contrast value of 80 is
too large (c.f. Oostendorp et al., 2000) — more recent dipole studies
that used smaller conductivity differences indeed reported errors of
only 5 to 8 mm (Chen et al., 2010; Crevecoeur et al., 2012). Our
presented results were computed with Kf = 25 and Ki = 15 or 40.
We also computed metrics with Kf = 40 and Ki = 15 or 80: the popu-
lationmeanswere nearly identical to those presented in Section 3.2 and
Appendix A, while the variation among subjects was slightly larger.
Thus, the MN estimator retains its robustness also in the presence of
untypically large conductivity errors.

A dipole-fitting algorithm searches the source-position with best-
matching signal topography, testing one position at the time, while
the linear minimum-norm estimator projects the weighted signal on
topographies of all source candidates,minimizing the source amplitude.
Due to its distributed nature and pre-fixed source positions, the MN
estimator is thus less sensitive to local topography errors. On the
other hand, even in ideal modeling conditions, the MN estimator pro-
duces smeared estimates and also suffers from depth bias (Lin et al.,
2006b). Dipole fitting and minimum-norm current density estimation
are two very different approaches for tackling with the ill-posedness
of the EEG/MEG source estimation problem: in dipole-fitting, strong
prior assumptions are made, leading to potentially high accuracy but
lack of robustness, while inMN estimation some of the accuracy is trad-
ed for generality and robustness.

Our results show that earlier results on the role of skull conductivity
obtained with dipole modeling cannot be generalized to distributed
source models. It is, however, essential to stress that also our results
are not general statements: the effect of model errors and inaccuracies
on source estimation depends on the chosen source model and estima-
tion technique. General assessment about the performance of an imag-
ing modality should thus not be based on analysis with one source
estimationmethod only. Instead,making comparable sensitivity studies
across different source estimation methods would yield important
information on method robustness.

Model details

The type and level of detail of the anatomical model were chosen
according to state-of-art practices in experimental brain research,
guaranteeing the relevance of the results for an experimental neurosci-
entist. In the standard minimum-norm estimation palette, there are
some choices to bemadewith respect to the forward solver, the segmen-
tation of the skull and the constraining of source orientation: our analysis
was carried out with the Galerkin BEM, but the results presented apply
also to other numerical methods like finite-difference or finite-element
methods (FDM, FEM). For segmentation, we used the default pipeline
of MNE and FreeSurfer, in which the inner and outer skull surfaces are
based on the envelope of the brain and shape of the scalp, respectively,
leading to rather smooth skull surfaces with unrealistic shape of the
lower parts of the skull. To verify the possible effect of this artifact, we
also analyzed one case using a more accurate skull model based on
multi-angle FLASH MR set that has better skull contrast; the effect of

Fig. 5. Relative cortical area CA (in percents) for EEG as function of test model conductivity. For further explanation, see the caption of Fig. 3.
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the conductivity error was essentially the same. For source analysis, we
chose to use constrained source orientation. In experimental work, a
loosely-constrained or free orientation (Lin et al., 2006a) is, however,
often preferred, as it is considered more robust against errors in cortex
segmentation.We carried out all resolution analysis alsowith free source
orientation — the effect of conductivity on estimator performance was
even slightly smaller than in the case of constrained source orientation.

Future directions

Our results showed that the value of skull conductivity does not have
a significant role in minimum-norm source estimation if a realistically-
shaped three-shell model is used. Thus, for users of MN estimation, it
does not seem necessary to, for example, try to estimate individual
skull conductivity as suggested in (Chen et al., 2010) or to develop cor-
rection techniques like that reported in (Crevecoeur et al., 2012). Instead,

the next logical step towards understanding the effects of volume con-
ductor model errors on source estimation would be to study the effects
of geometrical errors in the skull model and extend the analysis beyond
the three-layer model by including the skull fine-structure, for both EEG
and MEG. Some studies in that direction for EEG forward problem and
dipole-modeling have already been done, (c.f., Huiskamp et al., 1999;
Dannhauer et al., 2011; Lanfer et al., 2012), but more work is needed
in order to find out, whether the cost and effort of more detailed
modeling is warranted in brain research.
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Fig. A2. Spatial deviation (in centimeters) for EMEG as function of test model conductivity. For further explanation, see the caption of Fig. 3.

Appendix A. Metrics for combined MEG and EEG

Fig. A1. Peak position error PPE (in centimeters) for EMEG with different inverse model conductivities. For further explanation, see the caption of Fig. 3.
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Appendix B. Supplementary data

Supplementary data to this article can be found online at http://
dx.doi.org/10.1016/j.neuroimage.2013.04.086.
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