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a b s t r a c t

This paper considers source excitation strategies in finite difference time domain room acoustics simula-
tions for auralization purposes. We demonstrate that FDTD simulations can be conducted to obtain
impulse responses based on unit impulse excitation, this being the shortest, simplest and most efficiently
implemented signal that might be applied. Single, rather than double, precision accuracy simulations
might be implemented where memory use is critical but the consequence is a remarkably increased noise
floor. Hard source excitation introduces a discontinuity in the simulated acoustic field resulting in a shift
of resonant modes from expected values. Additive sources do not introduce such discontinuities, but
instead result in a broadband offset across the frequency spectrum. Transparent sources address both
of these issues and with unit impulse excitation the calculation of the compensation filters required to
implement transparency is also simplified. However, both transparent and additive source excitation
demonstrate solution growth problems for a bounded space. Any of these approaches might be used if
the consequences are understood and compensated for, however, for room acoustics simulation the hard
source is the least favorable due to the fundamental changes it imparts on the underlying geometry.
These methods are further tested through the implementation of a directional sound source based on
multiple omnidirectional point sources.
� 2014 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://

creativecommons.org/licenses/by/3.0/).

1. Introduction

The finite difference time domain method (FDTD) is a discrete
spatio-temporal numerical simulation method that has been
shown as being appropriate for modeling acoustic wave propaga-
tion in an enclosed system [1,2,3]. Recent developments in fre-
quency dependent absorbing and diffusing boundaries [4,5] offer
the potential for a more complete approach to room acoustics sim-
ulation. However, full audio bandwidth simulations for even a
small room of any acoustic interest are very demanding in terms
of both computation time and required memory, and so these tech-
niques are often best used for low-frequency simulation only. The
consequence of these computational requirements being that work
in this area has usually relied on offline computation of the im-
pulse response (IR) for a given space and source/receiver combina-
tion. This IR can then readily be used in a real-time audio
convolution scheme suitable for auralization purposes. In addition,

these results can be applied to any type of room acoustic analysis
that is based on deriving parameters from a suitable IR, including
computation of typical room acoustic metrics, such as reverbera-
tion time (T30), or clarity (C50=80). However, for some other pur-
poses, such as visualization of the sound field, calculation of the
whole field based on some form of smoothed excitation signal ap-
plied over a longer duration might be a more suitable approach.

Generally, in such room acoustic simulations, a sound source is
considered as a time-varying pressure signal applied to a single
point on the FDTD grid. A receiver is defined as any other grid point
where the numerical response to this source signal is measured,
and for auralization purposes, receivers may be grouped individu-
ally (mono), as a pair (stereo), or as an array of points (multi-chan-
nel surround-sound). In this way, the signal observed at the
receiver is analogous to a measurement microphone that acts as
a scalar sensor of sound pressure. Based on this concept, in order
to obtain an IR, the sound source should ideally propagate omnid-
irectionally and demonstrate a flat frequency response over a de-
fined bandwidth. To this end, different source signals have been
proposed in the literature enabling appropriate control over this
required bandwidth (see e.g. [6,7]), with single-point source direc-
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tionality dependent on the propagation characteristics of the FDTD
grid itself. Typically however, although usually defined in terms of
sound pressure, the discrete-time excitation signal itself can take
any form such that it is sampled commensurate with the sampling
rate of the FDTD grid used (see e.g. [8]).

The application and implementation of such a defined pressure-
like signal has been characterized in [10], either as a hard source,
additive source, also known as a soft source [11], or transparent
source. Each of these source types, hard, soft and transparent, differ
in terms of their relative advantages and disadvantages. With a
hard source, the pressure at the source grid point is determined
by the driving excitation function alone, ideally coupling the signal
into the grid, making them the simplest and easiest to implement.
However, in doing this they disregard the underlying grid function,
and for certain signals, this discontinuity between source function
and grid function results in large, low frequency pressure ripples
that can be observed at all other grid points [11]. In addition to
having little correlation with actual physical sound sources, hard
sources also act as signal scatterers for any incident wave. As a con-
sequence they become a discontinuity or perturbation in the med-
ium, or can be considered as a sound radiating, perfectly reflecting
boundary node with a size corresponding to the spatial sampling
interval [6].

With a soft source, the driving excitation function is added
(hence also additive source) to the numerical pressure value at
the source grid point. The implementation is no more difficult
than with a hard source, with the added advantage of no pertur-
bation being added to the problem domain, and hence no addi-
tional numerical artefacts or reflected components. In this case,
the disadvantage is that the pressure function at the source grid
point no longer resembles the applied excitation function. Ide-
ally, as recommended in [11], the response should be measured
at the source grid point and used to normalize the output at
other grid points, with the suggestion that this is the reason
why soft source excitation has not been extensively used in the
acoustics literature. In addition, soft sources exhibit solution
growth due to source–boundary interaction effects [6], requiring
further pre-or post-simulation conditioning to obtain a useful IR,
e.g. differentiation of the original pressure-based signal [6], or
pre-filtering [8].

A transparent source, as defined in [10] is one that propagates
the same signal as a hard source, but does not act as a signal scat-
terer (it is transparent to an incident wave). It therefore offers the
benefits of a hard source in terms of how it couples the excitation
signal into grid, but does not result in a perturbation in the prob-
lem domain. The disadvantage with such a source being that a
compensation filter, required to remove the effect of the fixed grid
point, must be computed prior to simulation, and that the excita-
tion function itself becomes more complex – and computationally
demanding – to implement.

This paper contains several practical results that affect how
FDTD simulations should be conducted with a special emphasis
on these three excitation types. We also note that these different
source models have different physical interpretations (see e.g.
[6,7]) with different practical consequences as a result, and it is this
latter point that is the focus of this paper. First, we demonstrate
that a unit impulse is sufficient and good choice for an excitation
signal, especially with double precision accuracy (Section 2). Sim-
ilarly, we show by numerical examples that a hard source intro-
duces error in detected modes, soft sources cause an offset in the
received level, while a transparent source performs without these
artefacts, thus making it an attractive choice (Section 3). Finally,
we demonstrate that hard sources have serious problems if they
are to be used to create directive sources, instead, soft and trans-
parent sources behave in an ideal manner and reproduce the direc-
tivity patterns as expected (Section 4).

2. The finite difference time domain method in room acoustics
simulation

There are basically two different FDTD formulations applied in
room acoustic simulation: the vector wave equation based model
that considers both sound pressure and particle velocity [11],
and the scalar wave equation based model that uses only sound
pressure [5]. However, they are equivalent in terms of the results
they produce, and in this work we use the scalar wave equation
model as it is computationally more efficient [9]. The following de-
scribes this FDTD method for the 3-D acoustic wave equation:

pnþ1
i;j;k ¼ k2 pn

iþ1;j;k þ pn
i�1;j;k þ pn

i;jþ1;k þ pn
i;j�1;k þ pn

i;j;kþ1 þ pn
i;j;k�1

� �
þ 3ð1� 3k2Þpn

i;j;k � pn�1
i;j;k ð1Þ

The 2-D case is given by:

pnþ1
i;j ¼ k2 pn

iþ1;j þ pn
i�1;j þ pn

i;jþ1 þ pn
i;j�1

� �
þ 2ð1� 2k2Þpn

i;j � pn�1
i;j ð2Þ

where i; j and k denote spatial indices, pn is the pressure value at
time-step n and k is the Courant number, which is usually set to
the limiting value such that for the 3-D case k ¼ 1ffiffi

3
p , and for the 2-

D case k ¼ 1ffiffi
2
p thereby simplifying the above expressions further.

This approach results in a rectilinear spatio-temporal sampling of
connected nodes across the problem space. Boundary conditions
are dealt with separately, and can be defined with parameters that
determine both frequency dependent absorption [4] and diffusion
characteristics [5]. The grid sampling rate fupdate is related to the spa-
tial sampling distance d according to fupdate ¼ c

ffiffi
k
p

d where c is the
speed of sound.

It is worth noting that this simple scheme suffers from direction
dependent dispersion error, the effects of which can be improved
upon by using more advanced schemes with a larger stencil
[12,13]. However, we consider this scheme general enough to be
applied here with any exceptions to this assumption explicitly
noted in the text.

3. Source excitation

A number of methods for applying source excitation have been
explored in FDTD and related literature for room acoustics simula-
tion. The aim of any such simulation is to obtain the impulse re-
sponse hðnÞ of the system consisting of a (generally) enclosed
geometry together with a given source/receiver combination and
hence the unit impulse is the ideal source excitation input.

3.1. Choice of source signal and finite precision variable considerations

In real room acoustic measurement a specific analytic excita-
tion signal is used to obtain the impulse response of the space gi-
ven that a perfect impulse cannot be applied. In FDTD simulations
a similar approach is adopted through the use of an appropriate
time varying source function (see e.g. [11] for a recent summary)
noting that for non-impulse like excitation, the time varying input
signal should also be deconvolved from the output to obtain the
impulse response. Given that the FDTD equations are linear and
time-invariant, as are the three given source types, it is therefore
possible to use convolution to obtain the output for any given in-
put signal based only on the measured impulse response. The
advantage here being that the unit impulse is the simplest to apply
and also the shortest – and hence most efficient in terms of reduc-
ing overall simulation run-time, especially when compared to
using longer form analytical signals (e.g. exponential sine sweep
as commonly used in room acoustic measurement) or direct exci-
tation with an anechoic audio signal. If some other excitation is re-
quired, it can be applied post simulation by convolving the desired
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excitation signal with the obtained impulse response. By way of
example, Fig. 1a shows a waterfall plot of one simulation, where
a Hanning windowed 9-cycle sine wave excitation at 500 Hz was
applied to a 2-D FDTD grid having fupdate = 44,100 Hz, resulting in
a 1000 sample output. The waterfall plots have been produced
using a 2048-point FFT and a sliding 128-point Hamming window
with an overlap value of 0.75. The receiver was located 2 m away
from the sound source in the diagonal direction with respect to
the grid, along which numerical dispersion effects are minimized
for the direct sound path considered in this example relative to
other wave propagation directions. This test case was compared
to a simulation in which the 1000-point impulse response was
computed first and then convolved with the 500 Hz sine wave ap-
plied in the first test. The difference between these two is illus-
trated in Fig. 1b. The observed difference is minimal and caused

by the effects of finite precision accuracy. The same result can be
found at all frequencies and for all source types (hard, soft,
transparent).

Finite precision numerical effects become a more critical factor
when using single-precision floating-point numbers for storing and
calculating pressure values pn as might be typical with an FDTD
GPU based implementation, see e.g. [14–17]. The example in
Fig. 1a was carried out with double-precision accuracy and the
same test is repeated at single-precision. Fig. 1c shows the differ-
ence between direct simulation and simulation via convolution
as before, but now based on results obtained using single-precision
accuracy. As can be seen, there is a significant increase in the over-
all noise level (of the order of 60 dB peak values), as would be ex-
pected, due to the reduced dynamic range of the system. The useful
signal-to-noise ratio remains of the order of 90 dB. The implication
being that single-precision accuracy should be avoided where pos-
sible but with double-precision accuracy an impulse excitation is
sufficient for any purpose, and in particular for convolution based
auralization where the effects of an increased noise floor level can
become audible.

3.2. Source type

Consider the 3-D case, with k ¼ 1ffiffi
3
p , noting that the 2-D case fol-

lows trivially. Let pn
in be defined as an arbitrary input signal at time-

step n applied at grid point ðu;v ;wÞ. Then (1) is redefined at this
point for each source type as follows:

pnþ1
ðu;v;wÞ;hard ¼ pnþ1

in ð3Þ

pnþ1
ðu;v;wÞ;soft ¼

1
3

pn
uþ1;v;w þ pn

u�1;v;w þ pn
u;vþ1;w þ pn

u;v�1;w

�
þ pn

u;v;wþ1 þ pn
u;v ;w�1

�
� pn�1

u;v;w þ pnþ1
in ð4Þ

where pnþ1
ðu;v;1Þ;hard and pnþ1

ðu;v;wÞ;soft are respectively the new grid update
equations for a hard or soft source excitation at grid point ðu;v ;wÞ.
Hence (3) is simply the input function applied directly at this point,
replacing the standard update Eq. (1), and (4) is the input function
superimposed or added to the standard update Eq. (1). However,
the update equation for a transparent source pnþ1

ðu;v;wÞ;trans is less obvi-
ous, as follows:

pnþ1
ðu;v;wÞ;trans ¼

1
3

pn
uþ1;v;w þ pn

u�1;v;w þ pn
u;vþ1;w þ pn

u;v�1;w þ pn
u;v;wþ1

�

þ pn
u;v;w�1

�
� pn�1

u;v ;w þ pnþ1
in �

Xn

t¼0

hn�tþ1
3D pt

in ð5Þ

where, in this case, hn
3D is defined as the impulse response of the 3-D

FDTD mesh at the point of excitation, when the input is applied as a
hard source such that:

pn
in ¼

1 for n ¼ 0
0 for n – 0

�
ð6Þ

A transparent source therefore subtracts the value of the convolu-
tion of the input signal pn

in and the mesh impulse response hn
3D=2D

from the source grid point. This ensures that the value of the exci-
tation function applied at the source point is equivalent to a directly
applied hard source but with the additional reflections that result in
this particular situation effectively canceled out. Note that this for-
mulation of transparent source excitation is a modification of that
considered in [10], this being for the scalar, single variable FDTD
implementation of the wave equation, as commonly used in room
acoustics simulation problems. Note also that this method of trans-
parent source excitation can also be used for other FDTD stencils/
implementations with an appropriate reformulation of (5) and cal-
culation of the grid specific compensation signal hn

3D.

Fig. 1. Time–frequency observations of directly applied signal excitation compared
with impulse response measurement and convolution (a) Hanning windowed
500 Hz 9-cycle sine wave excitation applied to a 2-D FDTD grid measured 2 m from
the excitation point in the diagonal direction; (b) the difference between the
example shown in (a) and the same case obtained via impulse response measure-
ment and convolution; (c) the same result obtained using single- rather than
double-precision accuracy calculations.
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3.3. Obtaining the compensation signal

The mesh impulse response, hn
3D=2D, at the point of excitation can

be obtained in a number of ways. A hard source excitation is ap-
plied as in (3) such that pn

in is defined as in (6). For a source applied
at 3-D grid point ðu;v ;wÞ hn

3D is therefore obtained as follows:

hn
3D ¼

1
3

pn�1
uþ1;v;w þ pn�1

u�1;v;w þ pn�1
u;vþ1;w þ pn�1

u;v�1;w þ pn�1
u;v;wþ1 þ pn�1

u;v ;w�1

� �
� pn�2

u;v;w

ð7Þ

Hence hn
3D is the measured output at the point of excitation, defined

as a hard impulsive source, using the standard update Eq. (1) only –
note that the excitation function is decoupled from the FDTD grid as
the measured output at this point has no influence on the input. The
input is defined only by the unit impulse excitation function [10].

The most straightforward method of obtaining hn
3D is to define a

grid geometry sufficiently large to ensure there are no reflected
components incident on the excitation point ðu;v ;wÞ, and such
that n is greater than the length of the room impulse response re-
quired from any subsequent simulation. Although this may be
problematic to compute for sufficient n, especially for the 3-D case,
it only has to be done once and hn

3D=2D can then be stored for use in
any simulation where the length of the required IR in samples is
less than n. If it is not possible to obtain hn

3D=2D for values of n where
the large geometry required prohibits efficient implementation,
symmetry in 2-D or 3-D can be exploited to compute hn

3D=2D over
a much reduced grid size [10]. For instance, a 2-D square grid
has four axes of symmetry and the entire grid can be simulated
by computing only the grid points bounded by the triangle formed
by Cartesian axes, y ¼ 0; x ¼ y; x ¼ n=2, such that the entire mesh
is of dimension ðn; nÞ, with ðu;v;wÞ located at the center point ori-
gin of this grid coordinate system. This reduces the required com-
putational domain to 1=8 of the total grid size. The rotational
symmetry of a 3-D cube can be exploited similarly to reduce the
required computational domain to 1=24 of the total grid size. Both
offer significant savings in memory and computation time allowing
much longer compensation signals to be computed with even
modest computing power.

For sufficiently large n it is also possible to approximate hn
3D=2D,

as it slowly tends to zero. Alternatively, an analytical solution that
might be used for obtaining hn

2D has been presented [18]. Fig. 2a
illustrates the first part of hn

2D calculated up to n ¼ 5100 timesteps
using a 5100 � 5100 rectilinear grid. In the 3-D case hn

3D has been
calculated up to n ¼ 1000 timesteps, and is shown for up to
n ¼ 100 in Fig. 2c. Note that hn

3D converges more rapidly to zero
than hn

2D, justifying the shorter calculation length.

4. Comparison of source excitation methods

Three test cases are used to explore the practical application of
hard, soft and transparent unit impulse source excitation. The first
considers a simple bounded 3-D geometry and presents the im-
pulse responses obtained under each excitation. The second case
considers the modal frequencies that emerge in a 2-D bounded
structure, and the third applies these techniques in a typical aural-
ization application, where it is required to simulate the character-
istics of a directional source.

4.1. Impulse responses obtained from simulation

This test case is designed to obtain and evaluate the impulse re-
sponses obtained under hard, soft and transparent unit impulse
source excitation for a typical bounded space. The space in ques-
tion is a cuboid room of dimension 3 � 5 � 2 m. The source is
placed at (0.9, 0.9, 0.9) and the receiver pout at (2.1, 4.1, 1.1), the
opposite corner through the elevated diagonal. fupdate ¼ 30 kHz,
and all boundaries are set to be almost totally reflecting with
reflection coefficient r ¼ 0:999. The simulations are run for
60,000 timesteps, sufficient to obtain 2 s impulse responses and
the results are presented in Figs. 3 and 4.

Fig. 3a–c show the impulse responses pout;hard; pout;soft and
pout;transparent respectively with their corresponding frequency re-
sponse plots. Note that in each case the gray plot is the raw output
from the simulation, and the black plot is the same data filtered for
DC. Both soft and transparent sources demonstrate an increasing
DC-offset at the output, as expected given the nature of their exci-
tation and the discussion presented in Section 1.

Fig. 4a and b plot the differences pout;transparent � pout;hard and
pout;transparent � pout;soft respectively with their corresponding fre-
quency response plots. In these examples the data has already
been filtered for DC. It can be observed that the soft source excita-
tion adds a broadband offset to the overall response that is not
present in the hard or transparent source cases.

4.2. Modal analysis

Transparent source excitation is stated as being the optimal
method of obtaining the system response to a given excitation
without introducing numerical artefacts caused by hard or soft ap-
proaches [10,11]. In particular [10] explored how transparent exci-
tation removes the additional reflected components caused by
wavefronts incident on a hard source position that has been imple-
mented by fixing a grid point to a specific value. This issue poten-
tially becomes more critical in a bounded geometry, as used in a
typical room simulation, where there are many reflections that re-
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Fig. 2. Transparent source compensation signals: (a) hn
2D calculated up to n ¼ 5100 timesteps; (b) a close up of the first 100 timesteps, noting that only every fourth sample is

non-zero and that the signal rapidly converges to zero even after 100 timesteps; (c) hn
3D calculated up to n ¼ 1000 and shown for n ¼ 100 timesteps, noting that only every

second sample is non-zero and that the signal converges more rapidly to zero than the 2-D case.

D.T. Murphy et al. / Applied Acoustics 82 (2014) 6–14 9



sult in a complex and diffuse soundfield. The following test ex-
plores the implication of these source excitation methods on the
modal frequencies observed from the associated impulse response.

A 5 � 5 m 2-D space is defined with the source initially located
at (0.5, 2.0) and receivers at (3.0, 4.5), (3.5, 4.0), (4.0, 3.5), and (4.5,
3.0), using a rectilinear grid with coordinate origin located at the
bottom left hand corner such that fupdate = 44,100 Hz. Boundaries
are set to be totally reflecting and an IR is obtained at the receiver

points under soft, hard and transparent source excitation. The
magnitude response of each is obtained via an FFT, normalized
with respect to the largest peak obtained across all three measure-
ments and the results up to 160 Hz (for clarity) are presented in
Fig. 5a for output point (4.5, 3.0). Noting that the magnitude re-
sponse is only considered up to 160 Hz, and that fupdate = 44,100 Hz,
dispersion error effects can be discounted in the results which fol-
low. Note also that the input and output points all lie along the

(a)

(b)

(c)

Fig. 3. Simulation results obtained from a 3 � 5 � 2 m room with almost totally reflecting boundaries. (a) Impulse response (left) and frequency response (right) under hard
source excitation; (b) impulse response and frequency response under soft source excitation; (c) impulse response and frequency response under transparent source
excitation. In each case the gray plot represents the raw output from the simulation with the black plot showing the same after filtering for DC.

(a)

(b)

Fig. 4. (a) The difference between impulse responses obtained under transparent and hard source excitation (left) and the corresponding frequency response (right). (b) The
difference between impulse responses obtained under transparent and soft source excitation (left) and the corresponding frequency response (right), noting the offset that
has been added due to the soft source case. DC removal has been applied in all results presented.
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closed square path aligned with the grid diagonals associated with
the wavevectors that will result in the modal series fðx;yÞ as defined
by:

fðx;yÞ ¼
c
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x
Lx

� �2

þ y
Ly

� �2
s

ð8Þ

where in this case Lx ¼ Ly ¼ 5 m. The first eight individually identi-
fiable analytical modes for a 2-D space of this particular geometry
are also obtained using (8) and are plotted as vertical lines overlaid
on the frequency response plot. For clarity, the peak values and rel-
ative magnitude values are presented in Table 1.

From the example shown it is evident that hard source excita-
tion (black solid line) does not give an exact correlation with the
analytical modal frequencies as the soft and transparent source
excitation cases do. Note that changing the receiver position does
not influence the resulting frequency shift, rather, as might be ex-
pected, it changes the relative amplitudes of the resonant peaks.
However, changing the source position does vary the output con-
siderably, and this is demonstrated in Fig. 5b where the input posi-
tion has been changed to (1.5, 2.0) and output point is maintained
at (4.5, 3.0). In this case there is a significant shift in the frequency
of the first two resonant modes (of the order of 4%), but this rela-
tive shift is not evident for the other modal frequencies presented.

This shows that the fixed grid point introduced when imple-
menting hard source excitation not only introduces additional
reflections, as identified in [10], but is also now evident as a pertur-
bation in the resulting simulated acoustic field. The consequence is
that a new set of perfectly reflecting boundary conditions are intro-
duced in the neighborhood of the fixed point, determined by the

spatial sampling interval, such that the original conditions, and
hence solutions, for the otherwise empty space no longer hold in
this region [20]. This results in frequency shifting of expected res-
onant modes. Such shifts have also been identified when single,
small rigid obstacles that result in volume exclusion and wave
scattering effects have been introduced into real-world rectangular
acoustic chambers [19].

Soft and transparent source excitations give equivalent results
in terms of frequency, that are in agreement with the analytical
case, but not in terms of relative amplitude. The soft source results
in a broadband offset in both 2-D and 3-D simulation, as already

Table 1
The first five predicted modal frequencies for a 5 � 5 m 2-D space with receiver
located at (4.5, 3.0) and source at (a) (0.5, 2.0) and (b) (1.5, 2.0), with measured peak
frequency values in Hz and relative magnitudes in dB, for hard, soft and transparent
source excitation.

Predicted mode (a) (b)

Hard Soft Trans Hard Soft Trans

48.5 Hz 49.1 48.8 48.8 51.5 48.8 48.8
(dB) �17.5 �11.7 �18.1 �10.6 �4.4 �10.8

76.7 Hz 78.1 77.1 77.1 80.4 77.1 77.1
(dB) �9.4 �3.6 �9.4 �5.5 0.0 �5.8

97.0 Hz 97.9 97.2 97.2 98.3 97.2 97.2
(dB) �22.7 �14.8 �20.3 �18.8 �11.7 �17.2

108.5 Hz 110.4 108.7 108.7 109.7 108.7 108.7
(dB) �7.1 �1.6 �6.9 �13.0 �8.7 �14.0

123.7 Hz 124.8 124.2 124.2 124.8 124.2 124.2
(dB) �14.7 �7.6 �12.7 �16.0 �10.7 �15.8

(a)

(b)

Fig. 5. The modal response of a 2-D 5 � 5 m rectilinear grid under hard (black solid line), soft (gray solid line) and transparent (black dashed line) source excitation. Overlaid
are the first eight analytical modes. (a) Input point (0.5, 2.0), output point (4.5, 3.0); (b) input point (1.5, 2.0), output point (4.5, 3.0). Note that with the hard source, the fixed
grid point results in a shifting of the expected resonant frequencies, dependent on input position, whereas there is agreement in terms of frequency for both soft and
transparent cases.
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observed in Section 4.1, and highlighted again for the 3-D case
shown in Fig. 6.

In this example, a 13.46 � 13.46 � 13.46 m cubic rectilinear
grid with fupdate = 44,100 Hz, and boundaries set to be totally
reflecting is defined. A source is located at the center of the grid
and direct-sound only IRs obtained for distances along the 3-D
diagonal axis such that dispersion error effects can be negated.
For each source-receiver pairing a 1000 point impulse response is

obtained (so that the effect of reflections from either the boundary
or the hard source can be ignored) under hard, soft and transparent
source excitation. Fig. 6 shows the waterfall plot of the absolute
magnitude difference between the impulse response obtained un-
der transparent and soft source excitation for the receiver at 2 m
distance. Note that there is an overall magnitude error offset in
the region of 4 dB across all frequencies after the initial wavefront
has passed through the receiver point. The peaks in the response
are due to the limits of numerical accuracy when performing the
difference operation between the time–frequency responses for
the individual IRs. When examining the difference between the
transparent and hard source excitation, complete cancellation is
observed verifying that the excitation methods are equivalent for
this test case.

4.3. Directional source excitation

Room acoustics simulation often requires the synthesis of a
directional source to simulate examples of typical real world sound
sources. The excitation signals considered so far in this paper, due
to the fact that they are applied at a single grid point only, have
theoretically omnidirectional source behavior, limited only by the
wave propagation characteristics of the FDTD grid. A number of
methods have been proposed in the literature to simulate the
directional characteristics of a particular radiating object (see e.g.
[21,22]) but the approach considered here is that presented
in [23]. This method allows simple first-order microphone-like

Fig. 6. Time–frequency plot of the absolute magnitude difference obtained from
soft and transparent excitation under the same conditions. The soft source leads to
an offset of about 4 dB across the whole spectrum for the remainder of the response
after the initial wavefront has passed through the receiver point.

(a) (b)

(c)

Fig. 7. Normalized 1 kHz octave bandwidth polar directivity plot, at 0.4 m from a directional source obtained from two delayed and weighted monopole omnidirectional
point source excitations. The solid black and gray lines are the results obtained for the soft and transparent source cases respectively, both of which have the required cardioid
directivity pattern. The dashed dark gray line is that obtained from the hard source excitation case. (a) Polar plot obtained from excitation points separated by two grid
spacings, (b) four grid spacings and (c) six grid spacings.
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directivity to be simulated through the use of two time-delayed,
weighted and summed omnidirectional point sources. Note that
all of these methods rely on correct wave interference effects to ob-
tain the desired directional wavefront.

Two monopole sources of opposite polarity are defined in the
center of a 2-D 2000 � 2000 point rectilinear grid, with
fupdate ¼ 352;800 Hz (to ensure dispersion error is minimized in
the obtained directional plots). The boundaries do not contribute
to the IR at the given measurement locations and so can be consid-
ered as totally absorbing. A cardioid source directivity pattern is re-
quired in this test case, which can be obtained by defining an
appropriate fractional delay between the two excitation times
according to the method used in [23].

Three tests are carried out with different spacings between the
two excitation points, to ensure that the results are not influenced
by the effective sampling density of the FDTD grid. These corre-
spond to two grid spacings (the excitation points are separated
by one grid point), four grid spacings (points are separated by three
grid points) and six grid spacings (five grid points). Hence the time
delays are 2.8284 samples, 5.6568 samples and 8.4852 samples
respectively. An even number of grid spacings is used in each case
so that the directional source can be located and defined by a sin-
gle, central grid point. An array of 180 receivers is defined at a ra-
dial distance of 0.4 m (291 axial grid points) away from the central
grid location between the two sources and the direct sound from
the source is captured at each and windowed appropriately. This
source directivity test is repeated for hard, soft and transparent
source excitation, and the resulting polar directivity plot for the oc-
tave bandwidth centered at 1 kHz is obtained as shown in Fig. 7.

Note that from Fig. 7, the hard source excitation (dashed dark
gray line) does not result in the required cardioid directivity plot
in any of the three grid spacing cases used, but there is good agree-
ment between transparent (solid gray line) and soft (solid black
line) sources in all examples. This implies that the increased spac-
ing between excitation points – or equivalently, a less dense grid –
has no influence on the phase cancellation required to obtain the
desired directivity and is related only to the nature of the source
excitation. By increasing the grid spacing further the polar re-
sponse obtained tends more towards the directivity characteristics
of two omnidirectional sources, noting also that this method for
obtaining a directional source is dependent as much as is possible
on the coincident nature of the two excitation points.

Note further that the results obtained across excitation type are
not dependent on frequency, and this is in part illustrated here by
considering the 1 kHz octave band, rather than considering results
at a single frequency. This directional source technique is however
limited by dispersion error at high frequencies, and excitation
point separation at low frequencies [23]. The transparent and soft
source cases are consistently accurate across the whole frequency
bandwidth considered and presented in these results, and in fact
the transparent source case gives slightly better cancellation at
the 180� null point of the cardioid response. Ideal cancellation is
noted for single frequency values when the transparent case has
been considered previously [23].

5. Conclusions

This paper has discussed issues relating to source excitation in
2-D and 3-D FDTD room acoustics simulation, especially when con-
sidering impulse response measurement at single or across multi-
ple grid points for the purposes of auralization. In particular the
use of hard, soft and transparent source excitation have been con-
sidered. It has been shown that double precision calculation is a
key factor in miminizing finite precision numerical effects when
obtaining an IR for convolution with an arbitrary audio input and

important for maintaining a sufficiently low noise floor. This might
be a limiting factor for certain implementations where memory
use is more critical (e.g. large, and/or real-time simulations with
direct application of an input signal on a GPU),

Unit impulse excitation is the shortest possible signal that can
be applied as an input, with the advantage being that no further
pre-conditioning for particular circumstances or requirements is
required. Any such filtering that might be needed can therefore
be carried out on the IR signal obtained as the output from the sys-
tem post-simulation. Unit impulse excitation also helps to mini-
mize total computation time, noting also that the use of finite
duration pulse-like signals (e.g. Gaussian, Ricker-wavelet) does
not increase total computation time significantly compared with
other factors such as increased spatial sampling or the problem do-
main size. In addition, application of a unit impulse also makes it
easier to obtain and apply the compensation signal hn

2D=3D required
to implement a transparent source. These compensation signals
have been defined and presented for the particular scheme used
in this paper, noting that this approach can be generalized to any
other scheme as required.

Although it has been shown in previous work that fixed grid
points, as used with hard source excitation, can result in additional
reflections being added to the overall result, this paper has raised
the additional issue of frequency shifts in the observed modal re-
sponse due to the perturbation in the simulated acoustic field
introduced by the hard source. The transparent source has been
verified as demonstrating the benefits of the hard source excita-
tion, in that it correctly couples the excitation signal to the grid
without the introduction of additional reflections or modal shift-
ing. Furthermore it offers improvements over soft source excitation
in that it does not result in an additional broadband offset in the
obtained IRs. The use of unit impulse excitation implies that
post-simulation filtering can easily condition the IR for particular
situations, for instance to remove the effects of the solution growth
problem as demonstrated in some of the examples presented,
assuming that the numerical ceiling has not been reached that
would otherwise result in clipping of the output signal. Finally, a
simple directional source model has been implemented that is
dependent on transparent excitation given that it relies on accu-
rately timed wave interference effects obtained via two time-de-
layed, weighted and summed omnidirectional point sources.

Ultimately, the final choice of excitation signal will be depen-
dent on the application, and post-filtering might not always be
desirable or optimal. For instance, if there are many receiver
points, pre-filtering the unit impulse excitation to remove DC will
deal with the solution growth problem and still deliver an output
demonstrating a flat frequency response over the required audio
bandwidth, removing the need for individual post-processing of
each output signal. However, with multiple source points, as used
here in the directional source model, and fewer receivers, post-pro-
cessing would be the best choice. IR convolution with an arbitrary
audio signal will also effectively remove the DC component, but
windowing might be required to remove any truncation artefacts.
In the best case scenario, no filtering should have to be applied
either before or after simulation, with the IR obtained being the
true system response appropriate for auralization or further analy-
sis. It is with this goal in mind that this paper has explored some of
the practical issues around source excitation and obtaining IRs in
FDTD based room acoustics simulation. Again it is noted that each
of these source models have different physical interpretations, and
as a consequence, demonstrate different characteristics. Any of
them might be used, if the consequences are well understood,
and taken account of as appropriate. However, for room acoustics
simulation the hard source is the least favorable, despite its rela-
tive simplicity, due to the fundamental changes it imparts on
the underlying geometry. Future work will develop further this
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transparent excitation directional source approach with a view to
implementing arbitrary sound source directivities.
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