
This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail.

Powered by TCPDF (www.tcpdf.org)

This material is protected by copyright and other intellectual property rights, and duplication or sale of all or
part of any of the repository collections is not permitted, except that material may be duplicated by you for
your research use or educational purposes in electronic or print form. You must obtain permission for any
other use. Electronic or print copies may not be offered, whether for sale or otherwise to anyone who is not
an authorised user.

Laukkanen, Eero; Itkonen, Juha; Lassenius, Casper
Problems, Causes and Solutions When Adopting Continuous Delivery - A Systematic
Literature Review

Published in:
Information and Software Technology

DOI:
10.1016/j.infsof.2016.10.001

Published: 01/02/2017

Document Version
Publisher's PDF, also known as Version of record

Published under the following license:
CC BY

Please cite the original version:
Laukkanen, E., Itkonen, J., & Lassenius, C. (2017). Problems, Causes and Solutions When Adopting
Continuous Delivery - A Systematic Literature Review. Information and Software Technology, 82, 55-79.
https://doi.org/10.1016/j.infsof.2016.10.001

https://doi.org/10.1016/j.infsof.2016.10.001
https://doi.org/10.1016/j.infsof.2016.10.001

Information and Software Technology 82 (2017) 55–79

Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier.com/locate/infsof

Problems, causes and solutions when adopting continuous delivery—A

systematic literature review

Eero Laukkanen

a , ∗, Juha Itkonen

a , Casper Lassenius b , a

a Department of Computer Science, PO Box 15400, FI-00076 AALTO, Finland
b Massachusetts Institute of Technology, Sloan School of Management, USA

a r t i c l e i n f o

Article history:

Received 2 December 2015

Revised 11 October 2016

Accepted 11 October 2016

Available online 12 October 2016

Keywords:

Continuous integration

Continuous delivery

Continuous deployment

Systematic literature review

a b s t r a c t

Context: Continuous delivery is a software development discipline in which software is always kept re-

leasable. The literature contains instructions on how to adopt continuous delivery, but the adoption has

been challenging in practice.

Objective: In this study, a systematic literature review is conducted to survey the faced problems when

adopting continuous delivery. In addition, we identify causes for and solutions to the problems.

Method: By searching five major bibliographic databases, we identified 293 articles related to continuous

delivery. We selected 30 of them for further analysis based on them containing empirical evidence of

adoption of continuous delivery, and focus on practice instead of only tooling. We analyzed the selected

articles qualitatively and extracted problems, causes and solutions. The problems and solutions were the-

matically synthesized into seven themes: build design, system design, integration, testing, release, human

and organizational and resource.

Results: We identified a total of 40 problems, 28 causal relationships and 29 solutions related to adoption

of continuous delivery. Testing and integration problems were reported most often, while the most critical

reported problems were related to testing and system design. Causally, system design and testing were

most connected to other themes. Solutions in the system design, resource and human and organizational

themes had the most significant impact on the other themes. The system design and build design themes

had the least reported solutions.

Conclusions: When adopting continuous delivery, problems related to system design are common, crit-

ical and little studied. The found problems, causes and solutions can be used to solve problems when

adopting continuous delivery in practice.

© 2016 The Authors. Published by Elsevier B.V.

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Continuous delivery (CD) is a software development discipline

in which the software is kept in such a state that in principle, it

could be released to its users at any time [1,2] . Fowler [2] pro-

poses that practicing CD reduces deployment risk, allows believ-

able progress tracking and enables fast user feedback.

While instructions on how to adopt CD have existed for a cou-

ple of years [1] , the industry has not still adopted the practice at

large [3] , and those who have taken steps towards CD have found

it challenging [4,5] . This raises the question whether the industry

is lagging behind the best practices or whether the implementa-

∗ Corresponding author.

E-mail addresses: eero.laukkanen@aalto.fi (E. Laukkanen), juha.itkonen@aalto.fi

(J. Itkonen), casper.lassenius@aalto.fi (C. Lassenius).

tion difficulty is higher and the payoff lower than speculated by

the proponents of CD. In this literature study, we look at problems

in adopting CD, their causes and related solutions. We do not at-

tempt to understand the cost-benefit ratio of CD implementation,

since currently there are not enough primary studies about the

cost-benefit ratio in order to create a meaningful literature study

on the subject.

In this study, we attempt to create a synthesized view of the

literature considering CD adoption problems, causes and solutions.

Our mission is not just to identify different problem concepts, but

also to understand their relationships and root causes, which is re-

flected in the three research questions of the study:

RQ1. What continuous delivery adoption problems have been re-

ported in major bibliographic databases?

http://dx.doi.org/10.1016/j.infsof.2016.10.001

0950-5849/© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.infsof.2016.10.001
http://www.ScienceDirect.com
http://www.elsevier.com/locate/infsof
http://crossmark.crossref.org/dialog/?doi=10.1016/j.infsof.2016.10.001&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:eero.laukkanen@aalto.fi
mailto:juha.itkonen@aalto.fi
mailto:casper.lassenius@aalto.fi
http://dx.doi.org/10.1016/j.infsof.2016.10.001
http://creativecommons.org/licenses/by/4.0/

56 E. Laukkanen et al. / Information and Software Technology 82 (2017) 55–79

RQ2. What causes for the continuous delivery adoption problems

have been reported in major bibliographic databases?

RQ3. What solutions for the continuous delivery adoption prob-

lems have been reported in major bibliographic databases?

Summarizing the literature is valuable for practitioners for

whom the large amount of academic literature from various

sources is not easily accessible. In addition, for research commu-

nity our attempt provides a good starting point for future research

topics.

We believe this study provides an important contribution for

the field, because while CD has been successfully adopted in some

pioneering companies, it is not known how generally applicable

it is. For example, can testing and deployment be automated in

all contexts or is it not feasible in some contexts? Furthermore,

in many contexts where CD has not been applied, there are signs

of problems that CD is proposed to solve. Organizations who are

developing software in contexts other than typical CD adoption

would be eager to know what constraints CD has and would it

be possible to adopt it in their context. We aim to address the

decision-making challenge of whether to adopt CD or not and to

what extent.

To understand the current knowledge about the problems of CD

adoption, we conducted a systematic literature review (SLR). Previ-

ous literature studies have focused on characteristics [6,7] benefits

[7,8] , technical implementations [9] , enablers [6,10] and problems

[6,7] of CD or a related practice. Thus, there has been only two

literature studies that investigated problems, and they studied the

problems of the practice itself, not adoption of the practice. Fur-

thermore, one of the studies was a mapping study instead of an

SLR, and another one focused on rapid releases, the strategy to re-

lease with tight interval, instead of CD, the practice to keep soft-

ware releasable. Therefore, to our knowledge, this is the first SLR

which studies CD adoption problems, their causes and solutions.

This paper is structured as follows. First, we give background

information about CD and investigate the earlier SLRs in Section 2 .

Next, we introduce our research goal and questions, describe our

methodology, and asses the quality of the study in Section 3 . In

Section 4 , we introduce the results, which we further discuss in

Section 5 . Finally, we present our conclusions and ideas for future

work in Section 6 .

2. Background and related work

In this section, we first define the concepts related to the sub-

ject of the study: continuous integration (CI), continuous delivery

(CD) and continuous delivery adoption. CI is introduced before CD,

because it is a predecessor and requirement of CD. After defining

the concepts, we introduce previous literature studies that are re-

lated to the subject.

2.1. Continuous integration

According to Fowler [11] , continuous integration (CI) is a soft-

ware development practice where software is integrated contin-

uously during development. In contrast, some projects have inte-

grated the work of individual developers or teams only after mul-

tiple days, weeks or even months of development. When the in-

tegration is delayed, the possibility and severeness of conflicts be-

tween different lines of work increase.

Good practice of CI requires all developers to integrate their

work to a common code repository on a daily basis [11] . In addi-

tion, after each integration, the system should be built and tested,

to ensure that the system is still functional after each change and

that it is safe for others to build on top of the new changes. Typ-

ically, a CI server is used for tracking new changes from a ver-

sion control system and building and testing the system after each

Fig. 1. The conceptual difference between CI and CD in this study.

change [12] . If the build or tests fail due to a change, the developer

who has made the change is notified about the failure and either

the cause of the failure should be fixed or the change reverted, in

order to keep the software functional.

There exist only a few scientific studies that have investi-

gated how widely CI is practiced in the industry. Ståhl and Bosch

[3] studied the CI practices in five Swedish software organizations

and found that the practices were not really continuous: “activi-

ties are carried out much more infrequently than some observers

might consider to qualify as being continuous”. In addition, Deb-

biche et al. [4] studied a large organization adopting CI and found

multiple challenges. Based on these two studies, it seems that

adopting CI has proven to be difficult, but why it is difficult is not

known at the moment.

2.2. Continuous delivery

Continuous delivery (CD) is a software development discipline

in which software can be released to production at any time [2] .

The discipline is achieved through optimization, automatization

and utilization of the build, deploy, test and release process [1] .

CD extends CI by continuously testing that the software is of

production quality and by requiring that the release process is au-

tomated. The difference between CI and CD is further highlighted

in Fig. 1 where it is shown that while CI consists of only a single

stage, CD consists of multiple stages that verify whether the soft-

ware is in releasable condition. However, one should be aware that

the terms are used differently outside this study. For example, Eck

et al. [10] use the term CI while their definition for it is similar to

the definition of CD in this study.

The proposed benefits of CD are increased visibility, faster feed-

back and empowerment of stakeholders [1] . However, when trying

to adopt CD, organizations have faced numerous challenges [5] . In

this study, we attempt to understand these challenges in depth.

Continuous deployment is an extension to CD in which each

change is built, tested and deployed to production automatically

[13] . Thus, in contrast to CD, there are no manual steps or deci-

sions between a developer commit and a production deployment.

The motivation for automating the deployment to production is to

gain faster feedback from production use to fix defects that would

be otherwise too expensive to detect [13] . One should also note

that continuous delivery and deployment are used as synonyms

outside this study. For example, Rodriguez et al. [7] use the term

continuous deployment while they refer to the practice of contin-

uous delivery, since they do not require automatic deployments to

production. While it would be interesting to study continuous de-

ployment, we did not find any reports of continuous deployment

implementations from the scientific literature. Therefore, we have

chosen to use continuous delivery as a primary concept in this

study.

E. Laukkanen et al. / Information and Software Technology 82 (2017) 55–79 57

Fig. 2. Distinction between problems CD solves, problems preventing CD adoption, problems of CD and benefits of CD.

Table 1

Comparison of previous literature studies and this study.

Study Focus Type Findings

Ståhl and Bosch [8] CI SLR Benefits

Ståhl and Bosch [9] CI SLR Variation points where implementations differ

Eck et al. [10] CD SLR Adoption actions

Mäntylä et al. [6] Rapid releases Semi-systematic literature review Benefits, adoption actions and problems

Rodriguez et al. [7] CD Systematic mapping study Characteristics, benefits and problems

Adams and McIntosh [15] Release engineering Research agenda Characteristics

This study CD SLR Problems preventing adoption, their causes and solutions

2.3. Continuous delivery adoption

We define CD adoption as the set of actions a software develop-

ment organization has to perform in order to adopt CD (see Fig. 2).

The actual set of actions depends on the starting point of the orga-

nization and thus the adoption can be different from case to case.

While some sources provide specific actions that need to be done

during the adoption [1,6,10] , or simplistic sequential models of the

adoption [14] , these models are prescriptive in nature and in real

life the adoption more likely requires iteration and case-specific ac-

tions, as even CI implementations differ among the practitioners

[3] .

To be able to discuss previous literature and the focus of our

study, we have constructed the following concepts related to the

CD adoption:

• Problems CD solves are problems that are not directly related

to CD, but CD is promised to solve them. These include, e.g.,

slow feedback of changes and error-prone releases.
• CD adoption problems are problems that are directly prevent-

ing CD adoption and additional actions need to be done to solve

them. These problems are the focus of this study.
• Adoption actions need to be performed by an organization to

adopt CD.
• Problems of CD are problems that emerge when CD is adopted.
• Benefits of CD are positive effects that are achieved after CD

has been adopted.

The definitive source for CD [1] describes the problems CD

solves, benefits of CD and suggests needed adoption actions. It

briefly mentions problems preventing CD adoption, but there is no

detailed discussion of them. Next, we introduce related academic

literature studies and show that neither they focus on the subject

of this study, the problems preventing CD adoption.

2.4. Previous related literature studies

To our knowledge, there have been six literature studies related

to the subject of this study (Table 1). These studies have reviewed

the characteristics [7,15] , benefits [6–8] , variation in implementa-

tions [9] , adoption actions [6,10] , and problems [6,7] of CD or a

related practice such as CI, rapid releases or release engineering

(Table 2). Rapid releases is a practice of releasing software fre-

quently, so that the time between releases is hours, days or weeks

instead of months [6] . Release engineering means the whole pro-

cess of taking developer code changes to a release [15] . We see CD

as a release engineering practice and as an enabler for hourly or

daily releases, but we do not see it necessary if the time between

releases is measured in weeks. In addition, practicing CD does not

imply releasing rapidly, since one can keep software releasable all

the time but still perform the actual releases more seldom.

The identified characteristics of CD are fast and frequent re-

lease, flexible product design and architecture, continuous test-

ing and quality assurance, automation, configuration manage-

ment, customer involvement, continuous and rapid experimenta-

tion, post-deployment activities, agile and lean and organizational

factors [7] . To avoid stretching the concept of CD and keep our

study focused, we use the definition in the book by Humble and

Farley [1] , which does not include all the factors identified by [7] .

For example, we investigate CD as a development practice where

software is kept releasable, but not necessarily released frequently.

In addition, our definition does not necessarily imply tight cus-

tomer involvement or rapid experimentation. Instead, the focus of

our study is on the continuous testing and quality assurance activi-

ties, especially automated activities. Our view is more properly de-

scribed by the characteristics of release engineering as defined by

Adams and McIntosh: branching and merging, building and testing,

build system, infrastructure-as-code, deployment and release [15] .

Proposed benefits of CI, CD or rapid releases are automated

acceptance and unit tests [8] , improved communication [8] , in-

creased productivity [6–8] , increased project predictability as an

effect of finding problems earlier [6–8] , increased customer satis-

faction [6,7] , shorter time-to-market [6,7] , narrower testing scope

[6,7] and improved release reliability and quality [7] . The claimed

benefits vary depending on the focus of the studies.

Variation in implementations of CI can be in build duration,

build frequency, build triggering, definition of failure and success,

fault duration, fault handling, integration frequency, integration

on broken builds, integration serialization and batching, integra-

tion target, modularization, pre-integration procedure, scope, sta-

tus communication, test separation and testing of new function-

ality [9] . However, the variations listed here are limited only to

the CI systems that automate the activities of building, testing and

58 E. Laukkanen et al. / Information and Software Technology 82 (2017) 55–79

Table 2

Summary of the results from previous literature studies.

Results Results

Benefits Automated acceptance and unit tests [8] , improved communication [8] , increased productivity [6–8] , increased project predictability as an

effect of finding problems earlier [6–8] , increased customer satisfaction [6,7] , shorter time-to-market [6,7] , narrower testing scope [6,7] ,

improved release reliability and quality [7] .

Variation points Build duration, build frequency, build triggering, definition of failure and success, fault duration, fault handling, integration frequency,

integration on broken builds, integration serialization and batching, integration target, modularization, pre-integration procedure, scope,

status communication, test separation, testing of new functionality [9] .

Adoption actions Devising an assimilation path, overcoming initial learning phase, dealing with test failures right away, introducing CD for complex

systems, institutionalizing CD, clarifying division of labor, CD and distributed development, mastering test-driven development,

providing CD with project start, CD assimilation metrics, devising a branching strategy, decreasing test result latency, fostering customer

involvement in testing, extending CD beyond source code [10] . Parallel development of several releases, deployment of agile practices,

automated testing, the involvement of product managers and pro-active customers, efficient build, test and release infrastructure [6] .

Problems Increased technical debt [6] , lower reliability and test coverage [6] , lower customer satisfaction [6,7] , time pressure [6] , transforming

towards CD [7] , increased QA effort [7] , applying CD in the embedded domain [7] .

Characteristics Fast and frequent release, flexible product design and architecture, continuous testing and quality assurance, automation, configuration

management, customer involvement, continuous and rapid experimentation, post-deployment activities, agile and lean, organizational

factors [7] . Branching and merging, building and testing, build system, infrastructure-as-code, deployment and release [15] .

deploying the software. In addition, there should be variations in

the practices how the systems are used, but these variations are

not studied in any literature study. Our focus is not to study the

variations, but we see that because there is variation in the im-

plementations, the problems emerging during the adoption must

vary too between cases. Thus, we cannot assume that the prob-

lems are universally generalizable, but one must investigate them

case-specifically.

CD adoption actions are devising an assimilation path, overcom-

ing initial learning phase, dealing with test failures right away, in-

troducing CD for complex systems, institutionalizing CD, clarifying

division of labor, CD and distributed development, mastering test-

driven development, providing CD with project start, CD assimila-

tion metrics, devising a branching strategy, decreasing test result

latency, fostering customer involvement in testing and extending

CD beyond source code [10] . Rapid releases adoption actions are

parallel development of several releases, deployment of agile prac-

tices, automated testing, the involvement of product managers and

pro-active customers and efficient build, test and release infras-

tructure [6] . The intention in this study is to go step further and

investigate what kind of problems arise when the adoption actions

are attempted to be performed.

Proposed problems of CD or rapid releases are increased techni-

cal debt [6] , lower reliability and test coverage [6] , lower customer

satisfaction [6,7] , time pressure [6] , transforming towards CD [7] ,

increased QA effort [7] and applying CD in the embedded domain

[7] . Interestingly, previous literature studies have found that there

is the benefit of improved reliability and quality, but also the prob-

lem of technical debt, lower reliability and test coverage. Similarly,

they have identified the benefit of automated acceptance and unit

tests and narrower testing scope, but also the problem of increased

QA effort. We do not believe that the differences are caused by

the different focus of the literature studies. Instead, we see that

since the benefits and problems seem to contradict each other,

they must be case specific and not generalizable. In this study, we

do not investigate the problems of the CD practice itself, but we fo-

cus on the problems that emerge when CD is adopted. One should

not think these problems as general causal necessities, but instead

instances of problems that may be present in other adoptions or

not.

As a summary, previous literature studies have identified what

CD [7] and release engineering [15] are, verified the benefits of CD

[7] , CI [8] and rapid releases [6] , discovered differences in the im-

plementations of CI [9] , understood what is required to adopt CD

[10] and rapid releases [6] and identified problems of practicing

CD [7] and rapid releases [6] (see Table 2). However, none of the

previous studies has investigated why the adoption effort s of CD

are failing in the industry. One of the studies acknowledged the

problem with the adoption [7] , but did not investigate it further,

as it was a systematic mapping study. At the same time there is

increasing evidence that many organizations have not adopted CD

yet [3] . To address this gap in the previous literature studies, we

have executed this study.

3. Methodology

In this section, we present our research goal and questions,

search strategy, filtering strategy, data extraction and synthesis and

study evaluation methods. In addition, we present the selected ar-

ticles used as data sources and discuss their quality assessment.

3.1. Research goal and questions

The goal of this paper is to investigate what is reported in the

major bibliographic databases about the problems that prevent or

hinder CD adoption and how the problems can be solved. Previous

software engineering research indicates that understanding com-

plex problems requires identifying underlying causes and their re-

lationships [16] . Thus, in order to study CD adoption problems, we

need to study their causes too. This is reflected in the three re-

search questions of this paper:

RQ1. What continuous delivery adoption problems have been re-

ported in major bibliographic databases?

RQ2. What causes for the continuous delivery adoption problems

have been reported in major bibliographic databases?

RQ3. What solutions for the continuous delivery adoption prob-

lems have been reported in major bibliographic databases?

We answer the research questions using a systematic literature

review of empirical studies of adoption and practice of CD in real-

world software development (see Section 3.3 for the definition of

real-world software development).

We limit ourselves to major bibliographic databases, because it

allows executing systematic searches and provides material that,

in general, has more in-depth explanations and neutral tone.

The bibliographic databases we used are listed in Table 3 . The

databases include not only research articles, but also, e.g., some

books written by practitioners and experience reports. However,

the databases do not contain some of the material that might be

relevant for the subject of study, e.g., technical reports, blog posts

and video presentations. While the excluded material might have

provided additional information, we believe that limiting to the

major bibliographic databases provides a good contribution on its

E. Laukkanen et al. / Information and Software Technology 82 (2017) 55–79 59

Fig. 3. An overview of the research process used in this study.

Table 3

Search results for each database in July 2014 and in February

2015. Search was executed for all years in July 2014, but only

for years 2014–2015 in February 2015.

Database July 2014 February 2015 Total

Scopus 197 35 232

IEEE Explore 98 30 128

ACM Digital Library 139 30 169

ISI Web of Science 79 11 90

ScienceDirect 13 11 24

Total 526 117 643

own and this work can be extended in future. This limitation in-

creases the reliability and validity of the material, but decreases

the amount of reports by practitioners [17] .

We limit our investigation to problems that arise when adopt-

ing or practicing CD. We thus refrain from collecting problems that

CD is meant to solve—an interesting study on its own. Further-

more, we do not limit ourselves to a strict definition of CD. The

reasons are that CD is a fairly new topic and there does not exist

much literature mentioning CD in the context of our study. Since it

is claimed that CI is a prerequisite for CD [1] , we include it in our

study. Similarly, continuous deployment is claimed to be a exten-

sion of CD, and we include it too. We do this by including search

terms for continuous integration and continuous deployment. This

way, we will find material that considers CD adoption path begin-

ning from CI adoption and ending in continuous deployment.

We followed Kitchenham’s guidelines for conducting system-

atic literature reviews [18] , with two exceptions. First, we decided

to include multiple studies of the same organization and project,

in order to use all available information for each identified case.

We clearly identify such studies as depicting the same case in

our analysis, results and discussion. The unit of analysis used is

a case, not a publication. Second, instead of using data extraction

forms, we extracted data by qualitatively coding the selected arti-

cles, as most of the papers contained only qualitative statements

and little numerical data. The coding is described in more detail in

Section 3.4.2 .

The overall research process consisted of three steps: search

strategy, filtering strategy and data extraction and synthesis (see

Fig. 3). Next, we will introduce the steps.

3.2. Search strategy

The search string used was “(‘‘continuous
integration’’ OR ‘‘continuous delivery’’ OR
‘‘continuous deployment’’) AND software ”. The first

parts of the string were the subject of the study. The “software”

string was included to exclude studies that related to other fields

than software engineering; the same approach was used in an ear-

lier SLR [9] . The search string was applied to titles, abstracts and

keywords. The search was executed first in July 2014 and again in

February 2015. The second search was executed because there had

been recent new publications in the area. Both searches provided

a total of 643 results (Table 3). After the filtering strategy was ap-

60 E. Laukkanen et al. / Information and Software Technology 82 (2017) 55–79

plied and an article was selected for inclusion, we used backward

snowballing [19] , which did not result in the identification of any

additional studies.

3.3. Filtering strategy

We used two guiding principles when forming the filtering

strategy:

• Empirical: the included articles should contain data from real-

life software development.
• CD practice: the included articles should contain data from

continuous delivery as a practice. Some articles just describe

toolchains, which usually is separated from the context of its

use.

With real-life software development, we mean an activity pro-

ducing software meant to be used in real-life. For example, we

included articles discussing the development of industrial, scien-

tific and open source software systems. We also classified develop-

ment happening in the context of engineering education as real-

life, if the produced software was seen to be usable outside the

course context. However, software development simulations or ex-

periments were excluded to improve the external validity of the

evidence. For example, [20] was excluded, because it only simu-

lates software development.

First, we removed duplicate and totally unrelated articles from

the results, which left us with 293 articles (Fig. 3). Next, we stud-

ied the abstracts of the remaining papers, and applied the follow-

ing inclusion and exclusion criteria:

• Inclusion Criterion : a real-life case is introduced or studied.
• Exclusion Criterion 1 : the practice or adoption of continuous in-

tegration, delivery or deployment is not studied.
• Exclusion Criterion 2 : the main focus of the article is to evalu-

ate a new technology or tool in a real-life case. Thus, the article

does not provide information about the case itself or CD adop-

tion.
• Exclusion Criterion 3 : the text is not available in English.

A total of 107 articles passed the criteria.

Next, we acquired full-text versions of the articles. We did not

have direct access to one article, but an extension of it was found

to been published as a separate article [P11]. We applied the exclu-

sion criteria discussed above to the full-text documents, as some

of the papers turned out not to include any real-world case even

if the abstracts had led us to think so. For example, the term case

study can indeed mean a study of a real-world case, but in some

papers it referred to projects not used in real-life. In addition, we

applied the following exclusion criteria to the full-texts:

• Exclusion Criterion 4 : the article only repeats known CD practice

definitions, but does not describe their implementation.
• Exclusion Criterion 5 : the article only describes a technical im-

plementation of a CD system, not practice.

Out of the 107 articles, 30 passed our exclusion criteria and

were included in the data analysis.

3.4. Data extraction and synthesis

We extracted data and coded it using three methods. First, we

used qualitative coding to ground the analysis. Second, we con-

ducted contextual categorization and analysis to understand the

contextual variance of the reported problems. Third, we evaluated

the criticality of problems to prioritize the found problems. Next,

these three methods are described separately in depth.

3.4.1. Unit of analysis

In this paper, the unit of analysis is an individual case instead

of an article, as several papers included multiple cases. A single

case could also be described in multiple articles. The 30 articles

reviewed here discussed a total of 35 cases. When referring to a

case, we use capital C , e.g. [C1], and when referring to an article,

we use capital P , e.g. [P1]. If an article contained multiple cases, we

use the same case number for all of them but differentiate them

with a small letter, e.g. [C9a] and [C9b]. The referred articles and

cases are listed in a separate bibliography in Appendix A .

3.4.2. Qualitative coding

We coded the data using qualitative coding, as most of the

studies were qualitative reports. We extracted the data by follow-

ing the coding procedures of grounded theory [21] . Coding was

performed using the following steps: conceptual coding, axial cod-

ing and selective coding. All coding work was done using ATLAS.ti

[22] software.

During conceptual coding , articles were first examined for in-

stances of problems that had emerged when adopting or doing

CD. We did not have any predefined list of problems, so the pre-

cise method was open coding. Identifying instances of problems is

highly interpretive work and simply including problems that are

named explicitly problems or with synonyms, e.g. challenges, was

not considered inclusive enough. For example, the following quote

was coded with the codes “problem” and “Ambiguous test result”,

even if it was not explicitly mentioned to be a problem:

Since it is impossible to predict the reason for a build failure ahead

of time, we required extensive logging on the server to allow us to

determine the cause of each failure. This left us with megabytes of

server log files with each build. The cause of each failure had to be

investigated by trolling through these large log files.

–Case C4

For each problem, we examined whether any solutions or

causes for that problem were mentioned. If so, we coded the con-

cepts as solutions and causes, respectively. The following quote

was coded with the codes “problem”, “large commits”, “cause for”

and “network latencies”. This can be translated into the sentence

“network latencies caused the problem of large commits”.

On average, developers checked in once a day. Offshore developers

had to deal with network latencies and checked in less frequently;

batching up work into single changesets.

–Case C13

Similarly, the following quote was coded with the codes “prob-

lem”, “time-consuming testing”, “solution”, and “test segmenta-

tion”. This can be read as “test segmentation solves the problem

of time-consuming testing”.

We ended up running several different CI builds largely because

running everything in one build became prohibitively slow and we

wanted the check-in build to run quickly.

–Case C13

During axial coding , we made connections between the codes

formed during conceptual coding. We connected each solution

code to every problem code that it was mentioned to solve. Simi-

larly, we connected each problem code to every problem code that

it was mentioned causing. The reported causes are presented in

Section 4.2 . We did not separate problem and cause codes, because

often causes could be seen as problems too. On the other hand, we

divided the codes strictly to be either problems or solutions, even

if some solutions were considered problematic in the articles. For

example, the solution “practicing small commits” can be difficult

if the “network latencies” problem is present. But to code this, we

used the problem code “large commits” in the relation to “network

E. Laukkanen et al. / Information and Software Technology 82 (2017) 55–79 61

Table 4

Case categories and categorization criteria.

Category Criteria Category Criteria

Publication time Number of developers

Pre 2010 year ≤ 2010 Small size < 20

Post 2010 year > 2010 Medium 20 ≤ size ≤ 100

Large size > 100

CD implementation maturity Commerciality

CI CI practice. Non-commercial E.g., open source or scientific development.

CD CD or advanced CI practice. Commercial Commercial software development.

latencies”. The code “system modularization” was an exception to

this rule, being categorized as both a problem and a solution, be-

cause system modularization in itself can cause some problems but

also solve other problems.

During selective coding , only the already formed codes were ap-

plied to the articles. This time, even instances, that discussed the

problem code but did not consider it as a faced problem, were

coded to ground the codes better and find variance in the prob-

lem concept. Also some problem concepts were combined to raise

the abstraction level of coding. For example, the following quote

was coded with “effort” during selective coding:

Continually monitoring and nursing these builds has a severe im-

pact on velocity early on in the process, but also saves time by

identifying bugs that would normally not be identified until a later

point in time.

–Case C4

In addition, we employed the code “prevented problem” when

a problem concept was mentioned to having been solved before

becoming a problem. For example, the following quote was coded

with the codes “parallelization”, “prevented problem” and “time-

consuming testing”:

Furthermore, the testing system separates time consuming high

level tests by detaching the complete automated test run to be

done in parallel on different servers. So whenever a developer

checks in a new version of the software the complete automated

set of tests is run.

–Case C1

Finally, we employed the code “claimed solution” when some

solution was claimed to solve a problem but the solution was not

implemented in practice. For example, the following quote was

coded with the codes “problem”, “ambiguous test result”, “claimed

solution” and “test adaptation”:

Therefore, if a problem is detected, there is a considerable amount

of time invested following the software dependencies until find-

ing where the problem is located. The separation of those tests

into lower level tasks would be an important advantage for trou-

bleshooting problems, while guaranteeing that high level tests will

work correctly if the lower level ones were successful.

–Case C15

3.4.3. Thematic synthesis

During thematic synthesis [23] , all the problem and solution

codes were synthesized into themes. As a starting point of themes,

we took the different activities of software development: design,

integration, testing and release . The decision to use these themes as

a starting point was done after the problem instances were iden-

tified and coded. Thus, the themes were not decided beforehand;

they were grounded in the identified problem codes.

If a problem occurred during or was caused by an activity, it

was included in the theme. During the first round of synthesis, we

noticed that other themes were required as well, and added the

themes of human and organizational and resource . Finally, the de-

sign theme was split into build design and system design , to sepa-

rate these distinct concepts.

3.4.4. Contextual categorization and analysis

We categorized each reported case according to four variables:

publication time, number of developers, CD implementation matu-

rity and commerciality, as shown in Table 4 . The criteria were not

constructed beforehand, but instead after the qualitative analysis of

the cases, letting the categories inductively emerge from the data.

When data for the categorization was not presented in the article,

the categorization was interpreted based on the case description

by the first author.

The CD implementation maturity of cases was determined with

two steps. First, if a case described CD adoption, its maturity was

determined to be CD, and if a case described CI adoption, its ma-

turity was determined to be CI. Next, advanced CI adoption cases

that described continuous system-level quality assurance proce-

dures were upgraded to CD maturity, because those cases had

more similarity to CD cases than to CI cases. The upgraded cases

were C1, C4 and C8.

After the categorization, we compared the problems reported

between different categories. The comparison results are presented

in Section 4.2 .

3.4.5. Evaluation of criticality

We selected the most critical problems for each case in order

to see which problems had the largest impact hindering the CD

adoption. The number of the most critical problems was not con-

strained and it varied from zero to two problems per case. There

were two criteria for choosing the most critical problems. Either,

the most severe problems that prevented adopting CD, or, the most

critical enablers that allowed adopting CD.

Enabling factors were collected because, in some cases, no criti-

cal problems were mentioned, but some critical enablers were em-

phasized. However, when the criticality assessments by different

authors were compared, it turned out that the selection of critical

enablers was more subjective than the selection of critical prob-

lems. Thus, only one critical enabler was agreed upon by all au-

thors (unsuitable architecture in case C8).

The most critical problems were extracted by three different

methods:

• Explicit : If the article as a whole emphasized a problem, or if

it was mentioned explicitly in the article that a problem was

the most critical, then that problem was selected as an explicit

critical problem. E.g, in case C5, where multiple problems were

given, one was emphasized as the most critical:

A unique challenge for Atlassian has been managing the on-

line suite of products (i.e. the OnDemand products) that are

deeply integrated with one another...Due to the complexity of

cross-product dependencies, several interviewees believed this

was the main challenge for the company when adopting CD.

– Case C5

62 E. Laukkanen et al. / Information and Software Technology 82 (2017) 55–79

• Implicit : The authors interpreted which problems, if any, could

be seen as the most critical. These interpretations were com-

pared between the authors to mitigate bias, detailed description

of the process is given in Section 3.5 .
• Causal : the causes given in the articles were taken into ac-

count, by considering the more primary causes as more criti-

cal. For example, in case C3a, the complex build problem could

be seen as critical, but it was actually caused by the inflexible

build problem.

3.5. Validity of the review

The search, filtering, data extraction and synthesis were first

performed by the first author, causing single researcher bias, which

had to be mitigated. The search bias was mitigated by construct-

ing the review protocol according to the guidelines by Kitchenham

[18] . This review protocol was reviewed by the two other authors.

We mitigated the paper selection bias by having the two other

authors make independent inclusion/exclusion decisions on inde-

pendent random samples of 200 articles each of the total 293. The

random sampling was done to lower the effort required for assess-

ing the validity. This way, each paper was rated by at least two

authors, and 104 of the papers were rated by all three.

We measured inter-rater agreement using Cohen’s kappa [24] ,

which was 0.5–0.6, representing moderate agreement [25] . All dis-

agreements (63 papers) were examined, discussed and solved in a

meeting involving all authors. All the disagreements were solved

through discussion, and no modifications were made to the cri-

teria. In conclusion, the filtering of abstracts was evaluated to be

sufficiently reliable. The data extraction and synthesis biases in the

later parts of the study were mitigated by having the second and

third authors review the results.

Bias in the criticality assessment was mitigated by having the

first two authors assess all the cases independently of each other.

From the total of 35 cases, there were 12 full agreements, 10 par-

tial agreements and 13 disagreements, partial agreements mean-

ing that some of the selected codes were the same for the case,

but some were not. All the partial agreements and disagreements

were assessed also by the third author and the results were then

discussed together by all the authors until consensus was formed.

These discussions had an impact not only on the selected critical-

ity assessments but also on the codes, which further improved the

reliability of the study.

3.6. Selected articles

When extracting data from the 30 articles (see Appendix A),

we noted that some of the articles did not contain any informa-

tion about problems related to adopting CD. Those articles are still

included in this paper for examination. The articles that did not

contain any additional problems were P3, P17, P19, P21 and P26.

Article P3 contained problems, but they were duplicate to Article

P2 which studied the same case.

All the cases were reported during the years 2002–2014 (Fig. 4).

This is not particularly surprising, since continuous integration as

a practice gained most attention after publication of extreme pro-

gramming in 1999 [26] . However, over half of the cases were re-

ported after 2010, which shows an increasing interest in the sub-

ject. Seven of the cases considered CD (C5, C7, C14, C25a, C25b,

C25c, C26). The other cases focused on CI.

Not all the articles contained quotations about problems when

adopting CI or CD. For example, papers P21 and P26 contained de-

tailed descriptions of CI practice, but did not list any problems. In

contrast, two papers that had the most quotations were P6 with 38

quotations and P4 with 13 quotations. This is due to the fact that

these two articles specifically described problems and challenges.

Fig. 4. Number of cases reported per year. The year of the case was the latest year

given in the report or, if missing, the publication year.

Other articles tended to describe the CI practice implementation

without considering any observed problems. Furthermore, major

failures are not often reported because of publication bias [18] .

3.7. Study quality assessment

Of the included 30 articles, we considered nine articles to be

scientific (P6, P7, P8, P11, P19, P20, P21, P28, P30), because they

contained descriptions of the research methodology employed. The

other 21 articles were considered as descriptive reports. However,

only two of the selected scientific articles directly studied the

problems or challenges (P6, P30), and therefore, we decided not to

separate the results based on whether the source was scientific or

not. Instead, we aimed at extracting the observations and experi-

ences presented in the papers rather than opinions or conclusions.

Observations and experiences can be considered more valid than

opinions, because they reflect the reality of the observer directly.

In the context of qualitative interviews, Patton writes:

Questions about what a person does or has done aim to elicit be-

haviors, experiences, actions and activities that would have been

observable had the observer been present.

–Patton [27, p. 349–350]

4. Results

In total, we identified 40 problems, 28 causal relationships and

29 solutions. In the next subsections, we explain these in de-

tail. The results are augmented with quotes from the articles. An

overview of the results can be obtained by reading only the sum-

maries at the beginning of each subsection and a richer picture of

the findings is provided through the detailed quotes.

4.1. Problems

Problems were thematically synthesized into seven themes. Five

of these themes are related to the different activities of software

development: build design, system design, integration, testing, and

release. Two of the themes are not connected to any individual

part: human and organizational and resource. The problems in the

themes are listed in Table 5 .

The number of cases which discussed each problem theme var-

ied (Fig. 5). Most of the cases discussed integration and testing

problems, both of them being discussed in at least 16 cases. The

E. Laukkanen et al. / Information and Software Technology 82 (2017) 55–79 63

Table 5

Problem themes and related problems. Cases where a problem was prevented with a solution are marked with a star (∗).

Theme Problems

Build design Complex build [C2, C3a], inflexible build [C3a]

System design System modularization [C2, C17e, C21, C25a, C25b], unsuitable architecture [C3a, C8, C22, C26, C25c], internal dependencies [C5], database

schema changes [C5, C7(∗), C25c(∗)]

Integration Large commits [C3a, C5, C7(∗), C13, C14(∗), C22], merge conflicts [C2(∗), C3a, C5, C14, C20(∗), C21, C24], broken build [C3a, C5, C6, C8, C9a,

C14, C17a], work blockage [C3a, C5(∗), C11, C17a, C27], long-running branches [C7(∗), C14, C24, C27], broken development flow [C3a],

slow integration approval [C17a]

Testing Ambiguous test result [C2, C4, C6, C15, C17a, C27], flaky tests [C4, C6, C8, C11, C14, C22, C27], time-consuming testing [C1(∗), C2(∗), C3a,

C3b(∗), C11, C13, C14, C27], hardware testing [C1(∗), C8], multi-platform testing [C2, C9b, C21], UI testing [C8, C14], untestable code [C22,

C25b(∗)], problematic deployment [C25a, C25b(∗), C25c], complex testing [C21, C25c]

Release [all in C5] customer data preservation, documentation, feature discovery, marketing, more deployed bugs, third party integration, users do

not like updates, deployment downtime [C25c(∗)]

Human and

organizational

Lack of discipline [C1(∗), C6, C10, C11, C12, C14], lack of motivation [C5, C6, C19, C27], lack of experience [C5, C12, C27], more pressure [C5,

C27], changing roles [C5], team coordination [C5], organizational structure [C26]

Resource Effort [C2, C3a, C4, C19, C17e, C26], insufficient hardware resources [C4, C5], network latencies [C13]

Fig. 5. Number of cases per problem theme.

Table 6

Build design problems.

Problem Description

Complex build Build system, process or scripts are complicated or complex.

Inflexible build The build system cannot be modified flexibly.

second most reported problems were system design, human and

organizational and resource problems, all of them handled in at

least 8 cases. Finally, build design and release problems were dis-

cussed in two cases only. Most of the release problems were dis-

cussed only in one case [C5].

4.1.1. Build design problems

The build design theme covered problems that were caused by

build design decisions. The codes in the theme are described in

Table 6 . The codes in the theme were connected and were concur-

rent in Case C3a. From that case, we can infer that the inflexible

build actually caused the complexity of the build:

The Bubble team was just one team in a larger programme of

work, and each team used the same build infrastructure and

build targets for their modules. As the application developed, spe-

cial cases inevitably crept into individual team builds making the

scripts even more complex and more difficult to change.

–Case C3a

In another case, it was noted that system modularization of the

application increased the complexity of the build:

Finally, the modular nature of AMBER requires a complicated build

process where correct dependency resolution is critical. Developers

who alter the build order or add their code are often unfamiliar

with GNU Makefiles, especially at the level of complexity as AM-

BER’s.

–Case C2

Complex builds are difficult to modify [C2] and significant effort

can be needed to maintain them [C3a]. Complex builds can cause

builds to be broken more often [C3a].

4.1.2. System design problems

The system design theme covered problems that were caused

by system design decisions. The codes in the theme are described

in Table 7 .

64 E. Laukkanen et al. / Information and Software Technology 82 (2017) 55–79

Table 7

System design problems.

Problem Description

System modularization The system consists of multiple units, e.g., modules or services.

Unsuitable architecture System architecture limits continuous delivery.

Internal dependencies Dependencies between parts of the software system.

Database schema changes Software changes require changes of database schema.

Table 8

Integration problems.

Problem Description

Large commits Commits containing large amount of changes.

Merge conflicts Merging changes together reveals conflicts between changes.

Broken build Build stays broken for long time or breaks often.

Work blockage Completing work tasks is blocked or prevented by broken build or other integrations in a queue.

Long-running branches Code is developed in branches that last for long time.

Broken development flow Developers get distracted and the flow [28] of development breaks.

Slow integration approval Changes are approved slowly to the mainline.

System modularization. System modularization was the most dis-

cussed system design problem: it was mentioned in five articles.

While the codes system modularization and unsuitable architecture

can be seen to overlap each other, system modularization is intro-

duced as a separate code because of its unique properties; it was

mentioned to be both a problem and a solution. For example, in

the Case C2, it was said to cause build complexity, but in another

quote it was said to prevent merge conflicts:

Merge conflicts are rare, as each developer typically stays focused

on a subset of the code, and will only edit other subsections in a

minor way to fix small errors, or with permission and collabora-

tion.

–Case C2

In another case, system modularization was said to ensure

testability of independent units:

They designed methods and classes as isolated services with very

small responsibilities and well-defined interfaces. This allows the

team to test individual units independently and to write (mocks

of) the inputs and outputs of each interface. It also allows them to

test the interfaces in isolation without having to interact with the

entire system.

–Case C25a

System modularization was not a problem on its own in any

instance. Rather its effects were the problems: increased develop-

ment effort [C17e], testing complexity [C21] and problematic de-

ployment [C25a].

Unsuitable architecture. An architecture unsuitable for CD was the

second most discussed system design problem by being mentioned

in four articles. Again, unsuitable architecture was not a problem

on its own but its effects were the problems: time-consuming

testing [C3a], development effort [C8], test ability [C22, C25c] and

problematic deployment [C25c]. Cases mentioned that architecture

was unsuitable if it was monolithic [C22, C26], coupled [C3a], con-

sisted of multiple branches of code [C8] or there were unnecessary

service encapsulation [C25c].

Other system design problems were discussed lightly in a cou-

ple of cases only and thus are not included here for deeper analy-

sis.

4.1.3. Integration problems

The integration theme covered issues that arise when the

source code is integrated into the mainline. The problems in this

theme are described in Table 8 .

Fig. 6. Reported causal relationships between integration problems and related

testing problems.

All the codes in this theme are connected through reported

causal relationships, see Fig. 6 . Some have tried to avoid integra-

tion problems with branching, but long-living branches are actu-

ally mentioned to make integration more troublesome in the long

run:

...as the development of the main code base goes on, branches

diverge further and further from the trunk, making the ultimate

merge of the branch back into the trunk an increasingly painful

and complicated process.

–Case C24

Another interesting characteristic in the integration theme is

the vicious cycle between the codes broken build, work blockage

and merge conflicts. This is emphasized in Case C3a:

Once the build breaks, the team experiences a kind of “work out-

age”. And the longer the build is broken, the more difficult it is

for changes to be merged together once corrected. Quite often, this

merge effort results in further build breaks and so on.

–Case C3a

Large commits. Large commits are problematic, because they con-

tain multiple changes that can conflict with changes made by oth-

ers:

E. Laukkanen et al. / Information and Software Technology 82 (2017) 55–79 65

These larger change sets meant that there were more file merges

required before a check-in could be completed, further lengthening

the time needed to commit.

–Case C3a

However, there are multiple reasons why developers do large

commits: time-consuming testing [C3a], large features [C7, C14],

network latencies [C13] and a slow integration approval process

[C17a]. Thus, to deal with large commits, one must consider these

underlying reasons behind.

Merge conflicts. Merge conflicts happen when changes made by

different developers conflict. Solving such a conflict can take sub-

stantial effort:

We have felt the pain of merging long running branches too many

times. Merge conflicts can take hours to resolve and it is all too

easy to accidentally break the codebase.

–Case C14

Merge conflicts can be caused by long-running branches [C14,

C24] or large commits [C3a]. Also delays in the committing pro-

cess, such as lengthy code reviews, can cause merge conflicts [C21].

In some situations, merge conflicts can be rarer: if developers work

on different parts of source code [C2] or if there is a small amount

of developers [C20].

Broken build. Broken build was the most mentioned problem by

being discussed in ten articles. Broken builds become a problem

when it is hard to keep a build fixed and it takes a significant effort

to fix the build:

The Bubble team build would often break and stay broken for some

time (on one occasion for a full month iteration) so a significant

proportion of developers time was spent fixing the build.

–Case C3a

If a broken build is not fixed immediately, feedback from other

problems will not be gained. In addition, problematic code can

spread to other developer workstations, causing trouble:

Some noted that if code was committed after a build failure, that

new code could conceivably be problematic too, but the confound-

ing factors would make it difficult to determine exactly where the

problem was. Similarly, other developers may inadvertently obtain

copies of the code without realizing it is in a broken state.

–Case C6

However, if developers are often interrupted to fix the build, it

will break their development flow and take time from other tasks:

The Bubble teams other problem was being often interrupted to

fix the build. This took significant time away from developing new

functionality.

–Case C6

Reasons for broken builds were complex build [C3a], merge

conflicts [C3a] and flaky tests [C14].

Work blockage. When the completion of a development task, e.g.

integration, is delayed, it causes a work blockage:

It should also be noted that the SCM Mainline node affords no par-

allelism: if there is a blockage, as interviewees testify is frequently

the case, it effectively halts the entire project.

–Case C17a

The reason can be that a broken build must be fixed [C3a, C11]

or that there are other integrations in the queue [C27]. In addition

to delays, work blockages can cause further merge conflicts [C3a].

Long-running branches. Long-running branches easily lead to

merge conflicts, and developing code in branches slows the fre-

quency of integration. However, some cases still insist on working

with multiple branches:

Compared to smaller products, where all code is merged to a single

branch, the development makes use of many branches which adds

to the complexity.

–Case C27

There is not much evidence whether there are situations when

multiple branches are necessary. Those who have chosen to work

with a single branch have been successful with it [C7, C14]. Nev-

ertheless, a working CI environment can help with solving large

merge conflicts by providing feedback during the merge process

[C24].

Broken development flow. When the CI system does not work prop-

erly and failures in the system distract developers from writing the

software, the development flow [28] might get broken [C3a]. Bro-

ken development flow decreases development productivity.

Slow integration approval. The speed of integration can be slowed

down by too strict approval processes:

Each change...must be manually approved by a project manager

before it is allowed onto the SCM Mainline. The consequence of

this is a queuing situation, with an elaborate ticket system having

sprung up to support it, where low priority “deliveries” can be put

on hold for extended periods of time.

–Case C17a

A slow integration approval process is detrimental to CD, be-

cause it leads to larger commits and delays feedback. Code review

processes should be designed so that they do not cause extensive

delays during integration.

4.1.4. Testing problems

The testing problem theme includes problems related to soft-

ware testing. The problems are described in Table 9 . The most dis-

cussed testing problems were ambiguous test result, flaky tests and

time-consuming testing, all of them being mentioned in at least six

cases.

Ambiguous test result. An ambiguous test result means that the

test result does not guide the developer to action:

...several of the automated activities do not yield a clear “pass or

fail” result. Instead, they generate logs, which are then inspected in

order to determine whether there were any problems—something

only a small minority of project members actually do, or are even

capable of doing.

–Case C17a

Reasons for ambiguity can be that not every commit is tested

[C2], analyzing the test result takes large amount of time [C4,

C17a], the test results are not communicated to the developers

[C6], there are no low-level tests that would pin point where the

problem is exactly [C15] and that the tests may fail regardless of

the code changes [C27]. In addition to increased effort to investi-

gate the test result, ambiguity makes it also difficult to assign re-

sponsibility to fix issues and thus leads to lack of discipline [C6].

Flaky tests. Tests that cannot be trusted because they fail randomly

can cause problems:

Test cases are sometimes unstable (i.e. likely to break or not re-

flecting the functionality to be tested) and may fail regardless of

the code.

66 E. Laukkanen et al. / Information and Software Technology 82 (2017) 55–79

Table 9

Testing problems.

Problem Description

Ambiguous test result Test result is not communicated to developers, is not an explicit pass or fail or it is not clear what broke the build.

Flaky tests Tests that randomly fail sometimes.

Time-consuming testing Testing takes too much time.

Hardware testing Testing with special hardware that is under development or not always available.

Multi-platform testing Testing with multiple platforms when developers do not have access to all of them.

UI testing Testing the UI of the application.

Untestable code Software is in a state that it cannot be tested.

Problematic deployment Deployment of the software is time-consuming or error-prone.

Complex testing Testing is complex, e.g., setting up environment.

Table 10

Release problems.

Problem Description

Customer data preservation Preserving customer data between upgrades.

Documentation Keeping the documentation in-sync with the released version.

Feature discovery Users might not discover new features.

Marketing Marketing versionless system.

More deployed bugs Frequent releases cause more deployed bugs.

Third party integration Frequent releases complicate third party integration.

Users do not like updates Users might not like frequent updates.

Deployment downtime Downtime cannot be tolerated with frequent releases.

–Case C27

The flakiness can be caused by timing issues [C4], transient

problems such as network outages [C6], test/code interaction [C8],

test environment issues [C11], UI tests [C14] or determinism or

concurrency bugs [C14, C22]. Flaky tests have caused lack of dis-

cipline [C14] and ambiguity in test results [C22, C27].

Time-consuming testing. Getting feedback from the tests can take

too long:

One common opinion at the case company is that the feedback

loops from the automated regression tests are too long. Regression

feedback times are reported to take anywhere from four hours to

two days. This highlights the problem of getting feedback from re-

gression tests up to two days after integrating code.

–Case C27

If tests take too long, it can lead to larger commits [C3a], broken

development flow [C3a] and lack of discipline [C11, C14]. Reported

reasons for too long tests were unsuitable architecture [C3a] and

unoptimized UI tests [C14].

Specific testing problems. From the rest of testing problems, hard-

ware testing, multi-platform testing and UI testing problems are re-

lated in the sense that they refer to problems with specific kinds

of tests. These tests make the testing more complex and require

more effort to setup and manage automated testing:

...because the UI is the part of the system design that changes most

frequently, having UI-based testing can drive significant trash into

automated tests.

–Case C8

Other testing problems. Untestable code, problematic deployment and

complex testing , are more general problems that relate to each

other via system modularization. For example, system modulariza-

tion was claimed to make testing more complex:

To simplify the development process, the platform was modu-

larised; this meant that each API had its own git repository. This

also made testing more complex. Since the APIs and core compo-

nents are under continuously development by groups which apply

rapid development methodology, it would be very easy for certain

API to break other components and even the whole platform de-

spite having passed its own unit test.

–Case C21

System modularization was reported to cause problematic de-

ployment [C25a, C25c] and complex testing [C21, C25c]. On the

other hand, system modularization was claimed to make testing

and the deployment of the individual parts of the system indepen-

dent of other parts [C25b]. Thus, system modularization can re-

move the problem of untestable code and make deployment eas-

ier. Therefore one needs to find a balance between these problems

when designing modularity.

4.1.5. Release problems

Release problems (see Table 10) cause trouble when the soft-

ware is released. Release problems were reported only in one ar-

ticle [C5], with the exception of deployment downtime which was

mentioned in two articles [C5, C25c].

The lack of evidence about release problems is a result on its

own. Most of the articles focused on problems that were internal,

whereas release problems might be external to the developers. The

exceptional article [C5] focused more on the impact of CD exter-

nally, which is one of the reasons it included multiple release chal-

lenges. To get more in-depth understanding of the release prob-

lems, readers are encouraged to read the Article P6.

4.1.6. Human and organizational problems

Human and organizational problems are not related to any spe-

cific development activity, but are general problems that relate

to human and organizational aspects in CD adoption. These prob-

lems are described in Table 11 . The most reported problems in this

theme were lack of discipline, lack of motivation and lack of expe-

rience.

Lack of discipline. Sometimes the software organization as a whole

cannot keep to the principles defined for the CD discipline:

The second limitation is that violations reported by automated

checks can be ignored by developers, and unfortunately often they

are.

–Case C12

E. Laukkanen et al. / Information and Software Technology 82 (2017) 55–79 67

Table 11

Human and organizational problems.

Problem Description

Lack of discipline Discipline to commit often, test diligently, monitor the build status and fix problems as a team.

Lack of motivation People need to be motivated to get past early difficulties and effort.

Lack of experience Lack of experience practicing CI or CD.

More pressure Increased amount of pressure because software needs to be in always-releasable state.

Changing roles Different roles need to adapt for collaboration.

Team coordination Increased need for team coordination.

Organizational structure Organizational structure, e.g., separation between divisions causes problems.

Table 12

Resource problems.

Problem Description

Effort Initially setting up continuous delivery requires effort.

Insufficient hardware resources Build and test environments require hardware resources.

Network latencies Network latencies hinder continuous integration.

This can mean discipline to committing often [C1], ensuring

sufficient automated testing [C1], fixing issues found during the

integration immediately [C6, C10, C12, C14] and testing changes

on a developer machine before committing [C11]. Weak parts of

a CI system can cause lack of discipline: ambiguous test result

can make it difficult to determine who should fix integration is-

sues [C6], time-consuming testing can make developers skip test-

ing on their own machines [C11] and having flaky tests or time-

consuming testing can lead to ignoring tests results [C14].

Lack of motivation. Despite the proposed benefits of CD, everyone

might not be motivated to adopt it. But in order to achieve disci-

pline, one must involve the whole organization to practice CD [C5].

This is especially difficult when there seems to be no time for im-

provement:

But it was hard to convince them that we needed to go through

our implementation “hump of pain” to get the pieces in place that

would allow us to have continuous integration. I worked on a

small team and we didn’t seem to have any “extra” time for me

to work on the infrastructure we needed.

–Case C19

In addition to required effort [C19], lack of motivation can be

caused by skepticism about how suitable CD is in a specific context

[C27].

Lack of experience. Having inexperienced developers can make it

difficult to practice CD:

[Challenge when adopting CD:] a lack of understanding of the CD

process by novice developers due to inconsistent documentation

and a lack of industry standards.

–Case C5

Lack of experience can cause lack of understanding [C5, C12]

and people easily drift into using old habits [C27]. Lack of expe-

rience can lead to a feeling of more pressure when the change is

driven in the organization:

Despite the positive support and attitude towards the concept of

CI, teams feel that management would like it to happen faster than

currently possible which leads to increased pressure. Some devel-

opers feel that they lack the confidence and experience to reach

desired integration frequencies.

–Case C27

Other human and organizational problems. Changing roles, team co-

ordination and organizational structure were mentioned only briefly

in single cases and little evidence for them is presented. Thus they

are not discussed here in depth.

4.1.7. Resource problems

The resource problems were related to the resources available

for the adoption. The problems are listed in Table 12 . Effort was

reported in six cases, insufficient hardware resources in two cases

and network latencies in one case.

Effort. Effort was mentioned with two different meanings. First, if

the build system is not robust enough, it requires constant effort

to be fixed:

The Bubble team expended significant effort working on the build.

The build was very complex with automated application server de-

ployment, database creation and module dependencies.

–Case C3a

Second, at the start of the adoption, an initial effort is needed

for setting up the CD system and for monitoring it:

Continually monitoring and nursing these builds has a severe im-

pact on velocity early on in the process, but also saves time by

identifying bugs that would normally not be identified until a later

point in time. It is therefore extremely important to get the cus-

tomer to buy into the strategy (...) While initially setting up the

framework is a time-consuming task, once this is accomplished,

adding more such builds is not only straightforward, but also the

most natural approach to solving other “non-functional” stories.

–Case C4

Effort is needed for implementing the CI system [C2, C4, C19,

C26], monitoring and fixing broken builds [C3a, C4], working with

a complex build [C3a], working with multiple branches [C8], work-

ing with multiple components [C17e] and maintaining the CI sys-

tem [C26]. According to one case, the perceived initial effort to im-

plement the CI system can cause a situation where it is difficult to

motivate stakeholders for the adoption [C19].

Hardware resources. Hardware resources are needed for test envi-

ronments, especially robustness and performance tests:

Robustness and performance builds tend to be resource-intensive.

We chased a number of red-herrings early on due to a poor envi-

ronment. It is important to get a good environment to run these

tests.

–Case C4

Also network latencies cannot be tolerated, if present, they dis-

rupt committing small changes [C13].

68 E. Laukkanen et al. / Information and Software Technology 82 (2017) 55–79

Table 13

Reported causal explanations.

Theme Causes

Build design inflexible build → complex build [C3a]

system modularization → complex build [C2]

System design –

Integration complex build → broken build [C3a]

broken build → work blockage [C3a]

broken build → broken development flow [C3a]

work blockage → merge conflicts [C3a]

large commits → merge conflicts [C3a]

time-consuming testing → broken development flow [C3a]

time-consuming testing → large commits [C3a]

network latencies → large commits [C13]

slow integration approval → large commits [C17a]

merge conflicts → broken build [C3a]

long-running branches → merge conflicts [C14]

flaky tests → broken build [C6]

Testing unsuitable architecture → untestable code [C22]

unsuitable architecture → time-consuming testing [C3a]

system modularization → complex testing [C21, C25c]

system modularization → problematic deployment [C25a, C25c]

flaky tests → ambiguous test result [C22, C27]

Release –

Human & time-consuming testing → lack of discipline [C11, C14]

organizational flaky tests → lack of discipline [C14]

effort → lack of motivation [C19]

ambiguous test result → lack of discipline [C6]

lack of experience → more pressure [C27]

Resource complex build → effort [C3a]

broken build → effort [C3a]

unsuitable architecture → effort [C8]

system modularization → effort [C17e]

Fig. 7. All reported causal explanations. Different themes are highlighted with colors. In addition, roots that do not have any underlying causes are underlined and leafs that

do not have any effects are in italics.

4.2. Causes of problems

To study the causes of the problems, we extracted reported

causal explanations from the articles, see Table 13 and Fig. 7 .

4.2.1. Causes of build design problems

There were two reported causes for build design problems: in-

flexible build and system modularization. The first problem was

synthesized under the build design problem theme and the sec-

ond under the system design problem theme. This indicates that

the build design is affected by the system design.

4.2.2. Causes of system design problems

No reported causes for system design problems were reported.

This indicates that system design activity is one of the root causes

E. Laukkanen et al. / Information and Software Technology 82 (2017) 55–79 69

Fig. 8. Causes for integration problems from Fig. 7 , grouped into dysfunctional in-

tegration environment and unhealthy integration practices.

for CD adoption problems or at least there are no known causes

for the system design problems.

4.2.3. Causes of integration problems

Integration problems were caused by three problem themes:

build design problems [C3a], integration problems [C3a, C13, C14,

C17a] and testing problems [C3a, C6]. Especially interesting is the

vicious cycle inside the integration problem theme between the

problems merge conflicts, broken build and work blockage.

The causes of the integration problems could be separated to

two higher level root causes (Fig. 8): dysfunctional integration

environment (complex build, broken build, time-consuming test-

ing, network latencies) and unhealthy integration practices (work

blockage, large commits, merge conflicts, long-running branches,

slow integration approval). However, since there is a causal re-

lationship both ways, e.g., time-consuming testing causing large

commits and merge conflicts causing broken builds, one cannot

solve any of the high-level causes in isolation. Instead, a holistic

solution has to be found.

4.2.4. Causes of testing problems

Testing problems were caused by system design problems [C3a,

C21, C22, C25a, C25c] and other testing problems [C22, C27]. The

relationship between system design and testing is common knowl-

edge already and test-driven development (TDD) is a known so-

lution for developing testable code. The new finding here is that

system design also has an impact on testing as a part of CD.

4.2.5. Causes of release problems

No reported causes for release problems were mentioned. This

was not surprising, given that only two articles discussed release

problems. Further research is needed in this area.

4.2.6. Causes of human and organizational problems

Human and organizational problems were caused by testing

problems [C6, C11, C14], resource problems [C19] and other hu-

man and organizational problems [C27]. Interestingly, all testing

problems that were causes of human and organizational prob-

lems caused lack of discipline. Those testing problems were time-

consuming testing, flaky tests and ambiguous test result. If test-

ing activities are not functioning properly, there seems to be an

urge to stop caring about testing discipline. For example, if tests

are time-consuming, running them on developer’s machine before

committing might require too much effort and developers might

skip running the tests [C11]. Furthermore, if tests are flaky or test

results are ambiguous, then test results might not be trusted and

ignored altogether [C6, C14].

Another interesting finding is that human and organizational

problems did not cause problems in any other problem theme. One

explanation considering some of the problems is that the problems

are not root causes but instead symptoms of other problems. This

explanation could apply to, e.g., lack of discipline problem. An al-

ternative explanation for some of the problems is that the prob-

lems cause other problems, but the causal relationships have not

been studied or reported in the literature. This explanation applies

to, e.g., organizational structure, because it is explicitly claimed to

cause problems when adopting CD [C26], but the actual effects are

not described.

4.2.7. Causes of resource problems

The only resource problem that had reported causes was effort.

Build design problems [C3a], system design problems [C8, C17e]

and integration problems [C3a] were said to increase effort.

4.3. Contextual variance of problems

We categorized each case based on publication time, number

of developers, CD implementation maturity and commerciality, as

shown in Appendix B . There are some interesting descriptive no-

tions based on the categorization:

• All cases with large number of developers were both post 2010

and commercial.
• Almost all (10/11) non-commercial cases had a medium number

of developers.
• Almost all (9/10) CD cases were commercial cases.
• Most (8/10) of the CD cases were post 2010, but there were also

many (15/25) post 2010 CI cases.
• Most (18/24) of the commercial cases were post 2010, while the

majority (6/11) of the non-commercial cases were pre 2010.

For each case category, we calculated the percentage of cases

that had reported distinct problem themes (Table 14). Next, we

summarize the findings individually for each of our grouping vari-

ables (Figs. 9 and 10). We emphasize that these are purely descrip-

tive measures and no statistical generalization is attempted to be

made based on the measures. Thus, no conclusion regarding popu-

larity can be made based on these measures.

Publication time. Based on the time of reporting, the only clear

difference between pre 2010 and post 2010 cases is seen on the

system design problem theme: post 2010 cases reported over four

times more often system design problems than pre 2010 cases. A

smaller difference is on the resource theme where pre 2010 cases

reported 50% more often problems than post 2010 cases.

Number of developers. Integration and testing problems are re-

ported more often by cases with larger number of developers. In

contrast, cases with small number of developers reported resource

problems more often.

Continuous delivery implementation maturity. CD cases reported

problems more often in every other theme than build design and

integration. The clearest differences are in the system design, hu-

man and organizational and resource themes. In addition, the CI

cases reported problems more often in the testing theme.

70 E. Laukkanen et al. / Information and Software Technology 82 (2017) 55–79

Fig. 9. Comparison of reported problems in different case categories. B = Build Design, S = System Design, I = Integration, T = Testing, RL = Release, H = Human and

Organizational, RS = Resource. Error bars visualize an error of ± 1 case.

Fig. 10. Contextual differences of different problem themes based on Fig. 9 . The ’+’-sign denotes that problems were reported more often and the ’ −’-sign denotes that

problems were reported less often in cases where the contextual variable was higher.

E. Laukkanen et al. / Information and Software Technology 82 (2017) 55–79 71

Table 14

Percentage of cases in a category that reported problems in a theme. For example, the percentage

“58%” in the crossing of “Pre2010” and “Testing” means that 58% of the pre 2010 cases reported at

least one testing problem.

Case Theme

category Build System Integration Testing Release Human Resource

Pre 2010 8% 8% 33% 58% 0% 33% 33%

Post 2010 4% 39% 39% 48% 4% 26% 22%

Small 8% 25% 25% 42% 0% 25% 42%

Medium 5% 32% 37% 53% 5% 32% 16%

Large 0% 25% 75% 75% 0% 25% 25%

CI 8% 20% 40% 48% 0% 24% 20%

CD 0% 50% 30% 60% 10% 40% 40%

Non-commercial 9% 27% 45% 73% 0% 18% 9%

Commercial 4% 29% 33% 42% 4% 33% 33%

Table 15

The most critical problems in each case where there was any. The method for determining different kinds of critical

problems is described in Section 3.4.5 .

Case Explicit Implicit Causal

C3a Inflexible build, time-consuming testing

C4 Ambiguous test result

C5 Internal dependencies

C6 Broken build, ambiguous test result

C8 Unsuitable architecture, broken build

C11 Time-consuming testing

C14 Flaky tests, time-consuming testing

C17a Slow integration approval

C17e System modularization

C19 Lack of motivation

C21 Multi-platform testing

C25a Problematic deployment System modularization

C25c Unsuitable architecture

C26 Organizational structure

Fig. 11. Number of cases with critical problems in problem themes.

Commerciality. Commercial cases reported more often human and

organizational and resource problems. Non-commercial cases re-

ported more often testing problems than commercial cases.

4.4. Criticality of problems

The most critical problems for each case are listed in Table 15

and summarized by problem theme in Fig. 11 . The most critical

themes are system design and testing problems. Human and or-

ganization and integration problems were reported critical in a

smaller number of cases. Build design problems were reported crit-

ical in one case and no critical release or resource problems was

found.

Inflexible build was a critical build design problem in a single

case [C3a], where the case suffered from build complexity caused

by sharing the build system over multiple teams. The complexity

required extensive build maintenance effort. One should pay at-

tention to build design when adopting CD, in order to avoid large

build maintenance effort.

The most critical system design problems were internal depen-

dencies, unsuitable architecture and system modularization. Thus,

the architecture of the system as a whole can be seen as criti-

cal for successful CD adoption. Dependencies cause trouble when

72 E. Laukkanen et al. / Information and Software Technology 82 (2017) 55–79

Table 16

Solutions given in articles.

Theme Solutions

System design System modularization, hidden changes, rollback, redundancy

Integration Reject bad commits, no branches, monitor build length

Testing Test segmentation, test adaptation, simulator, test parallelization, database testing, testing tests, comprehensive testing,

commit-by-commit tests

Release Marketing blog, separate release processes

Human and organizational Remove blockages, situational help, demonstration, collaboration, social rules, more planning, low learning curve,

training, top-management strategy, communication

Resource Tooling, provide hardware resources

a change in one part of the system conflicts with other parts of

the system [C5]. Architecture can be unsuitable if different con-

figurations are developed in branches instead of using configura-

tion properties [C8], or if web services are causing latencies, de-

ployment and version synchronization issues [C25c]. Finally, sys-

tem modularization taken into too granular level causes additional

overhead [C17e] and consolidating multiple modules together can

simplify a complicated deployment process [C25a].

Broken build and slow integration approval were the most crit-

ical integration problems. In all of the cases broken build caused

the problem work blockage, that no further work could be deliv-

ered because of broken build. Broken build also switches off the

feedback mechanism of CD; developers do not receive feedback

about their changes anymore and technical debt can accumulate.

Slow integration approval was a critical problem in case C17a, be-

cause it slowed down the integration frequency.

The most critical testing problems were time-consuming test-

ing, ambiguous test result, flaky tests, multi-platform testing and

problematic deployment. Out of these, time-consuming testing was

the most critical in three cases, and ambiguous test result was the

most critical in two cases. The rest were critical in single cases.

Time-consuming testing, ambiguous test result and flaky tests are,

similar to critical integration problems, related to the feedback

mechanism CD provides. Either feedback is slowed down or its

quality is weakened. Multi-platform testing makes testing more

complex and it requires more resources to be put into testing, in

terms of hardware and effort [C21]. Finally, problematic deploy-

ment can be error-prone and time-consuming [C25a].

The most critical human and organizational problems were or-

ganizational structure and lack of motivation. Organizational struc-

ture was explicitly said to be the biggest challenge in an organiza-

tion with separate divisions [C26]. Finally, lack of motivation was a

critical problem in a case where the benefits needed to be demon-

strated to the developers [C19].

4.5. Solutions

Solutions were thematically synthesized into six themes. The

themes were the same as for the problems, except that build de-

sign theme did not have any solutions, probably because build

problems were discussed in two articles only. The solutions in the

themes are listed in Table 16 .

4.5.1. System design solutions

Four system design solutions were reported: system modulariza-

tion, hidden changes, rollback and redundancy (Table 17). The design

solutions considered what kind of properties the system should

have to enable adopting CD.

System modularization. System modularization was already men-

tioned to be a problem, but it was also reported as a solution. Sys-

tem modularization can prevent merge conflicts, because develop-

ers work on different parts of the code [C2]. Also, individual mod-

ules can be tested in isolation and deployed independently [C25b].

However, because of the problems reported with system modular-

ization, it should be applied with caution.

Hidden changes. Hidden changes include techniques how to de-

velop large features and other changes incrementally, thus solv-

ing the problem of large commits. One such technique is feature

toggles: parts of new features are integrated frequently, but they

are not visible to the users until they are ready and a feature tog-

gle is switched on in the configuration [C7, C14]. Another tech-

nique is branch by abstraction, which allows doing large refactor-

ing without disturbing other development work [C7]. Instead of

creating a branch in version control, the branch is created virtu-

ally in source code behind an abstraction. This method can be also

used for database schema changes [C7].

Rollback and redundancy. Rollback and redundancy are properties

of the system and are important when releasing the system. Roll-

back means that the system is built so that it can be downgraded

automatically and safely if a new version causes unexpected prob-

lems [C5]. Thus, rollback mechanism reduces the risk of deploying

more bugs. Redundancy means that the production system con-

tains multiple copies of the software running simultaneously. This

allows seamless updates, preserving customer data [C5] and reduc-

ing deployment downtime [C5, C25c].

4.5.2. Integration solutions

Three integration solutions were reported: reject bad commits,

no branches and monitor build length (Table 18). The integration so-

lutions are practices that take place during integration.

Reject bad commits. Reject bad commits is a practice where a com-

mit that is automatically detected to be bad, e.g., fails some tests, is

rejected from entering the mainline. Thus, the mainline is always

functional, builds are not broken [C8] and discipline is enforced

[C12].

No branches. No branches is a discipline that all the develop-

ment is done in the mainline and no other branch is allowed.

This prevents possible problems caused by long-running branches

[C7, C14]. To make the no branch discipline possible, the hid-

den changes design solution has to be practiced to make larger

changes.

Monitor build length. Monitor build length is a discipline where

keeping the build length short is prioritized over other tasks. A

certain criteria for build length is established and then the build

is monitored and actions are taken if the build length grows too

long [C3b].

4.5.3. Testing solutions

Eight testing solutions were reported: test segmentation, test

adaptation, simulator, test parallelization, database testing, testing

tests, comprehensive testing and commit-by-commit tests (Table 19).

Testing solutions are practices and solutions applied for testing.

E. Laukkanen et al. / Information and Software Technology 82 (2017) 55–79 73

Table 17

System design solutions reported in articles.

Solution Solves Description

System modularization Merge conflicts [C2], untestable code [C25b],

problematic deployment [C25b]

Modularize the system to units that can be independently

tested and deployed.

Hidden changes Large commits [C5, C7, C14], database schema

changes [C7]

Enable incremental development of large features and

changes with feature toggles and branch by abstraction.

Rollback More deployed bugs [C5] Build a rollback mechanism to revert updates if critical

bugs emerge.

Redundancy Customer data preservation [C5], deployment

downtime [C5, C25c]

Employ redundancy in production systems to allow

seamless upgrades.

Table 18

Integration solutions reported in articles.

Solution Solves Description

Reject bad commits Broken build [C8], lack of discipline [C12] Automatically reject commits that would break the build.

No branches Long-running branches [C7, C14] To prevent long-running branches causing problems, use a no-branch policy.

Monitor build length Time-consuming testing [C3b] Team actively monitors build length and takes action when it grows too long.

Table 19

Testing solutions reported in articles. Claimed solutions are marked with a star (∗).

Solution Solves Description

Test segmentation Time-consuming

testing [C2, C3a,

C13]

Segment tests based on speed, criticality and functionality. Solves time-consuming testing by running the most critical

tests first and others later only if the first tests pass.

Test adaptation Hardware testing

[C1, C8], ambiguous

test result [C15(∗)]

Tests are adapted so that later/manual tests are run earlier/automatically or vice versa. Hardware tests can be run with

simulator. Solves ambiguous test result problem when earlier tests point to the root cause of failure faster than in

later end-to-end tests.

Simulator Hardware testing

[C1, C8]

Custom hardware can be tested efficiently with a software simulator.

Test parallelization Time-consuming

testing [C1, C14]

Parallelizing tests to run simultaneously and on multiple machines speeds up testing.

Database testing Database schema

changes [C5]

Database schema changes can be tested similarly to other changes.

Testing tests Flaky tests [C14] Tests can be tested for flakiness.

Comprehensive

testing

Multi-platform

testing [C2]

Ensure that every platform is tested.

Commit-by-commit

tests

Ambiguous test

result [C2]

When tests are run for every commit, it is possible to know which change was responsible for a failure.

Test segmentation and adaptation. Two solutions were related to

the organization of test cases: test segmentation and test adapta-

tion. Test segmentation means that tests are categorized to differ-

ent suites based on functionality and speed. This way, the most

critical tests can be run first and other and slower tests later.

Developers get fast feedback from the critical and fast tests [C2,

C13]. Thus, test segmentation partially solves time-consuming test-

ing problem. One suggested solution was to run only the tests that

the change could possibly have an effect on. However, this does

not solve the problem for holistic changes that have an effect on

the whole system [C3a].

Test adaptation is a practice where the segmented test suites

are adapted based on the history of test runs. For example, a man-

ual test that has revealed a defect should be, if possible, automated

[C1]. Also an automated test that is run later but fails often should

be moved to be run earlier to provide fast feedback [C8]. Another

way test adaption is claimed to help is solving the problem of am-

biguous test result. When a high-level test fails, it might be diffi-

cult and time-consuming to find out why the fault occurred. There-

fore it is advised that low-level tests are created which reproduce

the fault and give an explicit location where the cause of the fault

is [C15].

Together with test adaptation, simulator solution can be used

for hardware testing. The benefits of the simulator are running oth-

erwise manual hardware tests automatically and more often [C1,

C8]. In addition, a simulator can run tests faster and more test

combinations can be executed in less time than with real hardware

[C1].

Test parallelization. Test parallelization means executing automated

tests in parallel instead of serially, decreasing the amount of time

to run the tests [C1, C14]. Tests can be run concurrently on a sin-

gle machine or they can be run on several machines. This solution

requires enough hardware resources for testing.

Database testing and testing tests. Database testing means that

database schema changes are tested in addition to source code

changes [C5]. Thus, they do not cause unexpected problems in the

production environment. Testing tests means that even tests can

be tested for flakiness [C14].

Comprehensive testing and commit-by-commit tests. Finally, com-

prehensive testing means that every target platform should be

tested [C2]. Commit-by-commit tests means that every change

should be tested individually, so when confronted with failing tests

it can be directly seen which change caused the failure [C2]. It is

often instructed that tests should be run for every commit in the

commit stage of CD (see Fig. 1). However, the further stages can

be more time-consuming and it might not be feasible to run the

74 E. Laukkanen et al. / Information and Software Technology 82 (2017) 55–79

Table 20

Release solutions reported in articles.

Solution Solves Description

Marketing blog Feature discovery [C5], marketing [C5] Instead of marketing individual versions, concentrate on features and blog about them.

Separate release processes Users do not like updates [C5] Let users decide whether they receive new updates or not.

Table 21

Human and organizational solutions reported in articles. Claimed solutions are marked with a star (∗).

Solution Solves Description

Remove blockages Broken build [C5, C6(∗)], merge

conflicts [C5], work blockage [C5]

Keeping the build unbroken and removing any blockages is the responsibility and

highest priority for whole team.

Situational help Lack of experience [C12] Providing help based on the situation at hand.

Demonstration Lack of motivation [C6, C19] Demonstrate the value of continuously running test suite.

Collaboration Changing roles [C5], organizational

structure [C26]

Instead of individual responsibility, the organization as a whole should be responsible

for delivery.

Social rules Lack of experience [C5] Adopt social rules that are easy to follow even by novices.

More planning Team coordination [C5] Apply more planning to coordinate teams.

Low learning curve Lack of experience [C5] Organize the adoption of continuous delivery so that no leap of expertise is needed.

Training Lack of discipline [C1] Make sure that the whole team is trained to practice continuous delivery.

Top-management strategy Lack of motivation [C5] Top-management can give a sense of direction for larger groups of people.

Communication More pressure [C5] Communicate feelings of pressure to relieve it.

stages for every commit. Comprehensive testing and commit-by-

commit tests ensure testing completeness and granularity. How-

ever, achieving both is tricky because comprehensive tests take

more time and it might not be feasible to run them for each com-

mit. Thus, test segmentation becomes necessary; certain tests are

executed for each commit but more comprehensive tests are exe-

cuted more seldom.

4.5.4. Release solutions

There were two reported release solutions: marketing blog and

separate release processes (Table 20). A marketing blog can be used

for marketing a versionless product and users can discover new

features at the blog [C5]. There might be certain user groups that

dislike the frequent updates, and a separate release processes could

be used for them [C5].

4.5.5. Human and organizational solutions

There were ten reported human and organizational solu-

tions: remove blockages, situational help, demonstration, collabora-

tion, social rules, more planning, low learning curve, training, top-

management strategy and communication (Table 21).

Remove blockages. Remove blockages is a practice that when a spe-

cific problem occurs, the whole team stops what they are doing

and solves the problem together. The problem can be either broken

build [C5, C6], merge conflicts [C5] or any other work blockage:

“Atlassian ensures that its OnDemand software is always deploy-

able by immediately stopping the entire team from performing

their current responsibilities and redirecting them to work on any

issue preventing the software from being deployed.”

–Case C5

Organizational culture change. The rest of the human and organi-

zational solutions are related to the adoption as an organizational

culture change. The organization should support more closer col-

laboration to adopt CD [C5, C26]. The change should be supported

with a top-management strategy [C5] and with more planning how

to organize the work [C5].

To reduce learning anxiety, low learning curve should be

achieved during the adoption [C5]. Situational help can be provided,

meaning that personal help is given when needed [C12]. The sys-

tem and value of it can be demonstrated to further motivate and

train stakeholders [C6, C19]. More formal training can be given to

teach specific skills [C1] and social rules can be adopted to ensure

a standardized process. Finally, a culture of open communication

should be established to relieve the pressure caused by the change

[C5].

4.5.6. Resource solutions

There were two reported resource solutions: tooling and provide

hardware resources (Table 22).

Tooling. Tooling is necessary to achieve discipline [C1], make test

results less ambiguous [C4], manage versionless documentation

[C5] and execute database schema changes in conjunction with

source code [C25c]. In addition, it was claimed in two sources that

setting up the initial CD environment takes a lot of effort and if

there was a standardized tooling available, it would make this ef-

fort smaller [C2, C26].

Provide hardware resources. Providing hardware resources can be

done to solve time-consuming testing [C2, C11] and otherwise in-

sufficient hardware resources [C4].

5. Discussion

In this section, we answer the research questions of the study

and discuss the results. We also discuss the overall limitations of

the study.

5.1. RQ1: What continuous delivery adoption problems have been

reported in major bibliographic databases?

We found 40 distinct CD adoption problems that were synthe-

sized into seven themes: build design, system design, integration,

testing, release, human and organizational, and resource problems.

Testing and integration problems were discussed the most (Fig. 5).

Thus, it seems that less studied themes are system design, human

and organizational, and resource problems, albeit that they were

still studied in several cases. Build design and release problems

were discussed in two cases only and are the least studied prob-

lems. In addition to problem quantity in the articles, we found that

testing and system design problems are the most critical in a large

number of cases (Fig. 11).

We believe that testing and integration problems are studied

the most, because they relate directly to the CI practice and thus

have been studied longer than other problems. CD, being a more

E. Laukkanen et al. / Information and Software Technology 82 (2017) 55–79 75

Table 22

Resource solutions reported in articles. Claimed solutions are marked with a star (∗).

Solution Solves Description

Tooling Lack of discipline [C1], ambiguous test result

[C4], documentation [C5], database schema

changes [C25c], effort [C26(∗), C2 (∗)]

Provide tooling to make the process easier to follow, to allow

interpreting the test result and to document a changing

software system.

Provide hardware

resources

Time-consuming testing [C2, C11], insufficient

hardware resources [C4]

Provide hardware resources for production-like test

environments and for parallelization if tests are too

time-consuming.

recent practice, has not been studied that much, and it could be

that the other problems emerge only after moving from the CI

practice to CD practice. In addition, technical aspects are also more

frequently studied in software engineering in general, in compari-

son to the human and organizational issues.

No other secondary study has considered problems when

adopting CD directly. Some of the attributes of the CI process

model developed by Ståhl and Bosch [9] relate to the problems we

found. For example, build duration relates to the time-consuming

testing problem. Thus, based on our study, the elements of the

model could be connected to the found problems and this could

help the users of the model to discover problems in their CI pro-

cess. After discovering the problems, the users could decide on

necessary solutions, if they want to adopt CD.

Some of the adoption actions described by Eck et al. [10] are

related to the problems we found. For example, one of the adop-

tion actions was decreasing test result latency, which relates with

the time-consuming testing problem. Although Eck et al. ranked

the adoption actions based on the adoption maturity, the rank-

ing cannot be compared to our categorization of initial and ad-

vanced cases. The ranking by Eck et al. considered adoption ma-

turity, while our categorization considered technical maturity. It

would have been difficult to interpret the adoption maturity from

the articles. Nevertheless, the ranking created by Eck et al. allows

relating the problems we found to the adoption maturities of the

cases. For example, using the ranking, it can be said that cases with

the broken build problem are less mature than cases solving the

time-consuming testing problem.

Other related literature studies that studied problems did not

study CD adoption problems but instead problems of CD [7] and

rapid releases [6] . Thus, they identified problems that would

emerge after adoption, not during it. Nevertheless, Rodriguez

et al. [7] identified that the adoption itself is challenging and that

additional QA effort is required during CD, which is similar to our

finding in the resource problem theme. However, their study was

a systematic mapping study and their intention was not to study

the problems in depth, but instead discover what kind of research

has been done in the area.

Some of the identified CD adoption problems are also CI adop-

tion problems, but some are not. For example, build design and

integration problems are clearly CI adoption problems. System de-

sign and testing problems are not as strictly CI adoption problems,

as some of the problems consider deployments and acceptance

testing which are not necessarily included in CI. Release problems

are not related to the adoption of CI at all. It is even question-

able are they really CD adoption problems or more specifically

rapid release adoption problems, since CD does not imply releasing

more often (difference between CD and rapid releases discussed

in Section 2.4). Human and organizational and resource problems

consider both CI and CD adoptions.

Although we achieved to identify different kinds of adop-

tion problems and their criticality, we cannot make claims how

widespread the problems are and why certain problems are more

critical than others. These limitations could be addressed in future

Fig. 12. Causal relationships between themes. Release theme did not have reported

causal relationships. The widths of the arrows are proportional to the number of

causes between themes and the number of cases that reported the causes.

studies that surveyed a larger population or investigated individual

cases in depth.

5.2. RQ2: What causes for the continuous delivery adoption problems

have been reported in major bibliographic databases?

Causes for the adoption problems were both internal and exter-

nal of the themes (Fig. 12). System design problems did not have

causes in other themes. Thus, system design problems can be seen

as root causes for problems when adopting CD. In addition, human

and organizational problems did not lead into problems in other

themes. Therefore, one could claim that these problems seem to

be only symptoms of other problems based on the evidence.

The design and testing themes had the largest effect on other

themes. In addition, the integration theme had a strong internal

causal loop. Thus, one should focus first on design problems, then

testing problems, and finally integration problems as a whole. Oth-

erwise one might waste effort on the symptoms of the problems.

Based on the contextual analysis (Fig. 10), more problems are

reported by post 2010, large and commercial cases that are aim-

ing for higher CD implementation maturity. We suspect that more

problems emerge in those contexts and that CD as a practice is es-

pecially relevant in those contexts. However, the selected articles

did not provide deep enough analysis on the connection between

the contextual variables and faced adoption problems. Since the

primary studies did not analyze the causal relationships between

the contextual variables and the challenges, it is not possible to

make such conclusions in this study either, merely based on the

contextual classification of the cases. In addition, the study popu-

lation was not appropriate for drawing statistical conclusions. This

could be a good subject for future studies.

The reason for the lack of contextual analysis in previous stud-

ies might be that the effort to conduct rigorous studies about the

causes of problems is quite high. This is because in the context

of software development, problems are often caused by multiple

interacting causes [16] , and understanding them requires a lot of

careful investigation.

76 E. Laukkanen et al. / Information and Software Technology 82 (2017) 55–79

Fig. 13. Solutions between themes. Each theme had internal solutions. The widths

of the arrows are proportional to the number of solutions between themes and the

number of cases that reported the solutions.

The analyzed cases were from multiple kinds of development

contexts (see Appendix B) and there were no substantial contex-

tual differences regarding the problems and solutions, except for

the obvious differences, e.g., that network latencies can be a prob-

lem only for distributed organizations. Thus, it seems that other-

wise the problems and their solutions are rather general in nature.

We see that the amount of identified causal relationships does

not yet cover the whole phenomenon of CD adoption. For 40 iden-

tified concepts of problems, we identified 28 causal relationships

between the concepts, which seems to be less than expected. In

contrast, when studying software project failures [16] , the amount

of identified causal relationships is much higher. We believe this

was caused by the fact that academic articles are not necessar-

ily the best material for causal analysis if the research focus of

the articles is not to identify causal relationships. In future stud-

ies, causal analysis could be done by investigating the causes in

individual case studies.

No other secondary study researched causes of the problems

when adopting CD and thus no comparison to other studies can

be done regarding this research question.

5.3. RQ3: What solutions for the continuous delivery adoption

problems have been reported in major bibliographic databases?

Besides that each solution theme had internal solutions, many

solutions in themes solved problems in other themes (Fig. 13).

Testing, human and organizational and release solutions clearly

were solving most of the problems internally while other solutions

solved more problems in other themes. All other problem themes

have multiple and verified solutions except the build and system

design problem themes. Because the system design problems were

common, had a large causal impact and lacked specific solutions,

they could be determined as the largest problems when adopting

CD.

The found solutions can be compared to the work by Ståhl and

Bosch [9] . For example, test separation and system modularization

attributes relate to the solution test segmentation. Thus, our col-

lected solutions can be used to extend the model developed by

Ståhl and Bosch, giving some of the attributes a positive quality.

It seems that generally there are no unsolved CD adoption prob-

lems. Thus, in principle, adopting CD should be possible in vari-

ous contexts. However, solving the adoption problems might be to

costly for some organizations, and thus CD adoption might turn

out to be unfeasible if the costs override the benefits. Organiza-

tions who are planning to adopt CD can use this article as a check-

list to predict what problems might emerge during the adoption

and estimate the costs of preventing those problems. One should

not blindly believe that adopting CD is beneficial for everyone; in-

stead, a feasibility study should precede the adoption decision.

5.4. Limitations

Most of the selected articles were experience reports. This lim-

its the strength of evidence whether the causal relationships are

real, whether the most critical problems were indeed the most

critical and whether the solutions actually solved the problems.

The data collection and the analysis of the results in the study

required interpretation. The filtering strategies contained interpre-

tative elements and thus results from them might vary if repli-

cated. During data extraction, some problems might have been

missed and some problems might be just interpretations of the

authors. This applies to causes and solutions too. The contextual

categorization might be biased, because not all articles provided

enough information to execute the categorization with more rigor.

The studied sample of cases was from major bibliographic

databases. There might be more successful and more problematic

cases outside this sample. Publication bias inherently skews the

sample towards a view where there are less problems than in re-

ality.

Most of the articles focused on CI instead of CD, which can be

seen to threat the validity of the study. One of the reasons for the

scarcity of CD studies is that the concept of CD was introduced in

2010 [1] and some of the older articles using the term CI actually

could be compared to other CD cases. It was difficult to determine

whether a case was indeed practicing CI or CD just based on the

articles.

The difference between CI and CD is not clearly defined in com-

mon use, and even academics have used the term CI while refer-

ring to the definition of CD [10] . However, it is commonly agreed

that practicing CD includes practicing CI too. Thus, depending on

the starting point of a CD adopter, also CI adoption problems might

be relevant if they have not been addressed beforehand.

Just based on the articles, we cannot claim that a certain case

did not have a certain problem if it was not reported. To actually

answer question such as, “What were the problems in a case?” and

“What problems did the case not have?”, the results of this study

need to be operationalized as a research instrument in field stud-

ies.

6. Conclusions

Software engineering practitioners have tried to improve their

delivery performance by adopting CD. Despite the existing instruc-

tions, during the adoption practitioners have faced numerous prob-

lems. In addition, causes and solutions for the problems have been

reported. In this study, we asked the following research questions

and provided answers for them through a systematic literature re-

view:

RQ1. What continuous delivery adoption problems have been

reported in major bibliographic databases? Problems ex-

ist in the themes of build design, system design, integration,

testing, release, human and organizational and resource.

RQ2. What causes for the continuous delivery adoption

problems have been reported in major bibliographic

databases? Causes exist mostly in the themes of system de-

sign and testing, while integration problems have many in-

ternal causal relationships.

RQ3. What solutions for the continuous delivery adoption

problems have been reported in major bibliographic

databases? All themes have solutions on their own, but

themes of system design, resource and human and organi-

zational have the most effect on other themes.

E. Laukkanen et al. / Information and Software Technology 82 (2017) 55–79 77

System design problems are mentioned in many articles, cause

multiple other problems but lack support for solving them. Thus,

they are the largest problems when adopting CD.

Compared to previous secondary studies, ours has dramatically

increased the understanding of problems, their causes and solu-

tions when adopting CD. We identified a larger number of prob-

lems and describe the causal chains behind the adoption prob-

lems. Our results improve the understanding of the problems by

investigating their interconnected causes and help practitioners by

proposing solutions for the problems.

Software development organizations who are planning to adopt

CD should pay attention to the results of this study. First, inves-

tigate in which theme your problems reside. Second, use the re-

ported causal chains to help reason about whether the problems

might be caused by problems in another theme. Finally, implement

the adequate solutions either for the problems or their causes.

6.1. Future work

The problems, causes and solutions should be investigated in

further field studies. Especially system design problems would be

interesting to research further, because they seemed to have a

large impact but not many solutions. Individual problems and so-

lutions could be studied to deepen the understanding of the prob-

lems and give more detailed instructions how to apply the so-

lutions. The build design and release problems could be studied

more, although studying release problems requires a rather mature

case with a frequent release cadence.

In addition, human and organizational problems could be com-

pared to more general theories of organizational change, decision

making and learning. Is there something specific with adopting CD

or can the problems be generalized for other kinds of change too?

Based on our study, the current collection of human and organiza-

tional problems are generic for other kinds of changes.

Acknowledgments

This work was supported by TEKES as part of the Need for

Speed research program of DIMECC (Finnish Strategic Center for

Science, Technology and Innovation in the field of ICT and digital

business).

Appendix A. Selected papers (rows in italics identify duplicate

cases)

Paper Case Authors Year Title Source

P1 C1 Basarke Christian, Berger

Christian, Rumpe Bernhard

2007 Software & systems engineering process and tools

for the development of autonomous driving

intelligence

Journal of Aerospace Computing, Information and

Communication

P2 C2 Betz Robin M., Walker Ross C. 2013 Implementing continuous integration software in

an established computational chemistry software

package

Software Engineering for Computational Science

and Engineering (SE-CSE), 2013 5th International

Workshop on

P3 C2 Betz Robin M., Walker Ross C. 2014 Streamlining Development of a Multimillion-Line

Computational Chemistry Code

Computing in Science Engineering

P4 C3(a,b) Brooks Graham 2008 Team Pace – Keeping Build Times Down Agile Conference

P5 C4 Cannizzo Fabrizio, Clutton

Robbie, Ramesh Raghav

2008 Pushing the Boundaries of Testing and Continuous

Integration

Agile Conference

P6 C5 Claps Gerry, Svensson Richard

Berntsson, Aurum Aybüke

2014 On the journey to continuous deployment:

technical and social challenges along the way

Information and Software Technology

P7 C6 Downs John, Hosking John,

Plimmer Beryl

2010 Status Communication in Agile Software Teams: A

Case Study

Proceedings of the 2010 Fifth International

Conference on Software Engineering Advances

P8 C6 Downs John, Plimmer Beryl,

Hosking John G.

2012 Ambient awareness of build status in collocated

software teams

Software Engineering (ICSE), 2012 34th

International Conference on

P9 C7 Feitelson Dror, Frachtenberg

Eitan, Beck Kent

2013 Development and Deployment at Facebook IEEE Internet Computing

P10 C8 Gruver Gary, Young Mike,

Fulghum Pat

2012 A Practical Approach to Large-Scale Agile

Development: How HP Transformed LaserJet

FutureSmart Firmware

ISBN: 9780321821720

P11 C9(a,b) Holck Jesper, Jørgensen Niels 2007 Continuous integration and quality assurance: A

case study of two open source projects

Australasian Journal of Information Systems

P12 C10 Kim Seojin, Park Sungjin, Yun

Jeonghyun, Lee Younghoo

2008 Automated Continuous Integration of

Component-Based Software: An Industrial

Experience

Proceedings of the 2008 23rd IEEE/ACM

International Conference on Automated Software

Engineering

P13 C11 Lacoste Francis J. 2009 Killing the Gatekeeper: Introducing a Continuous

Integration System

Agile Conference

P14 C12 Merson Paulo 2013 Ultimate Architecture Enforcement: Custom Checks

Enforced at Code-commit Time

Proceedings of the 2013 Companion Publication for

Conference on Systems, Programming, &

Applications: Software for Humanity

P15 C13 Miller Ade 2008 A Hundred Days of Continuous Integration Agile Conference

P16 C14 Neely Steve, Stolt Steve 2013 Continuous Delivery? Easy! Just Change Everything

(Well, Maybe It Is Not That Easy)

Agile Conference

P17 C15 Shen Tzu-Chiang, Soto Ruben,

Mora Matias, Reveco Johny,

Ibsen Jorge

2012 ALMA operation support software and

infrastructure

Proceedings of SPIE - The International Society for

Optical Engineering

P18 C15 Soto Ruben, González Víctor,

Ibsen Jorge, Mora Matias, Sáez

Norman, Shen Tzu-Chiang

2012 ALMA software regression tests: The evolution

under an operational environment

Proceedings of SPIE - The International Society for

Optical Engineering

P19 C16 Ståhl Daniel, Bosch Jan 2013 Experienced benefits of continuous integration in

industry software product development: A case

study

IASTED Multiconferences - Proceedings of the

IASTED International Conference on Software

Engineering, SE 2013

P20 C17(a–e) Ståhl Daniel, Bosch Jan 2014 Automated Software Integration Flows in Industry:

A Multiple-case Study

Companion Proceedings of the 36th International

Conference on Software Engineering

(continued on next page)

78 E. Laukkanen et al. / Information and Software Technology 82 (2017) 55–79

(continued)

Paper Case Authors Year Title Source

P21 C18 Ståhl Daniel, Bosch Jan 2014 Modeling Continuous Integration Practice

Differences in Industry Software Development

Journal of Systems and Software

P22 C19 Stolberg Sean 2009 Enabling Agile Testing Through Continuous

Integration

Agile Conference

P23 C20 Sturdevant Kathryn F. 2007 Cruisin’ and Chillin’: Testing the Java-Based

Distributed Ground Data System “Chill” with

CruiseControl System “Chill” with CruiseControl

Aerospace Conference, 2007 IEEE

P24 C21 Su Tao, Lyle John, Atzeni,rea,

Faily Shamal, Virji Habib,

Ntanos Christos, Botsikas

Christos

2013 Continuous integration for web-based software

infrastructures: Lessons learned on the webinos

project

Lecture Notes in Computer Science (including

subseries Lecture Notes in Artificial Intelligence

and Lecture Notes in Bioinformatics)

P25 C22 Süß Jörn Guy, Billingsley

William

2012 Using Continuous Integration of Code and Content

to Teach Software Engineering with Limited

Resources

Proceedings of the 34th International Conference

on Software Engineering

P26 C23 Yuksel H. Mehmet, Tuzun Eray,

Gelirli Erdo ̌gan, Biyikli Emrah,

Baykal Buyurman

2009 Using continuous integration and automated test

techniques for a robust C4ISR system

Computer and Information Sciences, 2009. ISCIS

2009. 24th International Symposium on

P27 C24 Zaytsev Yury V., Morrison

Abigail

2012 Increasing quality and managing complexity in

neuroinformatics software development with

continuous integration

Frontiers in neuroinformatics

P28 C25(a–c) Bellomo, S., Ernst, N., Nord, R.,

Kazman, R.

2014 Toward Design Decisions to Enable Deployability:

Empirical Study of Three Projects Reaching for the

Continuous Delivery Holy Grail

Dependable Systems and Networks (DSN), 2014

44th Annual IEEE/IFIP International Conference on

P29 C26 Chen, L. 2015 Continuous Delivery: Huge Benefits, But Challenges

Too

IEEE Software

P30 C27 Debbiche, A., Dienér, M.,

Berntsson Svensson, R.

2014 Challenges When Adopting Continuous Integration:

A Case Study

The 15th International Conference of Product

Focused Software Development and Process

Improvement (Profes)

Appendix B. Cases

Table B.1

Cases, categories and themes of reported problems. B = Build Design, S = System Design, I = Integration, T = Testing, Rel = Release, H = Human and Organizational,

Res = Resource Problems.

Case Description Time # of Devs Maturity Context B S I T Rel H Res

C1 DARPA Urban Challenge, self-driving car 2007 Medium CD Non-commercial – – – � – � –

C2 Amber, chemistry simulation toolkit 2014 Medium CI Non-commercial � � – � – – �

C3a Java EE service 2007 Small CI Commercial � � � � – – �

C3b Web application 2007 Small CI Commercial – – – – – – –

C4 BT, telecommunications service 2007 Small CD Commercial – – – � – – �

C5 Atlassian, web applications 2012 Medium CD Commercial – � � – � � �

C6 N/A 2012 Small CI Commercial – – � � – � –

C7 Facebook, web application 2012 Large CD Commercial – – – – – – –

C8 HP, Futuresmart firmware 2012 Large CD Commercial – � � � – – �

C9a FreeBSD, operating system 2002 Medium CI Non-commercial – – � � – – –

C9b Firefox, web browser 2002 Medium CI Non-commercial – – – � – – –

C10 Samsung, Linux distribution for mobile devices 2008 Medium CI Commercial – – – – – � –

C11 Launchpad, web application 2009 Medium CI Non-commercial – – � � – � –

C12 TCU Brazil, Java applications 2013 Medium CI Commercial – – – – – � –

C13 Microsoft, Web Service Software Factory SDK 2007 Small CI Commercial – – � � – – �

C14 Rally Software, web application 2012 Medium CD Commercial – – � � – � –

C15 ALMA, scientific high-precision antenna array 2012 Medium CI Non-commercial – – – � – – –

C16 Ericsson, multiple products 2013 Medium CI Commercial – – – – – – –

C17a Ericsson product 2014 Large CI Commercial – – � � – – –

C17b Saab AB, military aircraft support system 2014 Small CI Commercial – – – – – – –

C17c Saab AB, military aircraft visualization system 2014 Small CI Commercial – – – – – – –

C17d Volvo Cars, electric vehicle on-board software 2014 Medium CI Commercial – – – – – – –

C17e Jeppesen, airline fleet and crew management 2014 Medium CI Commercial – � – – – – �

C18 Ericsson, component of a network node 2014 Medium CI Commercial – – – – – – –

C19 C# application 2008 Small CI Commercial – – – – – � �

C20 NASA, MPCS Chill, ground data system 2006 Small CI Non-commercial – – – – – – –

C21 Webinos, web-based software infrastructure 2013 Medium CI Non-commercial – � � � – – –

C22 Engineering course, Robocode 2011 Medium CI Non-commercial – � � � – – –

C23 Command and control system 2009 Medium CI Non-commercial – – – – – – –

C24 NEST, neuronal network simulator 2012 Medium CI Non-commercial – – � – – – –

C25a Federal business systems 2014 Small CD Commercial – � – � – – –

C25b Virtual learning environment 2014 Small CD Commercial – – – – – – –

C25c Sales portal 2014 Medium CD Commercial – � – � – – –

C26 Paddy Power, multiple systems 2014 Small CD Commercial – � – – – � �

C27 Swedish telecommunications company 2014 Large CI Commercial – – � � – � –

E. Laukkanen et al. / Information and Software Technology 82 (2017) 55–79 79

References

[1] J. Humble , D. Farley , Continuous Delivery: Reliable Software Releases Through

Build, Test, and Deployment Automation, 1st, Addison-Wesley Professional,

2010 .
[2] M. Fowler, Continuous Delivery, 2013,

[3] D. Ståhl , J. Bosch , Automated software integration flows in industry: a multi-
ple-case study, in: Companion Proceedings of the 36th International Confer-

ence on Software Engineering, 2014, pp. 54–63 . New York, NY, USA.
[4] A. Debbiche , M. Dienér , R. Berntsson Svensson , Challenges when adopting con-

tinuous integration: a case study, in: Product-Focused Software Process Im-

provement, in: Lecture Notes in Computer Science, 8892, Springer Interna-
tional Publishing, 2014, pp. 17–32 .

[5] G.G. Claps , R.B. Svensson , A. Aurum , On the journey to continuous deployment:
technical and social challenges along the way, Inf. Softw. Technol. 57 (0) (2015)

21–31 .
[6] M.V. Mäntylä, B. Adams, F. Khomh, E. Engström, K. Petersen, On rapid re-

leases and software testing: a case study and a semi-systematic litera-
ture review, Empirical Softw. Eng. 20 (5) (2015) 1384–1425, doi: 10.1007/

s10664- 014- 9338- 4 .

[7] P. Rodríguez, A. Haghighatkhah, L.E. Lwakatare, S. Teppola, T. Suomalainen,
J. Eskeli, T. Karvonen, P. Kuvaja, J.M. Verner, M. Oivo, Continuous deployment of

software intensive products and services: a systematic mapping study, J. Syst.
Softw. (2016), doi: 10.1016/j.jss.2015.12.015 .

[8] D. Ståhl , J. Bosch , Experienced benefits of continuous integration in industry
software product development: a case study, in: IASTED Multiconferences -

Proceedings of the IASTED International Conference on Software Engineering,

SE 2013, 2013, pp. 736–743 .
[9] D. Ståhl , J. Bosch , Modeling continuous integration practice differences in in-

dustry software development, J. Syst. Softw. 87 (2014) 48–59 .
[10] A. Eck , F. Uebernickel , W. Brenner , Fit for continuous integration: how orga-

nizations assimilate an agile practice, in: Twentieth Americas Conference on
Information Systems, 2014 . Savannah, Georgia, USA.

[11] M. Fowler, Continuous Integration, 2006.

[12] M. Meyer, Continuous integration and its tools, IEEE Softw. 31 (3) (2014) 14–
16, doi: 10.1109/MS.2014.58 .

[13] T. Fitz, Continuous Deployment, 2009.
[14] H. Holmström Olsson, H. Alahyari, J. Bosch, Climbing the “Stairway to Heaven”

- a multiple-case study exploring barriers in the transition from agile develop-
ment towards continuous deployment of software, in: Proceedings of the 2012

38th Euromicro Conference on Software Engineering and Advanced Applica-

tions, 2012, pp. 392–399, doi: 10.1109/SEAA.2012.54 . Washington, DC, USA.

[15] B. Adams , S. McIntosh , Modern release engineering in a nutshell: why re-
searchers should care, in: 2016 IEEE 23rd International Conference on Soft-

ware Analysis, Evolution, and Reengineering (SANER), 5, 2016, pp. 78–90 .
[16] T.O. Lehtinen , M.V. Mäntylä, J. Vanhanen , J. Itkonen , C. Lassenius , Perceived

causes of software project failures–an analysis of their relationships, Inf. Softw.
Technol. 56 (6) (2014) 623–643 .

[17] V. Garousi, M. Felderer, M.V. Mäntylä, The need for multivocal literature re-
views in software engineering: complementing systematic literature reviews

with grey literature, in: Proceedings of the 20th International Conference on

Evaluation and Assessment in Software Engineering, ACM Press, 2016, pp. 1–6,
doi: 10.1145/2915970.2916008 .

[18] B. Kitchenham , Guidelines for performing systematic literature reviews in soft-
ware engineering, Technical Report, Keele University Technical Report, 2007 .

[19] S. Jalali , C. Wohlin , Systematic literature studies: database searches vs. back-
ward snowballing, in: Proceedings of the ACM-IEEE international symposium

on Empirical software engineering and measurement, ACM, 2012, pp. 29–38 .

[20] V. García-Díaz , B. G-Bustelo , O. Sanjuán-Martínez , J. Lovelle , Towards an adap-
tive integration trigger, Adv. Intell. Soft Comput. 79 (2010) 459–462 .

[21] A. Strauss , J. Corbin , Basics of Qualitative Research: Techniques and Procedures
for Developing Grounded Theory, SAGE Publications, 1998 .

[22] ATLAS.ti, 2014.
[23] D.S. Cruzes , T. Dybå, Recommended steps for thematic synthesis in software

engineering, in: Empirical Software Engineering and Measurement (ESEM),

2011 International Symposium on, IEEE, 2011, pp. 275–284 .
[24] J. Cohen, A coefficient of agreement for nominal scales, Educ. Psychol. Meas.

20 (1) (1960) 37–46, doi: 10.1177/0 013164460 020 0 0104 .
[25] J.R. Landis, G.G. Koch, The measurement of observer agreement for categorical

data, Biometrics 33 (1) (1977) 159–174, doi: 10.2307/2529310 .
[26] K. Beck , Extreme Programming Explained: Embrace Change, Addison-Wesley

Professional, 20 0 0 .

[27] M.Q. Patton , Qualitative Research & Evaluation Methods, 3rd, SAGE Publica-
tions, 2002 . Published: Hardcover.

[28] M. Csikszentmihalyi , Flow: the Psychology of Optimal Experience, 41, Harper-
Perennial New York, 1991 .

http://refhub.elsevier.com/S0950-5849(16)30232-4/sbref0001
http://refhub.elsevier.com/S0950-5849(16)30232-4/sbref0001
http://refhub.elsevier.com/S0950-5849(16)30232-4/sbref0001
http://refhub.elsevier.com/S0950-5849(16)30232-4/sbref0002
http://refhub.elsevier.com/S0950-5849(16)30232-4/sbref0002
http://refhub.elsevier.com/S0950-5849(16)30232-4/sbref0002
http://refhub.elsevier.com/S0950-5849(16)30232-4/sbref0002
http://refhub.elsevier.com/S0950-5849(16)30232-4/sbref0003
http://refhub.elsevier.com/S0950-5849(16)30232-4/sbref0003
http://refhub.elsevier.com/S0950-5849(16)30232-4/sbref0003
http://refhub.elsevier.com/S0950-5849(16)30232-4/sbref0003
http://refhub.elsevier.com/S0950-5849(16)30232-4/sbref0004
http://refhub.elsevier.com/S0950-5849(16)30232-4/sbref0004
http://refhub.elsevier.com/S0950-5849(16)30232-4/sbref0004
http://refhub.elsevier.com/S0950-5849(16)30232-4/sbref0004
http://dx.doi.org/10.1007/s10664-014-9338-4
http://dx.doi.org/10.1016/j.jss.2015.12.015
http://refhub.elsevier.com/S0950-5849(16)30232-4/sbref0007
http://refhub.elsevier.com/S0950-5849(16)30232-4/sbref0007
http://refhub.elsevier.com/S0950-5849(16)30232-4/sbref0007
http://refhub.elsevier.com/S0950-5849(16)30232-4/sbref0008
http://refhub.elsevier.com/S0950-5849(16)30232-4/sbref0008
http://refhub.elsevier.com/S0950-5849(16)30232-4/sbref0008
http://refhub.elsevier.com/S0950-5849(16)30232-4/sbref0009
http://refhub.elsevier.com/S0950-5849(16)30232-4/sbref0009
http://refhub.elsevier.com/S0950-5849(16)30232-4/sbref0009
http://refhub.elsevier.com/S0950-5849(16)30232-4/sbref0009
http://refhub.elsevier.com/S0950-5849(16)30232-4/sbref0009
http://dx.doi.org/10.1109/MS.2014.58
http://dx.doi.org/10.1109/SEAA.2012.54
http://refhub.elsevier.com/S0950-5849(16)30232-4/sbref0012
http://refhub.elsevier.com/S0950-5849(16)30232-4/sbref0012
http://refhub.elsevier.com/S0950-5849(16)30232-4/sbref0012
http://refhub.elsevier.com/S0950-5849(16)30232-4/sbref0013
http://refhub.elsevier.com/S0950-5849(16)30232-4/sbref0013
http://refhub.elsevier.com/S0950-5849(16)30232-4/sbref0013
http://refhub.elsevier.com/S0950-5849(16)30232-4/sbref0013
http://refhub.elsevier.com/S0950-5849(16)30232-4/sbref0013
http://refhub.elsevier.com/S0950-5849(16)30232-4/sbref0013
http://dx.doi.org/10.1145/2915970.2916008
http://refhub.elsevier.com/S0950-5849(16)30232-4/sbref0015
http://refhub.elsevier.com/S0950-5849(16)30232-4/sbref0015
http://refhub.elsevier.com/S0950-5849(16)30232-4/sbref0016
http://refhub.elsevier.com/S0950-5849(16)30232-4/sbref0016
http://refhub.elsevier.com/S0950-5849(16)30232-4/sbref0016
http://refhub.elsevier.com/S0950-5849(16)30232-4/sbref0017
http://refhub.elsevier.com/S0950-5849(16)30232-4/sbref0017
http://refhub.elsevier.com/S0950-5849(16)30232-4/sbref0017
http://refhub.elsevier.com/S0950-5849(16)30232-4/sbref0017
http://refhub.elsevier.com/S0950-5849(16)30232-4/sbref0017
http://refhub.elsevier.com/S0950-5849(16)30232-4/sbref0018
http://refhub.elsevier.com/S0950-5849(16)30232-4/sbref0018
http://refhub.elsevier.com/S0950-5849(16)30232-4/sbref0018
http://refhub.elsevier.com/S0950-5849(16)30232-4/sbref0019
http://refhub.elsevier.com/S0950-5849(16)30232-4/sbref0019
http://refhub.elsevier.com/S0950-5849(16)30232-4/sbref0019
http://dx.doi.org/10.1177/001316446002000104
http://dx.doi.org/10.2307/2529310
http://refhub.elsevier.com/S0950-5849(16)30232-4/sbref0022
http://refhub.elsevier.com/S0950-5849(16)30232-4/sbref0022
http://refhub.elsevier.com/S0950-5849(16)30232-4/sbref0023
http://refhub.elsevier.com/S0950-5849(16)30232-4/sbref0023
http://refhub.elsevier.com/S0950-5849(16)30232-4/sbref0023
http://refhub.elsevier.com/S0950-5849(16)30232-4/sbref0024
http://refhub.elsevier.com/S0950-5849(16)30232-4/sbref0024

