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h i g h l i g h t s

� Mutations in APP, PSEN1 and PSEN2
are known factors for AD
pathobiology.

� CRISPR/Cas9 genome editing
approach hold promises in AD
management.

� CRISPR/Cas9 is utilized to help correct
anomalous genetic functions.

� Off-target mutations may impair the
functionality of edited cells.

� Non-viral vectors show better efficacy
and safety than viral vectors.
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Background: Alzheimer’s disease (AD) is an insidious, irreversible, and progressive neurodegenerative
health condition manifesting as cognitive deficits and amyloid beta (Ab) plaques and neurofibrillary tan-
gles. Approximately 50 million individuals are affected by AD, and the number is rapidly increasing glob-
ally. This review explores the role of CRISPR/Cas9 gene editing in the management of AD and its clinical
manifestations.
Aim of Review: This review aims to provide a deep insight into the recent progress in CRISPR/Cas9-
mediated genome editing and its use against neurodegenerative disorders, specifically AD. However,
we have referred to its use against parkinsons’s disease (PD), Huntington’s disease (HD), and other human
diseases, as is one of the most promising and emerging technologies for disease treatment.
Key Scientific Concepts of Review: The pathophysiology of AD is known to be linked with gene mutations,

that is, presenilin (PSEN) and amyloid beta precursor protein (APP). However, clinical trials focused at the
genetic level could not meet the desired efficiency. The CRISPR/Cas9 genome editing tool is one of the
most powerful technologies for correcting inconsistent genetic signatures and now extensively used
for AD management. It has significant potential for the correction of undesired gene mutations associated
with AD. This technology has allowed the development of empirical AD models, therapeutic lines, and
diagnostic approaches for better understanding the nervous system, from in vitro to in vivo models.
� 2022 The Authors. Published by Elsevier B.V. on behalf of Cairo University. This is an open access article

under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

Alzheimer’s disease (AD) is a major worldwide health concern
with enormous social and economic impact [1]. The slow decline
in cognitive function and irreversible neuronal loss are the primary
etiological manifestations of the disease. AD is a chronic neurode-
generative condition in which cognition and memory formation
gradually deteriorate due to an irreversible neuron loss. It is char-
acterized by the formation and accumulation of amyloid-beta 42
(Ab42) and phosphorylated Tau, along with excessive glial cell acti-
vation. Further, impaired synaptic function and insufficient neu-
rotrophin signaling are important characteristics of AD. Primary
symptoms include memory loss, apathy, depression, and irritabil-
ity [2]. Despite substantial researches, the etiology, pathophysiol-
ogy, and mechanisms of both cognitive impairment and synaptic
dysfunction are not well characterized. In addition, the available
therapeutic options are merely symptomatic and supportive, with
side effects such as confusion, dizziness, depression, constipation,
and diarrhea [3]. Progress towards effective disease-modifying
therapies has proven challenging despite the wealth of knowledge
on the molecular underpinnings of AD. For instance, several clinical
trials have failed to meet efficacy standards against Ab production,
accumulation, and toxicity. This put questions on the amyloid beta
hypothesis and advocates for additional treatment strategies. One
of the very important and recently invented strategies, clustered
regularly interspaced short palindromic repeats/CRISPR-
associated proteins 9 system (CRISPR/Cas9) gene editing, attracted
attention for possible benefits in the management and treatment of
AD. This emerging technology is relatively straightforward, inex-
pensive, and precise, which has led to an increased interest in this
technique for neurodegenerative diseases (NDDs). This can be uti-
lized as a direct treatment approach or may assist in establishing
better animal models that faithfully mimic human NDDs. Though,
this technique has shown promise in other NDDs such as Hunting-
ton’s disease (HD) and Parkinson’s disease (PD). But, the potential
of this technology in the management of AD has not been thor-
oughly discussed or documented elsewhere. Therefore, the pur-
pose of this review was to examine the potential utility of
CRISPR/Cas9 as a treatment option for AD by targeting specific
genes, including those that cause early onset AD, as well as those
that are significant risk factors for late-onset AD such as the
apolipoprotein E4 (APOE4) gene. This review also discusses various
delivery systems that help in the proper and targeted delivery of
CRISPR/Cas9 cargo in cells.

Alzheimer’s disease at a glance

AD is a ubiquitous form of dementia that affects the health of
millions of individuals globally. Despite being known for over a
century, numerous questions about its pathophysiology are yet
to be answered. The standard clinical characteristics of AD are dis-
played by diminished cognitive abilities, including memory, recog-
nition, judgment, and problem solving [4-6]. Studies on the AD
brain revealed neuropathological changes that represent the hall-
marks of the condition, such as intracellular neurofibrillary tangles
(NFTs) comprising hyperphosphorylated Tau and accumulation of
extracellular Ab plaques [7-9]. In early onset AD, symptoms are
exhibited in individuals aged between 30 and 65 years and is pri-
marily genetic, as observed in > 92% cases reported [6], whereas in
late onset AD, symptoms start after 65 years of age. As per a 2019
report, >5.8 million individuals in the United States (USA) alone
have been diagnosed with AD, out of which 45% of subjects are
reported in the 75–84 years group [10]. The constantly increasing
numbers of affected patients leads to projections of approximately
14 million in the USA by 2050 [11].

Mostly, the disease is believed to be due to external factors
other than genetic predisposition. The amyloid hypothesis explains
Ab formation and aggregation in the brain. This hypothesis states
that amyloid beta precursor protein (APP) undergoes proteolysis
due to the concerted activities of a-, b-, and c-secretases. An
increase in b-secretase 1 (BACE1) activity is responsible for AD
owing to aggregation of Ab monomers into oligomers, and conse-
quently the generation and deposition of Ab plaques. Furthermore,
BACE1-cleaved APP leads to the formation of a C99 fragment fur-
ther cleaved by the c-secretase to produce Ab monomers Ab40
and Ab42. Interestingly, the a-secretase can also cleave APP at var-
ious sites, thus curtailing Ab monomer generation (Fig. 1A) [12].

The amyloid hypothesis explains Ab formation; similarly, NFT
formation in AD brains is revealed by the popular Tau hypothesis.
Tau, a well-known microtubule associated protein, plays a pivotal
role in the formation and stabilization of the microtubule
cytoskeleton [13]. It has been reported that out of six Tau isoforms,
3R and 4R are prominent in adult human axons. Multiple phos-
phates and kinases have Tau as target. In the AD brain, Tau iso-
forms 3R and 4R can accumulate in hyperphosphorylated form
and cause NFT formation in neuronal tissues, if present in neuronal
cell axons and bodies, leading to Tau pathology. As recently sug-
gested, Tau oligomers can be neuropathology-mediating
microstructures or potential molecular initiators in AD (Fig. 1B)
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[14]. Furthermore, a possible molecular link between Ab deposi-
tion and NFT formation has also been reported. The latter has been
reported to inhibit neuronal viability, neuroplasticity, and altered
microtubule assembly, along with inhibition of mitochondrial
transportation along microtubules. Hence, Tau neurotoxicity may
be driving an event downstream from Ab polymerization, and be
responsible for the neurotoxicity caused by Tau [15]. However, this
hypothesis needs to be experimentally confirmed.

The introduction of the amyloid beta hypothesis provided direc-
tions for the development and testing of therapeutic agents for dis-
ease modification, which mutually enhance clearance of toxic
peptides out of the brain and prevent Ab formation [16]. Unfortu-
nately, >400 clinical trials conducted over the decade when the last
drug for AD was approved have failed. The drug only offered tem-
porary treatment for AD symptoms. A significantly high attrition
rate was indicated by an analysis of various clinical trials involving
AD between 2002 and 2012, with a mere overall success rate of
only 0.4%, with a 99.5% failure rate [11]. Despite the many plausi-
ble reasons behind the failure of these clinical trials, a widely-
agreed view is that the disease stage was too advanced for any
anti-Ab drugs to impact cognition. Due to the considerable failure
on present approaches focused on modifying the disease, other
probable treatment methodologies, such as genome editing tech-
niques, are needed. Currently, there are three major prevalent gene
editing tools available, including CRISPR/Cas9, transcription
activator-like effector nucleases (TALENs), and zinc-finger nucle-

ases (ZFNs). Each of these tools has its own merits and demerits
[17]. However, the present review mainly elaborates on the possi-
ble role of CRISPR/Cas9 in AD due to its low cost, high speed, effi-
ciency, and precision over other genome editing tools.

CRISPR/Cas9: A promising gene editing tool

CRISPR/Cas9 is a recently discovered and promising revolution-
ary tool for genome editing, which allows to treat diseases with
limited or scarce treatment options. This tool was initially identi-
fied by Ishino in 1987 [18] (Fig. 2). Since then, several studies have
reported that the CRISPR/Cas9 system is an integral part of a bac-
terium’s immune system, which offers protection from undesired
integration of mobile genetic elements such as plasmids and
viruses. Further, Doudna and Charpentier’s pioneering efforts
brought CRISPR/Cas9 to laboratory settings to investigate its
potential [19]. In-depth studies on CRISPR/Cas9 have been con-
ducted in the recent past, and significantly improved editing effi-
ciency and minimized off-target effects while being extensively
used for basic and translational research [19,20].

CRISPR/Cas9 has two main components: the Cas9 enzyme and
single-guide RNA (sgRNA). The target DNA sequence is recognized
by the sgRNA, wherein various parameters are considered in the
design process to improve specificity. In contrast, as an endonucle-
ase, the Cas9 protein acts as a molecular scissor for incision of the
DNA double strands (Fig. 3). CRISPR/Cas systems are classified into

Fig. 1. Schematic showing Amyloid beta and Tau hypothesis that have been suggested to give an explanation for the most common characteristic hallmarks of AD. APP,
amyloid precursor protein; AICD, APP intracellular domain; NFTs, neurofibrillary tangles; GSK, glycogen synthase kinase; CDK5, cyclin-dependent kinase 5; PP2A, protein
phosphatase 2A.
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Fig. 2. The CRISPR/Cas9 timeline. crRNA, CRISPR-derived RNA; CRISPR/Cas9, clustered regularly interspaced short palindromic repeats/CRISPR-associated proteins 9 system.

Fig. 3. A schematic cartoon illustrating the steps involved in CRISPR/Cas9 technique. (A) Specially designed sgRNA (guide RNA) which matches with genomic DNA sequence
containing mutation, attaches with Cas9 (CRISPR-associated endonuclease), a DNAase capable of inducing a double strand break, thereby, forming Cas9-sgRNA complex. (B)
Association of Cas9-sgRNA complex with the target genomic DNA. Cas9 searches for appropriate sequence in target DNA with the help of sgRNA and recognises it with the
help of PAMs (protospacer adjacent motifs) sequence, usually 2–6 base pair long, found 3–4 nucleotide downstream from cut site generally serve as a tag. (C) Cas9 mediated
DNA cleavage leads to the formation of double strand break (DSB). (D) Formation of DSB leads to the activation of DNA repair mechanism to correct the break by sealing the
gap either by Non-Homologous End Joining (NHEJ) or Homology Directed Repair (HDR).
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Class 1 (type I, type III, and type IV) and Class 2 (type II, type V, and
type VI). Class 1 contains a variety of Cas proteins that work
together, whereas Class 2 utilizes a single Cas protein, which
makes it simple and desirable for genome editing [21]. Among
Class 2, the type II CRISPR/Cas9 system is one of the most
researched and utilized systems in pharmaceutical development.
The Cas9 protein generates a double standard break after recogniz-
ing the target gene sequence. Subsequently, two distinct pathways
can be initiated to repair this break, that is, homology-directed
repair (HDR) or non-homologous end joining (NHEJ). NHEJ results
in insertion and deletion, leading to premature stop codons and/or
DNA frameshifts, eventually resulting in gene inactivation, while
the HDR pathway helps replacing the mutated/faulty sequence
with the correct one. To initiate HDR, thanks to the assistance of
a donor DNA template, the right DNA sequences are incorporated
into the desired site [22]. In addition, HDR is limited to the G or
S phase, while NHEJ can occur in every cell cycle phase. Generally,
the HDR pathway provides a highly reliable DNA repair mecha-
nism, though its efficiency is lower than that of the NHEJ pathway.
There are three possible ways to edit the intended gene with the
help of the CRISPR/Cas9 system: purified Cas9/sgRNA complexes,
plasmid-borne CRISPR/Cas9 system, or a combination of Cas9-
mRNA and sgRNA. As summarized in Table 1, each strategy has
its own merits and disadvantages.

Promising role of CRISPR/Cas9 in AD

Genetic mutations account for approximately 1% of familial
cases of AD; thus, genome editing with CRISPR/Cas9 may be useful
in familial AD (FAD) at large with minimal or negligible benefits in
sporadic AD (SAD). However, considering the involvement of dys-
regulated Ab metabolism in FAD and SAD, limiting Ab production
may offer a therapeutic approach independent of the onset,
whether familial or sporadic (Fig. 4). Table 2 presents a brief
summary of studies that demonstrated the benefits of CRISPR/
Cas9 technology as an experimental therapeutic approach in FAD
and SAD.

Prospect in early-onset AD models

Treatment with CRISPR/Cas9 might not be appropriate because
the onset and progression of most AD cases are sporadic and

involve unknown triggers. Actually, only in a few AD cases (<1%),
there are real or known mutations in associated genes, that lead
to APP production facilitating APP processing to generate Ab. How-
ever, mutations constitute only a small fraction of AD cases, but eli-
cit increased Ab generation [31]. Similarly, mutations in the
presenilin 1 (PSEN1) and presenilin 2 (PSEN2) genes also cause
early AD onset [32,33], as they result in accelerated Ab1-42 pro-
duction, possibly by altering the APP cleavage site [34]. In most
cases, these mutations are usually evident in < 60 years of age
and hence categorized as early onset AD. The CRISPR/Cas9 tech-
nique can significantly correct these autosomal dominant muta-
tions. Recent studies also support the potential of this gene
editing system, which has been reported to correct similar types
of mutations. For instance, the CRISPR/Cas9 system was utilized
in basal forebrain cholinergic induced pluripotent stem cells
(iPSC)-derived neurons from a PSEN2N141I mutated individual
for the correction autosomal dominant mutations [35], result-
ing in correction and stabilization of the Ab42/40 ratio. Further-
more, the PSEN2 mutation corrected by this editing system also
reversed electrophysiological deficits. Previous studies wherein
CRISPR/Cas9 was utilized to fix PSEN gene mutations in FAD using
iPSCs derived from the patient further supported these results
[36,37]. Another study reported that this system helps knocking
out Swedish APP mutations in patient-derived fibroblasts finding
a 60% Ab reduction [38]. The Swedish mutation is known to
promptly adjoin the b-secretase site in APP [39]. The researchers
also interrupted this mutation in Tg2576 mice, which displayed a
manifold APP Swedish mutation. To accomplish this, DNA encoding
both guide RNAs and Cas9 in AAV vectors was injected into the
hippocampus of transgenic mice. Following injections, disruptions
such as single-base pair insertions in the APP Swedish gene were
observed. However, we need to understand whether such manipu-
lations can improve the behavior and pathology deficits in Tg2576
mice. Notably, when CRISPR/Cas9 was directly injected into the
hippocampus, it resulted in only 2% of transgenes disrupted on
the injection site [38]. This can be attributed to the fact that
Tg2576 mice have approximately 100 transgene copies per neuron,
and therefore the injected CRISPR/Cas9 levels appear insufficient to
correct the Swedish mutation. While this analysis promises tanta-
lizing developments, an overall more systematic study of the tar-
geted hippocampal cells is required to recognize and improve the
editing efficiency and translate the effects in vivo.

Table 1
Different strategies that have been utilized by CRISPR/Cas9 tool in genome editing.

Different
strategies

Principle Advantages Disadvantages Reference(s)

Plasmid-
Borne
CRISPR/
Cas9
System

Plasmid encoding sgRNA
and Cas9 protein with
suitable promoters

� Fluorescent protein assisted plasmid to label cells expressing
Cas9 enzyme

� Good reproducibility, economical and extensive adaptability
and customizability because sgRNAs can be cloned from same
plasmid and may consists of homology directed repair (HDR)
template

� Improved stability, particularly in handling and manufactur-
ing in comparison with available strategies

� Both Cas9 protein and sgRNA are loaded on the same vector;
ensures that both are expressed in the same cell

� DNA and bacterial DNA
sequences exists in the plasmid
elicits cytotoxicity

� Potential for the random inser-
tion of plasmid fragments into
the gene

� Low transfection effciency of pri-
mary cells

[23,24]

Cas9/sgRNA
Complex

Delivery of sgRNA
complexed with Cas9
protein

� Minimal off -target effects and cell toxicity
� The complex is fastest among available strategies are not
necessary for transcription or translation to Cas9 protein

� Ease and convenience due to Cas9 protein spontaneously
forms a complex with sgRNA being oppositely charged

� Purification process of the Cas9
protein and free from contamina-
tion of endotoxin is expensive

� The intracellular Cas9 delivery is
complex and challenging due to
large size (about 160 kDa)

[25,26]

Cas9 mRNA
and
sgRNA

Delivery of sgRNA and
Cas9 mRNA

� Lower cytotoxicity, off-target effects reported comparatively
plasmid-based system

� This method is faster over plasmid approach for the editing of
the targeted gene because Cas9 mRNA translation is necessary
to generate Cas9 protein

� Instability of RNA [27]
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Prospective in sporadic AD models

These findings paved the way for evaluation of CRISPR/Cas9
gene editing in subjects with early AD onset, but what about
SAD, which by far, represents the vast majority of cases in the

USA? To check the efficacy of this gene editing technology in
SAD, Sun et al. demonstrated editing of endogenous APP at the
extreme C-terminus to mitigate b cleavage and Ab generation
[27]. In doing so, they inhibited further interactions with BACE1
within endosomes, thus avoiding the most important cleavage

Fig. 4. Illustration showing the possible CRISPR/Cas9 mediated gene editing approach in AD. GWAS, genome-wide association studies.

Table 2
Summary of various reported studies on AD treatment involving CRISPR/Cas9 technique.

Delivery system Targeted genes FAD
or
SAD

Cell lines Animals tested Reference(s)

Lentiviral CRISPR/Cas9 system APP at the extreme
C-terminus

FAD -HEK293
-neuro2a cells

Injections administered in the
dentate gyrus of C57BL/6 mice

[28]

R7L10 peptide, a component of
nanocomplexes complexed
with Cas9-sgRNA ribonucleoprotein

BACE1 FAD -Mice embryos derived primary neurons
-Human induced pluripotent human stem
cells and human embryonic stem cells
-GFP+ HEK293T cells

Injections into the
hippocampus:-
�5xFAD transgenic mice co-
expressing 5 FAD mutations
- APP knock-in transgenic mice

[25]

Recombinant adeno-associated virus
(rAAV) mediated delivery of CRISPR/
Cas9

KM670/671NL APP
(APPswe) mutation

FAD -APPswe fibroblasts in Human
-Tg2576 mice embryos derived primary
neuronal cells

Injection into hippocampus of
Tg2576 mice

[23]

CRISPR/Cas9 delivered via lentivirus APOE E4 SAD -Mouse astrocytic cells expressing the
human APOE3 or APOE4 gene

NA [29]

Cytidine deaminase enzyme conjugated
CRISPR/Cas9 plasmids

APOE E4
(converting it into
APOE3r)

SAD -HEK293T cells
-Immortalized mouse astrocytes
containing the APOE E4 isoform of the
APOE gene

NA [30]
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event in Ab generation [40]. Findings in human iPSC-neurons, cul-
tured neurons, cell lines, and mouse brain showed that this limits
the physical contact of APP and BACE1 and therefore mitigates Ab
generation [28]. The APOE4 allele is another significant risk factor
contributing to late-onset AD [41]. APOE exists in three isoforms:
APOE2, APOE3, and APOE4. All of them vary only by substitution
of a single amino acid leading to the replacement of cysteine-
arginine at positions 112 and 158 [42]. And different isoforms have
different properties, for instance, the possibility of developing AD
is reduced by up to 40% by one copy of the E2 allele, which is
the rarest form of APOE. APOE3, one of the common alleles, does
not appear to affect the risk of AD, while APOE4 present in approx-
imately 10–15% of the people, reduces the age of AD onset, and
enhances the risk of AD [43]. Risk, which can increase by 2–3-
fold if individuals carry a single copy of E4 (E3/E4), whereas double
copies of E4 (E4/E4) may enhance it by approximately 10–15 times.
Actually, 65–80% of all patients diagnosed with AD have � 1 APOE4
allele [43,44]. Although several APOE4 adverse effects appear
linked with Ab accumulation, a recent study suggests that Tau
phosphorylation in neurons derived from human iPSCs may be
promoted by APOE4, independent of Ab [45,46]. In this study, gene
editing by zinc-finger nuclease to converts APOE4 to APOE3, pre-
vented APOE4-linked pathology in their model system [46]. Hence,
CRISPR/Cas9 could also act as a potential editing tool to transform
APOE4 to APOE2 or E3. Notably, a study points towards important
APOE4 structural features, which differentiate it from APOE2 to E3,
and involves a domain interaction facilitated through a salt bridge
between amino acids Arg-61 and Glu-255 [47]. Thus, altering one
of these amino acids with CRISPR/Cas9 can effectively neutralize
the risk related to the APOE4 allele. Further, Table 3 addresses
the therapeutic role of CRISPR/Cas9 in correcting specific gene
sequences.

CRISPR/Cas9 delivery system: A possible way to target AD

In the management of AD, CRISPR/Cas9 genome-editing holds
promise. Although efficient and safe delivery systems are still lack-
ing, it is a vast task that requires translation of this technological
approach into real therapeutic applications. To date, viral and
non-viral methodologies for the delivery of the CRISPR/Cas9 sys-
tems are available.

Viral vectors for CRISPR/Cas9

The use of viral vectors for delivering CRISPR/Cas9 is a classical
method in experimental models, including cell lines and animals,
and one of the most dynamic systems for the targeted delivery of
plasmid-based CRISPR/Cas9. Moreover, they may incorporate
mutations that have significant adverse effects. Adeno-associated
virus (AAV) are a frequently used vector because of its high infec-
tivity, low immunogenicity, and low integration into the human
genome [24,25]. With > 200 variants, the AAV genome comprises
single-stranded DNA [26]. One study reported the use of two sep-
arate AAV vectors packaging APPsw-specific gRNA and Cas9 target-
ing the AD-causing KM670/671NL APP mutation. The viruses were
tested in vitro in primary neuronal cells from Tg2576 mouse
embryos and in vivo via intrahippocampal injection in Tg2576
mice. This treatment reduced Ab generation by approximately
60% in human fibroblasts [38]. Due to the low packing capability
of the 4.7 kb of AAV, co-injections of two viruses might be required.
However, this would further complicate the procedure as both can
not concurrently infect the same cell. Lentivirus incorporate long
DNA inserts comprising 8–10 kb but with lower brain disseminat-
ing efficiency [27]. But, contrary to AAV, lentiviruses cannot be so
easily produced in large quantities, and can be incorporated into

the human genome, thereby provoking immune reactions [25].
However, studies have demonstrated the possible use of lentivirus
to target three genes, namely, APOE4, APP, and caspase-6, in SAD
and familial AD [28-30].

Non-viral vectors for CRISPR/Cas9

Non-viral vectors have been found promising for the targeted
delivery of CRISPR/Cas9, attributed to better cost effectiveness, rel-
ative ease, feasibility, and flexibility. Consequently, they are extre-
mely suitable for application in AD. It is very easy to form
nanocomplexes by combining positively charged CRISPR/Cas9 pep-
tides with negatively charged nucleic acid cargo. Comparatively,
they are less immunogenic than viral vectors; they can also assist
in numerous applications, as they are compatible with ligands.
Although delivering nanocomplexes into the brain is challenging,
as they are unable to properly cross the blood brain barrier (BBB)
via systemic administration, and the reticuloendothelial system
(RES) also actively removes them from the blood. Hence, intracere-
broventricular and intrathecal injections were used as standard.
However, in direct injection methods, multiple injections are
needed to ensure proper distribution across the brain, thereby
restricting their application. Park et al. used a Cas9–sgRNA ribonu-
cleoprotein specifically targeting BACE1 complexed with
nanocomplexes made of R7L10 peptide [49], and reported success-
ful targeting, reducing BACE1 expression without any substantial
off-target mutation in vivo. In addition to CRISPR/Cas9 delivery,
several other vehicles can transport short interfering RNAs (siR-
NAs) for targeting AD across the BBB. Recent reports have used
polymeric nanocomplexes of Poly(mannitol-polyethyleneimine)
(PMT) carrier amended with rabies infection glycoprotein (RVG)
[27]. The polymer was designed to form a complex with siRNA to
target the BACE1 gene. The nanocomplexes were intended to pos-
sess enhanced transmission ability owing to the presence of the
RVG ligand, which ameliorates permeation across the BBB and
focuses on nerve cells. Polyethylene glycol (PEG) reduces transfec-
tion efficiency by creating a positively charged protection that pre-
vents linking to cell membranes. It was proposed that this issue
could be resolved using the RVG ligand, thereby ameliorating the
cellular uptake of the nanocomplexes. The decrease in Ab1-42 cor-
tical levels further validated the silencing ability of nanocom-
plexes. However, considerable therapeutic potential loss may
result from unknown body distribution, therefore, the suitability
of such a delivery approach should be investigated in different
AD models.

The following systems are promising for applications in AD.
DNA nanoclews could deliver the Cas9–sgRNA complex. The tradi-
tional assembly of DNA nanostructures based on base-pairing is
complex and time-consuming. Sun et al. reported that DNA nan-
oclews are confined nanosized DNA moieties that comprise
polyethylenimine for applying a positive charge for endosomal
seepage and improved cellular uptake [60]. Nanoclews bearing
the sgRNA-Cas9 complex targeting enhanced green fluorescent
protein (EGFP) were injected locally into tumor-bearing mice. After
ten days of treatment, this resulted in a 25% reduction in EGFP
expression [60]. However, nanoclews might induce an immuno-
genic response, which needs to be studied further. Importantly,
polymeric nanoparticles and lipid nanoparticles also exhibit poten-
tial as CRISPR/Cas9 delivery tools. These nanoparticles have been
largely utilized for carrying gene editing tools in hepatitis, cancer,
and several viral infections [61,62]. However, their potential use in
AD requires further investigation. In addition, Wang et al. used
AuNPs for investigation [63]. The CXCR4 gene targeted with
CRISPR-Gold achieved HDR efficiency about 3–4% in many types
of human cells. Furthermore, local infusion of CRISPR Gold into
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the gastrocnemius and tibialis frontal muscles of mdx mice
resulted in correction of the mutated dystrophin gene, causing
inborn Duchenne muscular dystrophy [63]. However, after CRISPR
Gold injection, no meaningful changes in the inflammatory cyto-
kine profile were found, indicating low toxicity. Recently, attention
has been drawn to the therapeutic delivery of CRISPR/Cas9 through
microvesicles. Typically, a ‘‘producer” cell line is transfected with a
microvesicle-prompting protein (RAB proteins), sgRNA, and Cas9
proteins [64]. The cells produce microvesicles consisting of Cas9–
sgRNA complexes, which are shed into a medium subsequently
sterilized and used to deliver gene editing tools to the target cells.

CRISPR/Cas9 technique: A boon in the bag for
neurodegenerative diseases

In the previous section, we extensively elaborated on the possi-
ble role of CRISPR/Cas9 in the treatment of AD. However, it is also
important to address the implications of this technology in other
NDDs and for the management and treatment of brain abnormali-
ties. Recently, this technology has been implemented in the treat-
ment of several neurodegenerative disorders, including PD and HD,
as discussed in the following sections.

Parkinson’s disease (PD)

PD is an age-related, progressive, multifactorial and one of the
most common neurodegenerative condition, manifested by motor
and non-motor motor indications. Proper treatment for PD is still
lacking because the pathological mechanism and signaling axis
responsible for disease progression are not fully understood. How-
ever, CRISPR/Cas9 might be helpful in the identification of path-
ways and proteins associated with PD pathogenesis (Table 4).
Additionally, this technology may also help in the identification
of complex interactions between human genetics and environmen-
tal factors leading to PD [65]. Single nucleotide polymorphisms
(SNP) variants in the SCNA gene (a-synuclein) were analyzed by
Soldner et al. using this system, and they reported the presence
of a non-coding distal enhancer element common variant respon-
sible for the enhanced SCNA expression [66]. This tool also helps
scientists in PD research to produce isogenic cell lines for PD mod-
eling and hence could contribute to analyzing PD phenotypes. In

this regard, Arias-Fuenzalida et al. applied fluorescent markers
and the CRISPR/Cas9 system to obtain biallelic genome-edited cell
populations. They called this approach FACS-assisted CRISPR/Cas9
editing (FACE). The FACE method helps in deriving a set of isogenic
cell lines with mutated a-synuclein associated with PD [67]. On
the other hand, mutations in leucine-rich repeat kinase 2 (LRRK2)
are the most common genetic cause of sporadic and familial PD,
which causes toxicity in dopaminergic neurons. The CRISPR/Cas9
tool was used to edit mutated LRRK2 and reduced neurite com-
plexity in dopaminergic neurons and the incidence of both spo-
radic and familial PD [68].

CRISPR has also recently been recognized as a promising system
to assist in the understanding of the interplay between PD genes
and the identification of new apoptotic cascades directly or indi-
rectly associated with PD. For instance, a Parkin regulator, THAP11,
was recently validated in CRISPR/Cas9 knockout research in vari-
ous cell types, to find previously undiscovered regulatory cross-
talk/networks [69]. This system has also been employed to study
the neuroinflammatory mechanisms associated with PD. For
instance, protein kinase Cd (PKCd) signaling linked with Mn-
induced apoptotic cell death in PD involves PKCd activation.
CRISPR/Cas9-mediated PKCd downregulation in dopaminergic neu-
rons (DA) neurons, considerably hindered the DNA fragmentation
induced by Mn. In addition, this system can also help understand
the PKCd downstream pathway driving apoptosis [70].

The role of CRISPR/Cas9 was also reported by Gordon et al. in
the elimination of Prokineticin-2 (PK2). In PD, altered PK2 has been
observed to enhance neuronal susceptibility to neurotoxic-
stimulated cell death following neuroinflammatory mechanisms.
They also reported higher expression of PK2 in PD post-mortem
brains, and served as a protective compensatory response against
neurodegeneration in cell culture and PD animal models [71].

Glia maturation factor (GMF), a neuroinflammatory and
microglia-associated protein is abundantly expressed in the brain,
with increased expression in the substantia nigra (SN) of PD brains
[72]. Selvakumar et al. applied this system to investigate the
impact of GMF editing in microglial cells under oxidative stress
conditions and Nrf2/HO-1-dependent ferritin activation. They
noticed that GMF knockout in microglial cells weakened oxidative
stress by curtailing reactive oxygen species (ROS) production and
lowering calcium flux. Moreover, the absence of GMF reduced
Nrf2 nuclear translocation, thus preventing microglia activation

Table 3
Overview of reported clinical trials on AD therapeutics using CRISPR/Cas9 technique.

Mutations may fixed with CRISPR/Cas9 Targeted
genes for
CRISPR/Cas9

Clinical outcomes Reference(s)

PSEN2N141I mutation PSEN2 Decreased Ab42/40 ratio [48]
Manipulation in Ab-linked pathologies BACE1 Considerable downregulation of Ab42 plaque aggregation in mice [49]
NHEJ-mediated exon removal MAPT Production of new Tau knockout strain (tauDex1) in mice [50]
HDR-mediated mutation PSEN1M1 Disease models generated by CRISPR [51]
HDR-mediated mutation APPS Disease models generated by CRISPR [51]
Reciprocal manipulation of the amyloid pathway APP Attenuation of b-cleavage and Ab production [28]
N141I PSEN2 Normalization of enhanced levels of Ab42/40 via CRISPR/Cas to correct

mutation in PSEN2N141I
[35]

Met146Val PSEN1 Establishment of homozygous and heterozygous mutations [52]
Conversion of APOE E4 to APOE E3 APOE Arg158 converted to Cys158 in 58–75% [53]
Mutations in L52P, T48P and K53N APP A model to investigate outcomes of APP mutations in cleavage of

c-secretase and Notch signaling
[54]

Deletion of Swedish mutation APP Reduction in ex vivo and in vivo production of Ab peptide [38]
Glia maturation factor (GMF) GMF Reduction in GMF and p38 MAPK [55]
30-UTR amyloid precursor protein (APP) APP Reduction in APP and Ab [56]
c-Secretase activating protein (GSAP) GSAP Reduction in GSAP, c-Secretase activity and Ab [57]
b-secretase 1 (BACE1) and Tyrosine hydroxylase (Th) BACE and Th Reduction in BACE1, Th1 and Ab [58]
APOE-E3/E4 APOE APOE Reduction in APOE-E3/E4 (high risk for AD), hyper-phosphorylation of

Tau protein and amyloid deposition and upregulation in APOE-E2/E2
(low risk for AD) and turning APOE4 to APOE3 is increased

[59]

S. Bhardwaj, Kavindra Kumar Kesari, M. Rachamalla et al. Journal of Advanced Research 40 (2022) 207–221

214



and reducing the expression of pro-inflammatory molecules in the
brain [73].

Both monogenic recessive and dominant-negative disorder-
induced mutations could be corrected or inactivated by the
CRISPR/Cas9 system. In DA neurons of PD animal models, CRISPR/
Cas9 has been reported to inactivate and deplete mutated genes
that express mutant SNCA [74]. For instance, Chen et al. used this
system to delete the SNCA gene in hESCs and slowed the progress
of this pathological outcome associated with SNCA [75]. However,
more clinical research is still required to validate these results and
find the proper treatment of PD involving this technology.

Huntington’s disease (HD)

HD is an autosomal dominant trinucleotide repeat neurodegen-
erative disorder caused by the expansion of CAG repeats in the
Huntington (HTT) gene, which encodes a mutant HTT protein
(mHTT). Expansion of the CAG trinucleotide segment consists of
glutamine residue repeats (PolyQ), which makes the mutant HTT
protein longer than normal. CRISPR/Cas9 can selectively suppress
mHTT expression through direct interaction with the DNA. Fur-
thermore, the production of mHTT can be reduced by suppressing

its endogenous expression in the striatum of mHTT-expressing
mice [76]. In another study, SNPs with either causative or destruc-
tive effects on PAM motifs were critical in the selection of one
allele for CRISPR editing vs. the other to enhance the efficiency of
Cas9 nuclease and apply CRISPR strategy for therapeutic purposes
of HD [77]. The presence of the mHTT gene leads to sensitization of
type 1 inisitol 1,4,5-triphosphate receptor (InsP3R1) and, conse-
quently, calcium outflow from the ER and a compensatory eleva-
tion in neuronal store-operated calcium (nSOC) entry, ultimately
resulting in synaptic damage of striatal MSNs in an HD animal
model [78]. A transient receptor potential canonical 1 (TRPC1)
knockout (which is one of the nSOC components) using CRISPR/
Cas9 resulted in improved motor performance and salvage of
MSN spines in vivo and in vitro [79]. Further studies proposed for
the regulation of HTT protein synthesis, the 5 untranslated region
(UTR) plays a major role as it contains an uORF that encodes 12
amino acid long potential polypeptide that controls downstream
ORF translation. Hence, the expression of Huntingtin mRNA is neg-
atively affected by the presence of uORFs [80]. Likewise, previous
studies have proposed that disruption of the uORF in the 5UTR of
mRNA using CRISPR/Cas9 may lead to decreased translational
products of mutant huntingtin gene in MSCs derived from HD
mouse models. Kolli et al. studied mHTT inhibition with two types

Table 4
Overview of reported clinical trials on PD and HD therapeutics using CRISPR/Cas9 technique.

Target genes Mechanisms Main findings In vitro or in vivo Disease Reference
(s)

SNCA CRISPR-mediated SNCA deletion in
human embryonic stem cells (hESCs)

Reduction in SNCA alleles hESCs

PD

[82]

-Parkin
-SNCA

CRISPR/Cas9-based gene targeting in
a-Syn preformed fibrils (PFF cells)

The use of gene-targeted somatic
cells as a donor for somatic cell
nuclear transfer (SCNT) to generate
gene-targeted animals with single
and identical mutations

PFF cells [83]

SNCA Fluorescent markers derived biallelic
genome-editing

Examine a set of isogenic lines
comprising PD-linked a-Syn in
mutation

In vitro [84]

LRRK2 The Cre-LoxP recombination system
has been utilized to alter the LRRK2-
G2019S mutation in the human
induced pluripotent stem cells
(hiPSCs) to produce isogenetic
controls

Production of an edited footprint-free
LRRK2-G2019S isogenic hiPSCs

hiPSCs [68]

-DJ-1
-Parkin
-PINK1

Co-injection of multiplexing sgRNAs
and Cas9 mRNA into in vivo derived
pronuclear embryos

Reduction in DJ-1, Parkin, and PINK1 In vivo [85]

The polyglutamine repeat in the
huntingtin gene (HTT)

CRISPR/SpCas9 technique Non-allele specific CRISPR/Cas9
mediated permanent elimination of
polyQ domain of mHTT to reduce
neuronal toxicity in the adult brain

Mouse striatum

HD

[86]

Single nucleotide polymorphism
(SNP) sites

Allele specific CRISPR/Cas9 Specific CRISPR/Cas9 alleles mediated
permanent inactivation of
Huntington’s mutation allele

Fibroblasts cells [87]

Transient receptor potential
canonical 1 (TRPC1)

CRISPR/Cas9 system CRISPR/Cas9 mediated TRPC1
Inhibition may serve as a
neuroprotective tactic in the
treatment of disease

YAC128 HD mice/
HEK293T cell line

[88]

The SNPs at upstream and
downstream (Intron1) of HTT
exon-1

CRISPR/SpCas9 technique SNPs are identified that either
accountable for causing or destroying
PAM motifs critical for CRISPR-
selective editing of one allele versus
the other in cells from HD patients
and in a transgenic HD model
harboring human allele

Fibroblast and HEK293
cell

[77]

50-DNA at the uORF region/exon1-
intron region of the mHTT

CRISPR/Cas9 mediated silencing of
the mHTT gene in vitro

Reduction in mHTT production Plasmids used in MSCs
extracted from the
YAC128 mice bone
marrow, which carries
the transgene for HD

[89]
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of CRISPR/Cas9 system, one that cuts the DNA at exon1 – intron
boundary, and the other in the untranslated uORF region, and
found that CRISPR/Cas9 mediated mHTT silencing affects the mHTT
translational process and reduces mHTT production in bone-
marrow-derived mesenchymal stromal cells (BM-MSCs) [81]. Fur-
ther, Table 4 addresses the therapeutic potential of CRISPR/Cas9 in
NDDs such as PD and HD.

Concluding remarks, major challenges and future perspectives

As a gene-editing tool, CRISPR/Cas9 holds promise by correcting
specific gene sequences and having significant potential for the
treatment of AD and other human diseases [90-96] (Fig. 5). In
SAD and FAD, an altered Ab metabolism is commonly observed,
irrespective of genetic factors. Thus, CRISPR/Cas9 technology could
correct increased Ab production or mutations in APP, PSEN-1, and
PSEN-2, as mutations in these genes are a causative factor of FAD.

There are numerous challenges related to the efficiency of AD
management following CRISPR/Cas9 brain delivery via non-viral
vectors. Preferably, the vectors should be steady and able to effi-
ciently carry the load to the desired site. When the targeted cells
are approached by the vectors, they should be internalized to avoid
lysosomal degradation and target the nucleus.

It is essential to consider the large size of CRISPR/Cas9 for future
designs and application. Instead of plasmid-assisted delivery
approaches, the Cas9-sgRNA complex is preferred because of its
smaller size. Moreover, owing to the circulating proteases and
nucleases, the constituents of the developed formulations are vul-
nerable to degradation. Although widely employed to lessen the

recognition of these systems by RES, PEGylation can generate
specific PEG-antibodies and reduce cellular uptake, leading to
immunogenic responses [97]. For in vivo applications, non-viral
vectors are preferred, but improving the diverse formulation fea-
tures limits real-life applications.

The systemic route is widely studied because of its in vivo fea-
sibility, specifically in the case of AD patients, depite the issues
regarding delivery vector’s stability and targetability. Hence,
intracerebroventricular and intrathecal injections are usually
adopted for administration. Stereotaxic microinjection surgery
has been used for gene delivery in the brains of experimental ani-
mals with PD [98]. However, for AD, this procedure can be chal-
lenging because of the widespread nature of Ab pathology.
Another promising approach is the intranasal route as it bypasses
the BBB. However, more clinical studies are needed on the nasal
delivery of CRISPR/Cas9 based therapeutics.

To ensure the safety of CRISPR/Cas9 therapeutics, further
research is essential, as genome editing is irreversible. Further-
more, studies investigating possible off-targets and long-term
effects are still insufficient, and ethical considerations are needed
before any application in humans. Importantly, the CRISPR/Cas9
tool affects somatic rather than germline cells. Hence, gene editing
would not be transferred to subsequent generations and only man-
ifest in the individuals undergoing treatment [23].

Although CRISPR/Cas9 involves double-stranded DNA breaks,
the recent prime editing can rectify gene mutations without
double-strand breaks. Instead, prime editing involves an
impaired Cas9 following catalytic processes bonded to a reverse
transcriptase, with guidance provided through a prime-editing

Fig. 5. The diverse applications of CRISPR/Cas9 technique in human diseases. Here in this schematic, we have highlighted the disease associated various genes and proteins
which may be one of the possible target for this gene editing strategy. MYBPC3, myosin binding protein C3; BRAF, B-Raf proto-oncogene, serine/threonine kinase; PTEN,
phosphatase and tensin homolog; EGFR, epidermal growth factor receptor; HER2, human epidermal growth factor receptor 2; CASP8, caspase-8; CDKN2A, cyclin-dependent
kinase inhibitor 2A; SLC10A1, solute carrier family 10 member 1; TRPC1, canonical transient receptor potential; PINK1, PTEN-induced putative kinase 1; LRRK2, leucine rich
repeat kinase 2; SNCA, a-synuclein; mHTT, mutant huntingtin protein; DJ-1, PARK7; DNMT3A, DNA methyltransferase 3a; FBN1, fibrillin-1; PCSK9, proprotein convertase
subtilisin/kexin type 9; PLN, phospholamban; PRKAG2, kinase AMP-activated noncatalytic subunit-2; ASPH, aspartate beta-hydroxylase; KRAS, kirsten rat sarcoma viral
oncogene homolog; APC, adenomatous polyposis coli; p53, tumor suppressor gene; FEN1, flap endonuclease 1; TET2, epigenetic modifier enzyme; NCOA5, nuclear receptor
coactivator 5; Y347X, nonsense point mutation; Reep6, receptor expression-enhancing protein 6; Rp9, pre-mRNA splicing factor; Alb, albumin; Fah, fumarylacetoacetate
hydrolase; Otc, Ornithine transcarbamylase; POLK, DNA Polymerase Kappa.
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guide RNA (pegRNA). Thus, directing the system to the DNA site
targeted for the required correction [64]. Further studies are
required to establish off-target and potential of this new
technology.
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