
This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail.

Powered by TCPDF (www.tcpdf.org)

This material is protected by copyright and other intellectual property rights, and duplication or sale of all or 
part of any of the repository collections is not permitted, except that material may be duplicated by you for 
your research use or educational purposes in electronic or print form. You must obtain permission for any 
other use. Electronic or print copies may not be offered, whether for sale or otherwise to anyone who is not 
an authorised user.

Iglesias, Juan Eugenio; Van Leemput, Koen; Bhatt, Priyanka; Casillas, Christen; Dutt, Shubir;
Schuff, Norbert; Truran-Sacrey, Diana; Boxer, Adam L.; Fischl, Bruce
Bayesian segmentation of brainstem structures in MRI

Published in:
NeuroImage

DOI:
10.1016/j.neuroimage.2015.02.065

Published: 01/01/2015

Document Version
Publisher's PDF, also known as Version of record

Published under the following license:
CC BY-NC-ND

Please cite the original version:
Iglesias, J. E., Van Leemput, K., Bhatt, P., Casillas, C., Dutt, S., Schuff, N., Truran-Sacrey, D., Boxer, A. L., &
Fischl, B. (2015). Bayesian segmentation of brainstem structures in MRI. NeuroImage, 113, 184-195.
https://doi.org/10.1016/j.neuroimage.2015.02.065

https://doi.org/10.1016/j.neuroimage.2015.02.065
https://doi.org/10.1016/j.neuroimage.2015.02.065


Bayesian segmentation of brainstem structures in MRI

Juan Eugenio Iglesias a,⁎, Koen Van Leemput b,e,f, Priyanka Bhatt c, Christen Casillas c, Shubir Dutt c,
Norbert Schuff g, Diana Truran-Sacrey g, Adam Boxer c, Bruce Fischl b,d,
for the Alzheimer's Disease Neuroimaging Initiative 1

a Basque Center on Cognition, Brain and Language (BCBL), Spain
b Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
c Memory and Aging Center, University of California, San Francisco, CA, USA
d Computer Science and Artificial Intelligence Laboratory (CSAIL), Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
e Department of Applied Mathematics and Computer Science, Technical University of Denmark (DTU), Denmark
f Departments of Information and Computer Science and of Biomedical Engineering and Computational Science, Aalto University, Finland
g Center for Imaging of Neurodegenerative Dieases (CIND), Department of Radiology, University of California, San Francisco, CA, USA

a b s t r a c ta r t i c l e i n f o

Article history:
Received 14 November 2014
Accepted 26 February 2015
Available online 14 March 2015

Keywords:
Brainstem
Bayesian segmentation
Probabilistic atlas

In this paperwe present amethod to segment four brainstem structures (midbrain, pons, medulla oblongata and
superior cerebellar peduncle) from3DbrainMRI scans. The segmentationmethod relies on a probabilistic atlas of
the brainstem and its neighboring brain structures. To build the atlas, we combined a dataset of 39 scans with al-
ready existing manual delineations of the whole brainstem and a dataset of 10 scans in which the brainstem
structures were manually labeled with a protocol that was specifically designed for this study. The resulting
atlas can be used in a Bayesian framework to segment the brainstem structures in novel scans. Thanks to the gen-
erative nature of the scheme, the segmentation method is robust to changes inMRI contrast or acquisition hard-
ware. Using cross validation,we show that the algorithm can segment the structures in previously unseen T1 and
FLAIR scanswith great accuracy (mean error under 1mm) and robustness (no failures in 383 scans including 168
AD cases). We also indirectly evaluate the algorithm with a experiment in which we study the atrophy of the
brainstem in aging. The results show that, when used simultaneously, the volumes of themidbrain, pons andme-
dulla are significantlymore predictive of age than the volumeof the entire brainstem, estimated as their sum. The
results also demonstrate that the method can detect atrophy patterns in the brainstem structures that have been
previously described in the literature. Finally, we demonstrate that the proposed algorithm is able to detect
differential effects of AD on the brainstem structures. The method will be implemented as part of the popular
neuroimaging package FreeSurfer.

© 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

The human brainstem is a complex brain structure consisting of long
axons and scattered nuclei. At a high level, the brainstem is divided into
three structures, from superior to inferior: midbrain, pons and medulla
oblongata. These structures support different functions: while the mid-
brain is associated with vision, hearing, sleep and motor control, the
pons mostly consists of white matter tracts that connect the cerebrum
with the medulla. The pons is also connected with the cerebellum

through nerve tracts known as the cerebellar peduncles, and contains
nuclei associated with functions such as respiration and facial expres-
sion. The medulla oblongata connects the rest of the brain to the spinal
chord, and regulates cardiac and respiratory functions, as well as
reflexes such as swallowing.

Automated segmentation of the brainstem structures can potentially
improve our understanding of the role that they play in different func-
tions and how they are affected by neurodegenerative pathologies, by
circumscribing neuroimaging analyses (e.g., volumetry, functional
MRI, tractography) to these specific regions. The brainstem is especially
relevant to diseases with pure underlying tau pathology such as pro-
gressive supranuclear palsy and corticobasal degeneration, also called
primary tauopathies. In progressive supranuclear palsy, brain atrophy
occurs in the midbrain, pons and superior cerebellar peduncle, due to
neuronal loss associated with accumulation of insoluble deposits of ab-
normal tau protein (Williams and Lees, 2009). New therapies designed
to prevent or decrease tau accumulation are rapidly entering human
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clinical trials, and longitudinal brainstem atrophy measurements with
MRI – in which automated methods yield reproducible results and
allow formuch larger sample sizes – have been demonstrated to be use-
ful outcomemeasures in these studies (Boxer et al., 2014). Other neuro-
degenerative diseases in which the brainstem structures are also
differentially affected include Parkinson's (Hawkes et al., 2010) and
Alzheimer's (Grinberg et al., 2009).

In addition to studies of neurodegenerative diseases, automated seg-
mentation algorithms for the brainstem structures would also find ap-
plication in other areas. For instance, the pedunculopontine nucleus is
a target for the implantation of deep brain stimulators in Parkinson's
disease (Stefani et al., 2007). The pons is often used as a reference region
in positron emission tomography (PET) data, since there is no effect of
interest in it (Minoshima et al., 1995). Neuroimaging studies of pain
(Dunckley et al., 2005; Hadjipavlou et al., 2006) have also relied on
segmenting brainstem structures.

Despite all its possible applications, the segmentation of the
brainstem structures remains largely unexplored in the medical image
analysis literature, and none of the widely-distributed neuroimaging
analysis package performs it so far. Instead, most works have aimed at
segmenting the brainstem as a whole. Bondiau et al. (2005) used a sin-
gle labeled template that was deformed towards the novel scan to pro-
duce the automated segmentation. Lee et al. (2005) proposed a semi-
automatic algorithm in which fuzzy connectedness and morphological
operations are used to generate a preliminary segmentation, which is
subsequently refined with active contours. The same authors (Lee
et al., 2007) later proposed a similar, though fully automated method
in which AdaBoost (Viola and Jones, 2001) was used to generate the
initial coarse region containing the brainstem.

There are also brain parcellation methods that include the whole
brainstem. The popular package FreeSurfer (Fischl, 2012; Fischl et al.,
2002) has it as a label in the atlas that it uses to segment T1 MRI data.
The segmentation algorithm (Patenaude et al., 2011) in FSL (Smith
et al., 2004) also includes the brainstem in its parcellation, which is
based on active shape and appearance models. Multi-atlas methods
that segment a large number of structures have also included the
whole brainstem; see for instance Heckemann et al. (2006), which
uses majority voting to fuse the deformed segmentations propagated
from 30 manually labeled scans.

To our best knowledge, only two works have addressed the issue of
parcellating the brainstem in MRI data. Nigro et al. (2014) proposed a
method to automatically segment the pons and the midbrain using
thresholds and geometric criteria defined upon heuristic rules, which
makes their method sensitive to variations in MRI acquisition protocol
or scanning platform. Lambert et al. (2013) used multimodal MRI data
to produce probability maps for four tissue classes using an unsuper-
vised segmentation algorithm. While these maps can be used to
segment novel scans, they do not necessarily correspond to the
underlying brainstem structures, due to the lack of expert manual
delineations.

In this paper, we present a supervised segmentation method for the
midbrain, pons, medulla and superior cerebellar peduncle (SCP). The
method is based on a probabilistic atlas and Bayesian inference. To
build the atlas, we used the training data that was used to build the
atlas in FreeSurfer (which has labels for the whole brainstem) and
enhance it with an additional dataset of 10 scans in which the four
brainstem structuresweremanually labeledwith a delineation protocol
that was specifically designed for this study. Using Bayesian inference,
the probabilistic atlas can be used to efficiently segment a novel scan,
and due to the generative nature of the framework, the segmentation
is robust to changes in MRI scanning platform and/or MRI pulse
sequence. An implementation of the segmentation algorithm will be
made publicly available as part of FreeSurfer.

The rest of this paper is organized as follows. In “Materials and
methods”, we describe the MRI data used in this study and the manual
delineation protocol for the brainstem structures of interest; and we

briefly revise the methods to build the atlas with heterogeneously
labeled data (i.e., the FreeSurfer dataset and our newly labeled dataset)
and to segment a novel scan with a probabilistic atlas and Bayesian
inference. In “Experiments and results”, we evaluate the performance
of the segmentation algorithm with experiments on three different
datasets. Finally, “Conclusion and discussion” concludes the paper.

Materials and methods

MRI data

Three datasets of MRI scans were used in this study. The first
dataset, which we will refer to as the “brainstem dataset”, consists of
T1-weighted and FLAIR brain scans of 10 clinically normal subjects
(age range 58–77, mean age 67.8 years, four males, six females). The
data were acquired with a 3 T Siemens TIM Trio scanner at the UCSF
Neuroscience Imaging Center. The T1 scans were acquired with a
MP-RAGE sequence with the following parameters: TR = 2300 ms,
TE = 2.98 ms, TI = 900 ms, flip angle = 9°, 1 mm isotropic resolution.
The FLAIR sequence used the following parameters: TR = 6000 ms,
TE = 388 ms, TI = 2100 ms, 1 mm isotropic resolution. The midbrain,
pons and SCP were independently delineated by PB and CC on the 10
scans using the protocol detailed in “Delineation protocol for
brainstem dataset” below. This dataset will be used with two pur-
poses: first, to build the probabilistic atlas of the brainstem (in combi-
nation with the FreeSurfer dataset, described below); and second, to
directly evaluate the segmentation method, by comparing the labels
automatically derived from the T1 and FLAIR scans with one another
(to evaluate robustness against changes in MRI sequence) and with
the gold standard (to evaluate accuracy) using metrics such as Dice
overlap and Hausdorff distance. In addition, the independent annota-
tions from two different labelers allow us to compute a more reliable
gold standard for the segmentation than using a single delineation,
and also allow us to estimate the inter-observer variability of the
manual tracings.

The second dataset, which we will refer to as the “FreeSurfer
dataset”, consists of T1-weighted brain MRI scans from 39 subjects
(age range 18–87, mean age 56.3 years). These scans were acquired
on a Siemens 1.5 T platform with a MP-RAGE sequence with the
following parameters: TR = 9.7 ms, TE = 4 ms, flip angle = 10°,
TI = 20 ms, in-plane resolution 1 mm (sagittal), slice thickness
1.25 mm. These scans were resampled to 1 mm isotropic resolution
with trilinear interpolation. Thirty-six brain structures, including the
whole brainstem, were labeled by an expert neuroanatomist using
the delineation protocol in (Caviness et al., 1989). We note that
these are the subjects that were used to train the probabilistic atlas
in FreeSurfer (Fischl et al., 2002). This dataset was used for two pur-
poses: building the atlas (in conjunction with the brainstem dataset)
and indirectly evaluating the segmentation algorithm with an aging
experiment.

The third dataset, which we will refer to as the “ADNI dataset”,
consists of 383 baseline T1 scans from elderly controls (n = 215) and
Alzheimer's disease (AD) subjects (n = 168) from the Alzheimer's
Disease Neuroimaging Initiative (ADNI). The list of subjects, along
with the corresponding demographics, can be found in the Supplemen-
tary material (Tables 2–7). The mean age of the subjects was 75.8 years
(range: 56–91 years). The images were acquired with MP-RAGE
sequences at 1mm isotropic resolution. Since ADNI is amulti-site effort,
different scanning platforms were used for acquiring the images; for
further details on the acquisition parameters and up-to-date informa-
tion, we refer the reader to the website http://www.adni-info.org.

The ADNI was launched in 2003 by the National Institute on Aging,
the National Institute of Biomedical Imaging and Bioengineering, the
Food and Drug Administration, private pharmaceutical companies and
non-profit organizations, as a $60 million, 5-year public–private part-
nership. The main goal of ADNI is to test whether MRI, positron
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emission tomography (PET), other biological markers, and clinical and
neuropsychological assessment can be combined to analyze the pro-
gression of MCI and early AD. Markers of early AD progression can
aid researchers and clinicians to develop new treatments and moni-
tor their effectiveness, as well as decrease the time and cost of clini-
cal trials. The Principal Investigator of this initiative is Michael W.
Weiner, MD, VA Medical Center and University of California — San
Francisco. ADNI is a joint effort by co-investigators from industry
and academia. Subjects have been recruited from over 50 sites across
the U.S. and Canada. The initial goal of ADNI was to recruit 800 sub-
jects but ADNI has been followed by ADNI-GO and ADNI-2. These
three protocols have recruited over 1500 adults (ages 55–90) to par-
ticipate in the study, consisting of cognitively normal older individ-
uals, people with early or late MCI, and people with early AD. The
follow up duration of each group is specified in the corresponding
protocols for ADNI-1, ADNI-2 and ADNI-GO. Subjects originally
recruited for ADNI-1 and ADNI-GO had the option to be followed in
ADNI-2.

Delineation protocol for brainstem dataset

Rather than delineating the brainstem structures in the native space
of the scans directly, these scans were first rigidly registered to the
FreeSurfer reference space (“fsaverage”). The manual annotations

were made on the registered scans, which helps reduce the variability
in the annotations, and then warped back to the original space using
the inverse transform and nearest neighbor interpolation. The order in
which the brainstem structures were delineated was: pons, midbrain
and SCP; the corresponding delineation protocols are detailed in Ap-
pendices A, B and C, respectively. All the annotations were made on
the T1 scans; the FLAIR imageswere not used in the delineation process.
The labeling protocol is illustrated in Fig. 1, which displays slices of
a sample scan of the brainstem dataset with its corresponding
annotations.

Note that the delineation protocol does not include the medulla. In-
stead, this structure is implicitly defined through the combination of the
labeling protocols of the brainstem and FreeSurfer datasets. Specifically,
themedulla is defined as the portion of thewhole brainstem (as defined
in the FreeSurfer dataset) that is not labeled asmidbrain, pons or SCP in
the brainstem dataset.

Atlas construction

The manually labeled training data (i.e., the brainstem and
FreeSurfer datasets) are used to build a probabilistic atlas of the
brainstem and its surrounding structures. This atlas, which encodes
the frequency with which the labels occur at each spatial location,
will be used as a prior distribution in a Bayesian framework to

Fig. 1.Manual delineations of a sample subject from the brainstem dataset. Top row: sagittal slices, frommedial (left) to lateral (right). Middle row: coronal slices, from anterior (left) to
posterior (right). Bottom row: axial view, from superior (left) to inferior (right). The pons is labeled in red, the midbrain in green, and the SCP in blue.
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produce automated segmentation of novel scans in section
“Segmentation” below. The prior is based on a generalization of
probabilistic atlases (Ashburner and Friston, 2005; Pohl et al.,
2006; Van Leemput et al., 1999) that was presented in (Van
Leemput, 2009). For the sake of completeness, we summarize the
framework here.

Let l= {li, i=1, 2,…, I} be a 3D discrete label image (i.e., a segmen-
tation) defined at I spatial locations (voxels), such that each voxel has a
label belonging to one of L possible classes, i.e., li ∈ {1, …, L}. The prior
assumes that this segmentation was generated through the following
process:

(i) A tetrahedral mesh covering the region of interest (a bounding
box containing the brainstem with a 15 mm margin in each di-
rection) is defined by the reference position xref of its N nodes
and their connectivity K. Each node n has an associated set of
probabilities for the different possible neuroanatomical labels
αn = (αn

1, …, αn
L).

(ii) The mesh is deformed from its reference position by sampling
from the following prior probability distribution, which was
introduced in (Ashburner et al., 2000):

p xjK; xre f
;K

� �
∝ exp −K

XT
t¼1

UK
t xjxre f
� �" #

;

where T is the number of tetrahedra in themesh, K is its stiffness,
and UK

t xjxre f
� �

is a term that goes to infinity if the Jacobian de-
terminant of the deformation of the tth tetrahedron approaches
zero, ensuring that the topology of the mesh is preserved.

(iii) Using the deformed position, the label probabilities at each voxel
location in the region of interest are computed from the values at
the vertices of the tetrahedron using barycentric interpolation.

pi ljα ; x;Kð Þ ¼
XN
n¼1

αl
nϕn rið Þ;

where α= (α1,…, αN) groups the label probabilities of all mesh
nodes, ri represents the spatial coordinates of voxel i, andϕn is an
interpolation basis function linked to node n. We use linear
barycentric interpolation for simplicity, but more complex
models may be useful, based for example on a softmax function
(Ashburner and Friston, 2009; Pohl et al., 2007).

(iv) At each voxel location, the corresponding label is independently
sampled from the categorical distribution parameterized by the
interpolated probability vector, such that:

p ljα ; x;Kð Þ ¼ ∏
I

i¼1
pi ljα ;x;Kð Þ:

Given this generative model, learning an atlas from a set of training
data (manual segmentations) amounts to estimating the mesh (refer-
ence position xref and connectivity K ) and associated probability
vectors α that most likely generated the label images. As shown in
Van Leemput (2009), learning the atlas is equivalent to minimizing
the number of bits needed to encode the training data, which yields
sparse atlases with adaptive resolution, i.e., few nodes are used to
describe flat regions of the atlas, while nodes are more dense in convo-
luted areas.

In this study, we wish to combine the manual annotations from the
FreeSurfer and brainstem datasets, which carry complementary infor-
mation: the former provides information on the whole brainstem and
surrounding structures, but not on the internal brainstem parcellation,
while the latter describes the midbrain, SCP, pons and medulla, but
carries no information on the structures surrounding the brainstem.
By combining the two datasets, we can build a probabilistic atlas that

includes both the brainstem structures (midbrain, SCP, pons, medulla)
and surrounding anatomy (cerebellum, cerebral white matter, etc).
For such scenarios, we previously proposed a modification (Iglesias
et al., submitted for publication) of the atlas construction algorithm
(Van Leemput, 2009) that can cope with heterogeneously labeled
datasets.

Specifically, we assume that the probabilistic atlas generated M
segmentations lm, m = 1, …, M (where M is the number of labeled
scans in the FreeSurfer and brainstem datasets combined), at a fine
level of detail, in which pons, midbrain, medulla and SCP coexist with
all the surrounding structures defined in the FreeSurfer dataset. These
segmentations are not observed; instead, we have access to a different
set of coarse label volumes cm, m = 1, …, M, which are obtained by
merging all the surrounding structures into a single, generic background
label (brainstem dataset) or by merging pons, midbrain, medulla and
SCP into a single brainstem structure (FreeSurfer dataset). These coarse
label volumes correspond to the manual delineations from which we
build the atlas, and are related to the fine labels by two protocol func-
tions fFS and fBS, such that fFS collapses all brainstem structures into a
generic brainstem label, and fBS collapses all the structures surround-
ing the brainstem into a single, generic background label. Therefore,
the probability of observing a collapsed label at a given spatial loca-
tion is:

pi ci;m
��α ;xm;K

� �
¼

X
kj f �ð Þ kð Þ¼ci;m

pi kjα ;xm;Kð Þ;

where f(⋅) is the protocol function corresponding to training volume
m ( fFS or fBS, depending on whether it belongs to the FreeSurfer or
brainstem dataset, respectively). The sum over all classes compatible
with ci,m reflects the uncertainty in the underlying fine labels at each
voxel i.

The whole generative process is summarized in Fig. 2. The final
atlas, which is defined at the fine level of detail, describes (at least
partially) the following structures: midbrain, pons, medulla, SCP,
third ventricle, fourth ventricle, left/right lateral ventricle, left/right
choroid plexus, left/right cerebellar cortex, left/right cerebellar
white matter, left/right thalamus, left/right cerebral cortex, left/
right cerebral white matter, left/right hippocampus, left/right amyg-
dala, left/right pallidum, left/right putamen, left/right thalamus and
left/right accumbens area.

Segmentation

Given the probabilistic atlas of brainstem anatomy, the segmenta-
tion of a novel scan can be carried out with the algorithm described in
(Van Leemput, 2009). This algorithm builds on the generative model
of the data described above: first, we assume that the probabilistic
atlas generates an underlying segmentation (at the fine level of detail)
following the four-step process described in “Atlas construction”.
Given the segmentation 1, an intensity image y = {yi, i = 1, 2, …, I} is
generated from the labels by independently drawing at each voxel a
sample from aGaussian distribution,whose parameters (mean and var-
iance) depend on the label of the voxel. Because the appearance of the
brainstem is relatively flat in the MRI scans of all the datasets used in
this study, a single Gaussian was found to suffice to model the intensi-
ties within each tissue type (although more complex mixture models
can also be used (Ashburner and Friston, 2005; Puonti et al., 2013)).
Rather than allowing each label to have its own Gaussian parameters,
we assume that all white matter structures (cerebral and cerebellar
white matter; medulla; pons; midbrain; and SCP) belong to a global
white matter class, in order to reflect the fact that there is little image
contrast between such structures, increasing the robustness of the seg-
mentation. Likewise, CSF structures (third, fourth and lateral ventricles)
share a global class, and so do the graymatter structures (cerebellar and
cerebral cortex, hippocampus and amygdala). The rest of structures in
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the atlas (pallidum, accumbens, putamen, thalamus, choroid plexus and
background) have their own global classes, i.e., their own sets of Gauss-
ian parameters. The probability of observing an intensity image is there-
fore:

p yjl; θð Þ ¼ ∏
I

i¼1
pi yijμG lið Þ;σ

2
G lið Þ

� �
¼ ∏

I

i¼1
N yi; μG lið Þ;σ

2
G lið Þ

� �
;

where N is the Gaussian distribution, θ groups the Gaussian param-
eters of all global classes, and G(li) is the global class corresponding
to label li.

Given this generative model, segmentation can be cast as a Bayesian
inference problem: given the probabilistic atlas and the observed image
intensities, what is the most likely segmentation? This problem can be
solved by first estimating the model parameters (mesh deformation
and Gaussian means and variances) from the data, and using the

computed point estimates x̂ and θ̂ to determine themost likely segmen-
tation. Assuming a flat prior for the Gaussian parameters and using
Bayes rule, the point estimates are given by:

x̂; θf g ¼ argmax
x;θ

p x; θjy;α ; xre f
;K;K

� �

¼ argmax
x;θ

log p xjK;xre f
;K

� �

þ
XI

i¼1

log
X
G

pi yijμG;σ
2
G

� � X
k∈G

pi kjα ; x;Kð Þ
#
:

"

This problem is solved with a coordinate ascent scheme, alternately
optimizing themesh deformation xwith a conjugate gradient optimizer
and the Gaussian parameters θwith an expectationmaximization (EM)
algorithm (Dempster et al., 1977). Once the optimal parameters have
been computed, the final segmentation can be computed for each
voxel independently as:

l̂i ¼ argmax
k

pi yijμG kð Þ;σ
2
G kð Þ

� �
pi kjα ;x;Kð Þ;

and the expected value of the volume of a given structure is (in voxels):

V kð Þ ¼
XI

i¼1

pi yijμG kð Þ;σ
2
G kð Þ

� �
pi kjα ;x;Kð ÞXL

k0¼1
pi yijμG k0ð Þ;σ

2
G k0ð Þ

� �
pi k

0��α ;x;K� �
;

ð1Þ

where k is the label corresponding to the structure.
Further details on the segmentation algorithm can be found in Van

Leemput (2009) and Van Leemput et al. (2009).

Experiments and results

Experimental setup

The brainstem segmentation algorithm was evaluated in three dif-
ferent sets of experiments, one with each dataset. In all experiments,
the brain MRI scans were preprocessed as follows. First, the T1 data
were processed with the FreeSurfer pipeline, which includes resam-
pling to 1 mm isotropic resolution, bias field correction (Sled et al.,
1998), skull stripping (Ségonne et al., 2004), intensity normalization
and segmentation of subcortical structures (Fischl et al., 2002). The
FLAIR scans (in the brainstem dataset)were bias field corrected and rig-
idly aligned with the corresponding T1 images using mutual informa-
tion in order to ensure that the gold standard, T1 and FLAIR images
were in the same coordinate frame. In addition, the brain masks com-
puted by FreeSurfer from the T1 data were applied to the FLAIR scans
of this dataset.

After preprocessing, the skull-stripped, bias-field-corrected images
(T1 or FLAIR) were then fed to the segmentation algorithm, which
was initialized by aligning the probabilistic atlas to thewhole brainstem
segmentation produced by FreeSurfer (“aseg.mgz”) with an affine
transform. The stiffness of the mesh was set to K = 0.05 in all experi-
ments. The mesh was rasterized (i.e., interpolated to a regular voxel
grid) at 0.5 mm isotropic resolution, which produces a segmentation
at that voxel size.

Fig. 2.Generativemodel of training data. The abbreviations for the structures are the following: 4V= fourth ventricle, PO= pons, CC= cerebellar cortex, CW= cerebellar white matter,
ME=medulla, SCP= superior cerebellar peduncle, 3V= third ventricle, LV= lateral ventricle, TH= thalamus, MB=midbrain,WM=whitematter, CP= choroid plexus, CT= cortex,
WB = whole brainstem. The background is represented in black.
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Direct evaluation with brainstem dataset
In this set of experiments, we used a leave-one-out scheme to auto-

matically segment the subjects in the brainstem dataset using the T1
and FLAIR scans as input. First, we fused the two manual delineations
of each T1 scan of the brainstem dataset into a single gold standard seg-
mentation using the multi-label version of the STAPLE algorithm
(Warfield et al., 2004) with flat label priors. Then, the leave-one-out
atlases were built upon the gold standard segmentations and the man-
ual delineations of the FreeSurfer dataset. The T1 and FLAIR scans of
each subject were finally analyzed with the proposed segmentation al-
gorithm using the corresponding leave-one-out atlas (i.e., built upon
the annotations made on the images from the other nine subjects, in
addition to the FreeSurfer dataset).

The automated segmentations computed from the T1 and FLAIR scans
of each subject were compared with each other (in order to estimate the
robustness of the algorithmagainst changes inMRI contrast) andwith the
gold standard (in order to evaluate the accuracy of the segmentation).
Segmentations were compared with three different metrics: Dice over-
lap, symmetric maximal surface-to-surface (Hausdorff) distance and
symmetric mean surface-to-surface distance (see definitions in Appen-
dix D). We also computed the correlation of the volume estimates de-
rived from the T1 and FLAIR scans of each subject.

Indirect evaluation through aging study on FreeSurfer dataset
We also evaluated the segmentation method indirectly with an

aging analysis. First, we tested whether the algorithm could detect the
effects of aging in the volume of specific brainstem subregions. Such
effects have been previously reported by studies based onmanual delin-
eations (Luft et al., 1999; Raininko et al., 1994).We segmented the scans
of the FreeSurfer dataset in a leave-one-out fashion, i.e., each scan was
segmented with an atlas created upon the other 38 (in addition to the
10 gold standard segmentations of the brainstem dataset). Then, the
volumes of the brainstem structures of each scan were computed with
Eq. (1). Next, for each of the brainstem structures, we fitted a general
linear model (GLM) predicting the volume of the structure at hand as
a linear combination of a bias, the age of the subject and his/her

intracranial volume (ICV, as estimated by FreeSurfer). Then, we tested
whether the slope corresponding to age was significantly different
from zero. We chose the FreeSurfer dataset – rather than ADNI – for
the aging experiment because of its wider age range (69 vs. 35 years).

In order to demonstrate the value of working with the volumes of
themidbrain, pons,medulla and SCP (rather than using only the volume
of the whole brainstem), we conducted another experiment in which
we used a GLM to predict the age of a subject as a linear combination
of a bias, his/her ICV and either the volume of the whole brainstem or
the volumes of the four brainstem structures. Then, we used an F-test
to assess whether the improvement of the fit yielded by the additional
variables (the volumes of the brainstem structures) was significant.
Moreover, we also predicted ages from both models using a leave-
one-out scheme (such that the regression coefficients used to predict
the age of each subject are computed upon all other subjects), in order
to compare the correlations of the predictions given by both models
with the real age. The statistical significance of the difference between
the two correlations was assessed with Meng's test (Meng et al., 1992).

Evaluation with pathological dataset (ADNI)
The third set of experiments was based on the ADNI dataset, which

includes scans of elderly controls and AD subjects acquired at different
sites with different platforms, and therefore exhibits a larger degree of
variability in image contrast and anatomy than the brainstem and
FreeSurfer datasets. We segmented the ADNI scans with an atlas built
upon all 39 manual delineations of the FreeSurfer dataset and all 10
gold standard segmentations of the brainstem dataset. In a first experi-
ment, we assessed the impact of AD on the volumes of the brainstem
structures in a quantitative fashion. To do so, we first corrected the data
for age and ICV by fitting a GLM predicting the volume of each structure
from these two variables, and then using a two-sample, one-tailed t-test
to compare the residuals from the AD and control groups. In a second ex-
periment, we evaluated the robustness of the segmentation qualitatively.
Since no ground truth was available for this dataset, the robustness was
assessed by visually inspecting the outputs and grading each segmenta-
tion as satisfactory or unsatisfactory; this task was performed by JEI.

Fig. 3.Box plots for theDice overlap, symmetricmean surface-to-surface distance and symmetric Hausdorff (maximal) distance for the SCP,midbrain, pons andmedulla. R1–R2 represents
the agreement between the two human raters (inter-observer variability), T1–GS is between the T1 segmentation and the gold standard, FL–GS is between the FLAIR segmentation and the
gold standard, and T1–FL is between the T1 and FLAIR segmentations. Statistically significant differences (as measured by a paired t-test) between T1–GS and R1–R2, as well as between
FL–GS and R1–R2, are marked with an asterisk (when p b 0.05) or two (when p b 0.01). The light red box spans the 95% confidence interval of the mean, which is marked by the red line.
The blue box spans one standard deviation of the data. The circles mark the raw data points— slightly jittered along the x axis for clarity. Note that, since there is no ground truth for the
medulla, only T1–FL can be computed for this structure.
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Results

Direct validation: Dice scores and surface-to-surface distances
on brainstem dataset

Fig. 3 shows box plots for the Dice overlap, symmetricmean surface-
to-surface distance and symmetric maximal surface-to-surface
(i.e., Hausdorff) distance. The plots compare the agreement of the auto-
matic segmentations of T1 and FLAIR between themselves and with the
gold standard. They also display the agreement between the twohuman
raters (i.e., the inter-observer variability), which puts the other metrics
in context— since it represents anupper boundof the performance than
an automated method can achieve.

For the midbrain and the pons, the automated segmentation based
on T1 images is very accurate (mean Dice: 88% and 94%; mean surface

distance: 0.7 mm and 0.5 mm; Hausdorff distance 3.7 mm and
3.5 mm, respectively), and so is the segmentation based on FLAIR
scans, which produces almost identical results (mean Dice: 88% and
94%; mean surface distance: 0.7 mm and 0.5 mm; Hausdorff distance
3.9 mm and 3.8 mm). Compared with the inter-observer variability
(with paired t-tests), the performance is not significantly inferior
according to the Dice scores (T1 and FLAIR) and the Hausdorff distances
(T1); however, the mean surface-to-surface distance is significantly
larger for both the T1 and FLAIR segmentations (p b 0.05 and p b 0.01,
respectively).

For the SCP, which is a small and thin structure, the gap between the
automated method and the inter-observer variability is wider and sta-
tistically significant (p b 0.01) according to all metrics, except for the
Hausdorff distance in FLAIR. The Dice score is particularly penalized by
the thin shape of the structure, since its width is comparable to the
voxel size. Therefore, surface distances are more informative for this
structure. Specifically, the mean andmaximal surface-to-surface dis-
tances are comparable to those obtained for the midbrain and pons,
which indicates that the performance of the automated algorithm
in the SCP is on par with the larger structures. The mean surface dis-
tance is 0.6 mm for both T1 and FLAIR (compared with 0.3 mm for
intra-observer variability) and the mean Hausdorff distance is
4.0 mm for T1 and 3.5 mm for FLAIR (the intra-observer variability
is 3 mm).

The robustness of the method against changes in MRI contrast is
demonstrated by how close the similarity metrics are when the T1
and FLAIR segmentations are compared with the gold standard. The
similarity of the two automated segmentations with each other is also
large, particularly when measured with Dice. Moreover, the volumes
derived from them are highly correlated (see Fig. 4): the correlation
coefficient is 0.999 for the pons, 0.987 for the midbrain, 0.968 for the
medulla and 0.815 for the SCP, which is once more penalized by its
thin shape.

Finally, Fig. 5 shows sample automatic segmentations and compares
them with the manual delineations. The agreement between the two is
strong, except for the SCP,which is typically undersegmented by the au-
tomated method — especially in T1.

Fig. 4. Scatter plots and linearfits for the volumes of the brainstem structures derived from
the segmentations of the T1 and FLAIR scans of the brainstem dataset.

Fig. 5. Sample slices (top two rows),manual delineations (middle row) and automated segmentations (bottom two rows) from the brainstemdataset. The color code is the following: red
is pons, green is midbrain, blue is SCP, and gray is medulla. Note that there is no manual segmentations for the medulla.
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Indirect validation with FreeSurfer dataset: aging study
Fig. 6 shows scatter plots and the linear fit of the ICV-corrected vol-

umes of the brainstem structures of the subjects from the FreeSurfer
dataset against their ages; in all four structures, the dependence of the
volume on ICV is statistically significant (p b 10−4). However, the only
structure for which there is significant atrophy (i.e., statistically signifi-
cant dependence of volume on age) is the midbrain (p = 0.01, yearly
decline 0.12 %); the pons, medulla and SCP are spared. This is consistent
with previous MRI studies based on manual delineations (Luft et al.,
1999; Raininko et al., 1994).

In the age prediction experiment, the simultaneous use of all
brainstem structures in the estimation produces a significant improve-
ment of the fit of the GLM (i.e., age prediction) compared with using
only the volume of the whole brainstem (p = 5.3 × 10−5). Moreover,
when age is predicted in a leave-one-out framework, the standard
error of the prediction error decreases from 24.95 to 18.64 years, and
the correlation coefficient increases from 0.14 to 0.60 (p =
8.5 × 10−3). The scatter plots and linear fits of the true and predicted
ages are shown in Fig. 7.

Effect of AD and robustness of segmentation against pathology
Table 1 summarizes the differences in volume between the AD and

control groups for the different brainstem structures. The largest effect
is found in the midbrain, as in the aging experiment. Moderate effect
sizes were also obtained for the pons, SCP andwhole brainstem, where-
as no difference between the groups was found in the medulla.

Finally, Fig. 8 shows the segmentedmidsagittal slices of the first 132
scans in the ADNI dataset; segmentations for the remaining 251 scans
are displayed in Figs. 9 and 10 in the Supplementary material. Despite
the anatomical heterogeneity of the images, visual inspection of the
complete 3D labelings did not reveal any poorly segmented scanwithin
thewhole dataset. The volume estimates for the brainstem structures of
these subjects can be found in Tables 2–7 (also in the Supplementary
material).

Conclusion and discussion

In this paper we have described the construction of a probabilistic
atlas of four brainstem structures (midbrain, pons, medulla and SCP)
and evaluated the segmentations derived from it on three different
datasets. The segmentation is efficient and runs in approximately
15 min on a desktop computer. The results have shown that the method
can accurately segment the midbrain and pons. The segmentation of the
SCP yields lower Dice scores due to its thin shape (its thickness is

comparable to the voxel size), but approximately the same surface-to-
surface andHausdorff distances as themidbrain and pons. The segmenta-
tion of the medulla could not be evaluated directly due to the lack of
ground truth segmentations. In the indirect evaluation through the
aging experiment, the medulla did not show the mild decline reported
in (Raininko et al., 1994); however, this could be due to the noise intro-
duced by the inferior part of the medulla's being left out by the field of
view of the scan or the brain extraction. This could also explain why no
difference was found between the AD and control groups for this
structure.

The results on the age prediction experiment have also shown that the
volumes of the different brainstem structures contain more information
than the volume of the brainstem as a whole: the GLM based on all the
volumes produces a much more accurate prediction than the GLM that
uses only the volume of the whole brainstem. However, the differences
foundbetweenADpatients and controls in theADNI datasetweremodest
compared with the values reported by Nigro et al. (2014). Further explo-
ration will be required to assess whether this is due to differences in the
chosen subset of ADNI or in the segmentation methods.

The experiments have also shown that the segmentation method is
robust against changes inMRI acquisition platforms andprotocols: it pro-
duces consistently satisfactory results on three different datasets, includ-
ing onewith two types ofMRI contrast (brainstemdataset, T1 and FLAIR)
and another that contains scans from elderly subjects and AD patients
scanned at different sites (ADNI). The segmentations of the FLAIR scans
were only marginally less accurate than those of the T1 scans. This is in
spite of the fact that manual delineations were made in the space of the
T1 images, implying that errors in the registration of the FLAIR volumes
directly affect the similarity metrics computed for their segmentations.

In order to model the relationship between the segmentations and
the intensities, we used a simple Gaussian likelihood. While this
model sufficed in our study, MRI sequences designed to maximize the
contrast of brainstem structures might require more flexible distribu-
tions, such as Gaussian mixture models. More complex likelihood
terms will also be necessary to incorporate other MRI modalities into
the algorithm in order to increase its performance. For instance, diffu-
sion MRI promises to improve the accuracy of the method in the SCP,

Fig. 7. Scatter plots for real and predicted ages in the FreeSurfer dataset, using only the vol-
ume of the whole brainstem (left, r = 0.14) and the volumes of all the brainstem struc-
tures (right, r = 0.60).

Fig. 6. Scatter plots for the ICV-corrected volumes of the brainstem structure versus age
(FreeSurfer dataset). The linear fit is superimposed. The p-value for the hypothesis that
the slope of this fit is zero is displayed in the title of each subfigure, along with the yearly
atrophy (in %).

Table 1
Volumetric study of brainstem structures in ADNI: elderly controls vs. AD patients.
The table shows themean difference in volumebetween the two classes for each structure
(as a percentage of themean volume), the effect size of the difference, and the correspond-
ing p-value (two-sample, one-tailed t-test).

Structure Vol. diff.(%) Effect size p-Value

Pons 2.6 0.25 0.0072
SCP 4.4 0.24 0.011
Midbrain 2.2 0.32 0.00091
Medulla 0.4 0.04 0.67
Whole BS 2.0 0.24 0.011

191J.E. Iglesias et al. / NeuroImage 113 (2015) 184–195



192 J.E. Iglesias et al. / NeuroImage 113 (2015) 184–195



since cerebellar tracts provide a salient feature for its segmentation.
Exploring these directions, along with including brainstem substruc-
tures (e.g., raphe nuclei, red nuclei) in the atlas, remains as future work.
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Appendix A. Guidelines used in the manual delineation of the pons

1. Tracing of the superior boundary: in themidsagittal plane, first trace
the line passing through the superior pontine notch and the inferior
edge of the quadriminal plate, then the line to the quadriminal plate

and, after all regions have been traced, erase the extraneous portions
of the lines. Then, continue tracing in lateral slices. Once the oculo-
motor nerve (CN III) is visible, make sure that the anterior boundary
point is below CN III. Once the inferior colliculus is no longer visible,
switch view to the most lateral slice in which themidbrain and pons
begin to separate. On this slice, trace a diagonal line along the notch
that appears between the midbrain and pons. Repeat this procedure
in themedial slices. If theposterior notch is not visible in a given slice,
identify where it would be based on the posterior notch position in
both medial and lateral adjacent slices.

2. Tracing of the inferior boundary: in sagittal view, identify the slice in
the left hemisphere where the anatomical boundary between the
medulla and pons is most prominently visible as a bright white
line. Trace a straight line from the anterior to the posterior point of
the anatomical boundary. Even if the anatomical boundary is not
straight, the line defining the inferior boundary should be a straight
line. Then, in axial view, identify the most superior slice where the
voxel from the sagittally drawn line appears. In this slice, trace the
posterior boundary based on the tissue–CSF (cerebrospinal fluid)
boundary between the fourth ventricle and the pons. Trace along
the CSF–tissue boundary just past the vestibular nuclei (CN VIII),
which can be visualized by the notch of the fourth ventricle bound-
ary, which becomes a vertical line. Then, in sagittal slices, trace the
inferior boundary as the straight diagonal line that extends anteriorly
from the inferior pontine notch to the posterior voxel created by the
axial-defined boundary. In the most lateral (sagittal) slice where the
axial-defined voxel boundary is visible, move the cursor to the inferi-
or pontine notch and switch to coronal view. In this one coronal slice,
trace around the curvature of the bright pons and middle cerebellar
peduncle regions and fill in the region. Finally, return to sagittal
view and verify that in the next lateral sagittal slice a vertical line
appears extending from the fourth ventricle. This line will define
the posterior boundary in subsequent lateral sagittal slices.

3. Tracing of the posterior boundary: in sagittal view, first trace the line
along the tissue–CSF boundary. Once the middle and superior cere-
bellar peduncles make contact with the pons, draw a straight line
from the superior point where the peduncle first branches from the
pons to the most inferior point where the peduncle branches from
the pons. Then, repeat this step in subsequent sagittal slices. If
there is incidentally any CSF space covered by the labeling, make
sure it is not included in the final segmentation.

4. Tracing of the anterior and anterior–inferior boundaries: first trace
the line along the tissue–CSF boundary in sagittal view. Then, in lat-
eral slices, trace the inferior boundary as defined by the tissue–CSF
interface, without including the blood vessels and nerves that extend
from the middle of the pons. Finally, identify the most inferior axial
slice where the posterior boundary of the segmentation appears to
protrude posteriorly from the line that defines the posterior bound-
ary. On that slice, draw a straight diagonal line from the most lateral
point of the medially protruding segmentation to the most lateral
voxel of the line defining the posterior boundary.

Appendix B. Guidelines used in the manual delineation
of the midbrain

1. In sagittal view: in the most lateral slice of the right hemisphere
where the CSF boundary is clearly visible between the thalamus
and midbrain, trace the superior boundary of the midbrain as de-
fined by the CSF boundaries. In order to make sure structures
above the midbrain are not included, do not segment any voxels
above the line of superior-most line of the superior colliculus.
Trace the anterior boundary as the straight vertical line just poste-
rior of the mammillary bodies. Repeat on left side.

Fig. 8.Region of interest covering the brainstem in themidsagittal slice of thefirst 132 scans from the ADNI dataset. The segmentation is superimposedwith 50% transparency. See caption
of Fig. 5 for the color code.
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2. Identify the superior-most axial slice in which the outline of mid-
brain is visible based on tissue–CSF boundary. Make sure that the
CSF boundary is clearly visible on the anterior boundary. In this
slice, the midbrain should appear clearly separated from other
structures; this may be different slices for each side of the brain.
Trace around this shape.

3. Identify the most posterior coronal slice where the “neck/bridge”
portion that is thinner than both the midbrain and thalamus is
clearly visible. In this slice, trace a straight diagonal line from
the lateral inferior corner of the third ventricle to the inferior
notch between the midbrain and thalamus. This will likely be in
different slices in each side of the brain.

4. Continue tracing posteriorly in coronal view using the technique
described in step 3, i.e., tracing a straight diagonal line from the
lateral inferior corner of the third ventricle to the most lateral
voxel of the line created by the axially traced slice.

5. Once the midbrain and thalamus are separated by CSF space, the
superior midbrain boundaries are defined by the tissue–CSF
boundaries. Trace around the colliculi and midbrain in coronal
view until the colliculi are no longer visible.

6. Continue tracing anteriorly in coronal view using the technique
described in step 5. If two voxels from the sagittal tracing are vis-
ible, use themost superior to define the superior midbrain bound-
ary. Once the sagitally traced voxels are no longer visible in
coronal, stop drawing the superior boundary in coronal and
trace around the inferior portion bounded by CSF.

7. Identify the sagittal slice described in step 1. Then, draw a line
from the superior voxel of the line created in the coronally-
traced slice from step 3 to the anterior voxel of the horizontal
line given by the segmentation at this point. This will create a
right triangle that must be filled in. Repeat this procedure in all
lateral sagittal slices. Also, make sure that the small area of mid-
brain tissue bounded by CSF space below the horizontal line is
filled in.

8. In sagittal slices medial to the slice described in step 4, make sure
that the thin midbrain portion posterior to the mammillary body
are segmented by tracing a straight vertical line upwards from
the most posterior voxels of the mammillary body. Of this line
only include the voxels that are superior to the most inferior
point of the thin midbrain bridge.

Appendix C. Guidelines used in the manual delineation of the SCP

1. In axial view, identify the most inferior slice where the
parabrachial recess is clearly visible. In this slice draw a vertical
line extending down from the lateral boundary of the fourth ventri-
cle. The sagittal slice where this line appears will be the most lateral
slice for tracing the SCP. The recess will appear in different slices on
the left and right sides. Erase extraneous portions of the axially
drawn line.

2. Do all tracings in sagittal view. In themidsagittal plane, trace around
the thread-like structure that extends from the bottom of the tectum
into the cerebellum. If the upper and lower parts of the SCP are not
connected, trace around both parts separately.

3. The superior boundary is formed by the inferior boundary of the
midbrain tectum. The upper part of the SCP will be defined
as the non-black voxels that are excluded from the pons and
midbrain.

4. The posterior boundary is defined as a straight vertical line
extending down from the superior point where the SCP merges
with the cerebellum, at the vertex of the dark right triangle.

5. In lateral sagittal slices, where the SCP makes contact with the
pons, the anterior boundary is defined by the posterior boundary
of the pons.

Appendix D. Metrics used to compare two segmentations

In this study, we have used three different metrics to measure the
(dis-)similarity of two segmentations. The first one is the Dice overlap.
If A and B are two binary masks corresponding to a brain structure,
their Dice overlap is:

DICE ¼ 2 A∩Bj j
Aj j þ Bj j ;

where | ⋅ | represents the size (number of voxels) of a mask.
The other two measures are based on the distances between sur-

faces. If δA and δB are the surfaces of masks A and B, the symmetric
Hausdorff distance is:

SHD ¼ 1
2
sup
a∈δA

inf
b∈δB

d a; bð Þ þ 1
2
sup
b∈δB

inf
a∈δA

d b; að Þ;

where sup is the supremum, inf is the infimum, and d(a, b) = d(b, a) is
the Euclidean distance between two points a and b. The symmetric
mean surface-to-surface distance is:

SMSTSD ¼ 1
2

1
δAj j

X
a∈δA

inf
b∈δB

d a; bð Þ þ 1
2

1
δBj j

X
b∈δB

inf
a∈δA

d b; að Þ:

Appendix E. Supplementary data

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.neuroimage.2015.02.065.
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