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Abstract: Most existing models for estimating electric system impacts from windstorms tend to
have detailed representation only for the electric or only for the meteorological system. As a result,
there is little evidence on how models with detailed electric systems and realistic wind gust field
representations would perform in different windstorm cases. This work explores the evidence for the
ability of such a fragility-based model to generate realistic spatiotemporal lost load profiles for the
most impactful windstorm cases in Finland. The literature review shows multiple driving factors
for windstorm impacts that are difficult to assess analytically, and similarities between the most
impactful windstorms. All the available interruption data for thirteen years were analyzed, with their
grouping by individual storm and calm periods. The fixing of time distribution fits for these periods
show most faults as being within the 20% uncertainty bounds of the severity-dependent distribution
trendlines. The medium-voltage electricity grid impact model with national coverage was applied
for the three most impactful and most recent windstorm cases, with the model calibrated for one case.
The generated spatiotemporal lost load profiles in all cases recreate historic profiles within the similar
error margins of approximately 20%.

Keywords: distribution grid; windstorm; lost load; repair time

1. Introduction

Extreme weather events, with windstorms at the forefront, are responsible for a large
share of the major blackouts globally [1]. Windstorms are strong, low-pressure systems, and
are the type of storm that forms at the mid-latitudes, also known as an extratropical cyclone,
driven by horizontal temperature gradients. Windstorms produce strong winds over areas
that can span several hundred to several thousand kilometers in diameter [2]. In Finland,
windstorms are the dominant source of electricity interruptions, with a small number of the
strongest windstorms responsible for the majority of all electricity supply interruptions [3].
These interruptions are costly, but the same is also true for many measures to reduce
electricity interruptions [4]. In other words, there is a risk of both significant under- and
over-adaptation [5]. Thus, the economically sound development of the electricity system
and of the most vulnerable sectors to electricity interruptions depends on knowledge of the
impacts of major windstorms on the planned grids and electricity supply going through
them. This knowledge can be obtained via the modeling of weather and electric grid
systems, to generate spatiotemporal wind gust fields and, with them, a spatiotemporal lost
load (LL) profile. Such modeling includes a multitude of relevant weather and electricity
system aspects that can be represented in a multitude of ways, and at different levels
of sophistication.

Electricity system representation differs by both the presence and detail of various
system aspects. The simplest representations include only the spatial distribution of certain
system components, and their possibility of faults. Examples of such representations
are present in models using machine learning methods that link wind gusts to outages
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defined as the disconnections of transformers [6] or consumers [7]. Other machine learning
models account for the spatial distribution of multiple grid components (e.g., [8,9]). More
comprehensive electricity system representations can be found in analytical models that
link the wind gust speed with faults in individual components, via so-called fragility
functions. Fragility-based models include various combinations of additional aspects, with
the major ones being the grid topology, component repair, and consumption. The grid
topologies found in fragility-based wind impact models range from standard test systems
(e.g., [10]) and simplified transmission grids (e.g., [11]) for which a significant portion of
data is publicly available, to distribution grids generated from proxy data (e.g., [12]), as
their actual topology data are typically unavailable [13]. An account of component repairs
enables the modeling of the temporal dimension of disruption. The works that do account
repairs range from repair times being a product of a component-specific constant and a
random number [14], to modeling repair staff constraints [15]. The impact assessment in
terms of the number of faults (NoFs) provides valuable information for the allocation of
repair assets (e.g., [16]), and the means of studying the component importance in cascading
failures [17]. However, cost considerations require an account of consumption, as the
electricity supply in a sufficiently long disruption is more valuable than the infrastructure
enabling it. The account of consumption without a temporal dimension is relatively
straightforward (e.g., [18]), while a temporal consumption account requires the generation
of synthetic (i.e., real-like) consumption profiles, which is significantly more complex [19].

Weather system representation includes a multitude of variables in machine learn-
ing models, but is mostly captured using the spatiotemporal wind gust speed field in
fragility-based models. Impact models using machine learning methods can include pa-
rameters not only for the atmosphere, but also for other environmental aspects, such as
the vegetation and soil surrounding powerlines. The natural environment is a major factor
shaping the link between the weather and electricity systems. This is especially true in
highly forested countries such as Finland, where the dominant fault mechanism is trees
falling onto powerlines [20]. Some fragility-based models do account for vegetation factors
(e.g., [21]). There are also analytical studies on how the tree density and position in rela-
tion to powerlines and wind direction affect powerline susceptibility to strong winds [22].
However, fragility-based models typically account only for a wind gust field that can
differ in spatial and temporal resolution and, more importantly, in the sophistication of
the meteorological knowledge included. Wind fields with limited meteorological rep-
resentativeness include fields generated using simple abstractions (e.g., “circular storm
with constant wind speed” [23]), randomly sampled values from distributions fitted with
historic wind data (e.g., [17]), and reanalysis data for a randomly selected day, scaling up
to reach storm levels (e.g., [14]). Wind fields with a stronger meteorological basis include
values obtained from weather forecasting models (e.g., [11]), meteorological reanalysis
datasets, and the extrapolation of values from the nearest measurement stations (e.g., [12])
for historic windstorm cases.

Fragility-based models with a detailed electricity system representation allow the
sophisticated considerations of electricity system development options, and their implica-
tions for supply security. However, given the significance of various environmental factors,
it is not obvious how well such models can produce realistic electricity system impact
profiles for different storms represented only with wind gust fields. Zhai et al. present the
application of a fragility-based model with a synthetic distribution grid for two different
storm cases (a derecho in a county in Ohio, and a hurricane in a city in Texas) [12]. In both
storm cases, spatial distributions for historic numbers of disconnected consumers were
recreated, indicating that models of this type can be used for storms that differ even in the
meteorological processes present. However, Zhai et al. provide no further exploration of,
or discussion on the model applicability for different storms, and the sufficiency of the
meteorological system representation. Among the reviewed studies, none were found to
include such exploration, providing the motivation for the current work.
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This paper presents an exploration of the fragility-based impact model’s ability to
generate realistic spatiotemporal LL profiles for different windstorm cases. The focus is on
the most impactful windstorms, with strategic implications for energy system development,
and broader emergency preparedness. A knowledge of the potential impacts from the
largest windstorms on detailed electricity system representation could inform consider-
ations such as the optimal regulatory requirements for hardening measures and repair
capacity, or the sensitivity of system development scenarios to major disruptions. Realistic
electricity disruption scenarios could also contribute to the development of emergency pre-
paredness outside of the energy sector, by providing a basis for exercise development, and
a reference for capacity sizing. Given this focus, the subsequent exploration does not cover
the full severity range of possible windstorms that would be needed for near-real-time
impact forecasting.

The most extreme cases are, by definition, rare and, due to power relationship impacts,
can differ significantly, even due to small differences in the wind gust speed. As a result,
the evidence of the model’s ability to estimate impacts may be less transferable between
extreme cases than between moderate windstorm cases. Therefore, this work contains
an exploration of the model’s ability across three lines of evidence, corresponding to the
following objectives:

1. Meteorological factors—review the wind impact driving factors, and the most impact-
ful windstorms.

2. Electricity system resilience—analyze the available data on the electricity system
structure, and their changes with time, and electricity system interruptions, and how
their duration depends on the storm severity.

3. Modeling cases—test the fragility-based impact model’s ability to recreate the spa-
tiotemporal LL profile for the most recent, and the most impactful windstorm cases to
which the model is not fitted.

All evidence is pursued in a Finnish case, but is expected to be indicative of the
results for other countries, especially highly forested countries at the mid-latitudes. To the
authors’ knowledge, no prior study in the Nordic countries contains a combined analysis
of meteorological factors and the electricity system vulnerability, with the distinction of
the windstorm severity, or the recreation of spatiotemporal LL profiles for major historic
windstorms. The fragility-based model used here is unique in its combination of medium
voltage (MV) grid detail and national scale coverage. It was developed by the authors, and
successfully applied to one windstorm case in Finland [3].

The structure of the paper is as follows. Section 2 presents the review of the impact-
driving factors, considering the significance of their account for impact modeling, and the
most impactful windstorm cases selected for modeling presented later (the first objective).
Section 3 presents a summary of the modeling framework, and the information captured
utilizing it that is indicative of energy system resilience (the second objective). Section 4
presents the comparison of the modeling results and the historic profiles for LL and the
number of line faults for three windstorm cases (the third objective). Section 5 concludes
the paper.

2. Impact of Extreme Wind in Finland

Grid-damaging winds in Finland occur during storms, the impact of which is shaped
by a combination of a multitude of partially known factors. As a result, it is difficult to
assess the generality of the impact model; i.e., the extent to which the ability of the model to
recreate the LL profile for one historic windstorm could be extrapolated to the ability of the
model to generate realistic LL profiles for other historic or future windstorms in Finland.
This section presents a review of the aspects that are expected to provide the first line of
evidence for such model generality among the most extreme windstorms.
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2.1. Impact Driving Factors

The first obvious indication of model generality is the comparison of the windstorm
impact driving factors, and their significance to the factors accounted for in the model.
However, listing such factors is neither easy, nor sufficient for a comprehensive description.
Many complexities arise from the number and variety of, and interactions between, these
factors. That said, a complete knowledge of the driving factors is not necessary in order
to expect similar impacts, as well as to model the suitability for similar windstorms. In
other words, a partial list of factors, and a knowledge of their significance, seems to have
a substantial indicative value. This subsection provides a brief literature review on the
meteorological and non-meteorological impact driving factors for windstorms in Finland
and similar countries.

In densely forested countries such as Finland, the wind-related impacts on the power
grids are mainly connected to trees falling on the powerlines. Subsequently, many of the
impact-driving factors of power-grid damages are similar to the factors driving the wind
impacts on the forests and trees. The wind gust speed is commonly considered the most
important factor driving forest and power-grid damages [24]. For example, some versions
of the Storm Severity Index are described only by the wind or wind gust speed over a certain
percentile (e.g., 98), area, and duration of the windstorm [25]. In a more specific example,
Roberts et al. used wind speeds from the 925 hPa level, which is commonly used to describe
the wind gusts occurring close to the surface. The longer the period, and the larger the area
with strong wind gusts, the higher the risk of the trees uprooting. Additionally, studies on
basic mechanistic wind damage models for forests have considered a critical wind speed,
which is required for either uprooting or breaking trees. The critical wind speeds depend
on location and topography, because trees adapt to their local climate [26,27]. Trees also
adapt to the wind direction; thus, in the case of a less usual wind direction, trees may
uproot more easily [24].

Moreover, wind speed impacts are shaped by other meteorological factors, such as
snow, rain, and temperature. In winter, a heavy snow load on trees may cause them to
break [28,29] and fall onto power lines. In fact, snow and ice are the largest causes of
electricity interruptions in Finland, after wind [3]. A significant snow load (>20 kg/m2)
and moderate winds (>8 m/s) do occur simultaneously, but this is rare (<1% of days) [28].
Furthermore, more extreme wind and snow-load values are expected to be at least in part
mutually exclusive, as strong winds would also remove the snow load from the trees. Rain
and mild temperatures lead to soil that is unfrozen and wet, which simplifies the conditions
for the uprooting of trees; i.e., it exposes forests to wind damage at milder wind speeds [30].
This is especially relevant in winter, as it is the time of year when the wind speeds are
statistically strongest.

Non-meteorological factors also significantly impact the proneness of the trees to
falling onto powerlines. For example, the proximity of the trees to the powerlines, the tree
type, the canopy cover, and irregular forest management (clear-cutting) impact the trees’
vulnerability to the wind [28,31–33]. Additionally, soil characteristics such as the soil type
affect how easily the trees can be uprooted [33]. The type and location of the powerlines
also matter. If there are tall trees in the vicinity of overhead lines, or if the forest next to
the powerlines has recently been thinned or clear-cut, the risk of wind-related damage is
high. It is difficult to quantify the influence of each impact-driving factor on forest damages
in Finland, and even more so on power grid damage. As a result, the influence of many
factors remains quantitatively unexplored. The most notable exception to this is a study
by Haakana et al. that suggests that the presence of soil frost reduces wind-related power
outages by 10–38% in Finland, depending on the region of the occurrence [34].

As described in the next section, the model used in this paper accounts for the wind
speed and forestry share, but not for other details of the forest, and none for the soil.
Therefore, it is likely that the model may require recalibration for a set of windstorms with
significant differences in the soil state.
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2.2. Seasons, Annual, and Decadal Trends

Windiness trends provide information on a variety of windstorms, and an indication
of likely future windstorms, which in turn indicates the model best fitted to them.

The literature review shows that windiness in Finland has a strong seasonality, but no
trends over longer periods. Mid-latitude windstorms occur in all seasons; however, in the
winter season, they are more frequent and widespread, and stronger [35]. Laurila showed
the monthly mean and extreme (i.e., 98th percentile) 10 m wind speeds over European
land areas to be on average approximately 30% higher in winter than in summer, and
to have great interannual variation [36]. In Finland, a strong seasonality is also present
for other meteorological parameters. This includes meteorological parameters that have
a significant impact on windstorm impacts, most notably soil frost. In Scandinavia, the
soil-frost is typically present in at least part of the country from October to May, anchoring
the trees to the ground and, subsequently, rendering them less vulnerable to the strong
wind speeds of winter [30]. For annual and decadal periods, no clear trends in Finnish
windiness have been observed [35]. Some studies do suggest a slight downward trend
in the annual and seasonal mean and extreme wind speeds in Finland. However, these
studies also show, in some cases, the trend direction to be sensitive to the resolution or
the examination period of the data [2]. In contrast, the soil frost over the past decades has
shown a clear trend of a decreasing maximum depth and frost season length [37], and is
most likely to continue shortening with the globally rising temperatures [30,38,39]. This
indicates a potential increase in wind-related forest and power-grid damage, despite the
expectation of no significant change in the future wind climate in Finland.

The absence of long-term windiness trends was also observed in the analysis per-
formed for this paper using ERA5 reanalysis data [40,41]. Meteorological reanalysis datasets
contain physically consistent estimates of past weather and climate conditions, with com-
plete data coverage for a certain area and period [42]. Such estimates are generated by
combining meteorological observations with the forecasts of numerical weather prediction
models. The model is kept the same for the whole reanalysis period, which can last decades.
In contrast, the observations, especially for wind gusts, have limited spatial and temporal
coverage, with fewer and less accurate observations made in the more distant past. As a
result, reanalysis datasets are commonly used in wind and windstorm research [43]. The
ERA5 reanalysis used throughout this paper contains meteorological values across the
globe from 1950 to present, with hourly temporal and 0.25 latitude and longitude degree
(approximately 31 km over Finland) spatial resolutions [40]. The trend analysis in this
subsection utilizes the wind gust speed values available in ERA5 over Finland since 1979,
with the following procedures. The first two procedures are the aggregation of values by
taking daily maximums, and their spatial averaging for the grid cells situated fully within
the Finnish land area. Spatial averaging, even for major windstorms, is likely to result in
values that would not pose a significant risk to grid components locally. However, a larger
national average is still expected to indicate a stronger windstorm, either locally or in its
size. The third step counts the number of values over the range of different thresholds. The
resulting Figure 1 shows a large interannual variability between, but no clear trend in, all
the wind gust thresholds. The number of days with a national mean of daily maximums
over 15 m/s varies, from four in 2010, to seven times as many days in 2020. At the same
time, days above higher thresholds are present only in a portion of the studied years. Most
years with days over the highest 20 m/s threshold appear to be around 1990, while the
most destructive windstorms of 2011 (discussed in the next subsection) reach values only
in the 18–19 m/s range. This shows the limitation of assessing windstorm impact from a
simple indicator that takes into account only the wind gust data.



Energies 2023, 16, 5678 6 of 23Energies 2023, 16, x FOR PEER REVIEW 6 of 23 
 

 

 
Figure 1. Number of days with a national mean of daily maxima of wind gusts above the 15–20 m/s 
thresholds. 

2.3. The Most Impactful and Recent Windstorms 
The details of the most impactful and recent windstorms indicate the type of wind-

storms that are likely to be among the most impactful ones in the future. More im-
portantly, such details provide arguably the best indication of the types of future wind-
storm for which the model can realistically estimate the impact. The identification of the 
most impactful windstorms is complicated by the fact that no single objective criterion 
exist that defines windstorm impact. The Finnish Meteorological Institute has gathered 
lists of the most impactful storms, with one list including twenty-six windstorms and ten 
thunderstorms [2], and another including twenty-five windstorms and thirteen thunder-
storms [44]. The latter list starts from 1890; however, starting only from the 2000s are the 
windstorms listed following impact-based criteria: a minimum of 1000 rescue operations, 
a minimum of 100 k households without electricity, or a minimum of 0.5 Mm3 forest dam-
age. The impact data from the decades before the 2000s are often incomplete, and thus 
contain fewer cases. For older windstorm cases, the information is mainly based on media 
descriptions of the damage and the weather situation. The following three windstorm 
cases are selected for modeling based on their severity and recentness, and the coverage 
of the available data for the electricity supply interruptions (2005–2018). In all cases, other 
environmental factors were present, in addition to strong winds, that increased the wind-
storm destructiveness. As discussed before, the most notable among these factors was un-
frozen and wet soil, which reduced the force needed to uproot the trees. None of the stud-
ied winter windstorms were preceded by amounts of snowfall or ice significant enough 
to play a significant role in shaping the impact. 

The Tapani (26 December 2011, named cyclone Dagmar in other Nordic countries) 
and Hannu (27 December 2011) winter windstorms occurred in quick succession, with 
only a partial grid restoration between them and, therefore, they are studied here as a 
single windstorm case. Taken together, Tapani and Hannu caused by far the largest dis-
ruption from windstorms in Finnish electricity system history [45,46]. The Tapani wind-
storm was a rare extratropical cyclone, moving eastwards exceptionally fast, and causing 
severe damage in Norway and Sweden on 25 December [47]. On 26 December, the low-
pressure center of Tapani moved across central Finland, and caused widespread strong 
wind gusts in highly populated areas in the southern and western parts of Finland. The 
following day, Finland was hit by the Hannu windstorm that formed in similar conditions 
but with a slight difference in the wind gust speeds and storm track, causing the most 
damage in the eastern part of the country. Additionally, the impacts of both windstorms 
were strengthened by the rainfall of December 2011 in Finland that was the largest ever 
measured, and the average temperature that was warmer than usual in the large part of 
the country by five degrees, and in the north by nine degrees [47]. The southern part of 
Finland, in particular, suffered from moist and unfrozen soil. 

Figure 1. Number of days with a national mean of daily maxima of wind gusts above the
15–20 m/s thresholds.

2.3. The Most Impactful and Recent Windstorms

The details of the most impactful and recent windstorms indicate the type of wind-
storms that are likely to be among the most impactful ones in the future. More importantly,
such details provide arguably the best indication of the types of future windstorm for which
the model can realistically estimate the impact. The identification of the most impactful
windstorms is complicated by the fact that no single objective criterion exist that defines
windstorm impact. The Finnish Meteorological Institute has gathered lists of the most
impactful storms, with one list including twenty-six windstorms and ten thunderstorms [2],
and another including twenty-five windstorms and thirteen thunderstorms [44]. The lat-
ter list starts from 1890; however, starting only from the 2000s are the windstorms listed
following impact-based criteria: a minimum of 1000 rescue operations, a minimum of
100 k households without electricity, or a minimum of 0.5 Mm3 forest damage. The impact
data from the decades before the 2000s are often incomplete, and thus contain fewer cases.
For older windstorm cases, the information is mainly based on media descriptions of the
damage and the weather situation. The following three windstorm cases are selected for
modeling based on their severity and recentness, and the coverage of the available data for
the electricity supply interruptions (2005–2018). In all cases, other environmental factors
were present, in addition to strong winds, that increased the windstorm destructiveness. As
discussed before, the most notable among these factors was unfrozen and wet soil, which
reduced the force needed to uproot the trees. None of the studied winter windstorms were
preceded by amounts of snowfall or ice significant enough to play a significant role in
shaping the impact.

The Tapani (26 December 2011, named cyclone Dagmar in other Nordic countries) and
Hannu (27 December 2011) winter windstorms occurred in quick succession, with only
a partial grid restoration between them and, therefore, they are studied here as a single
windstorm case. Taken together, Tapani and Hannu caused by far the largest disruption
from windstorms in Finnish electricity system history [45,46]. The Tapani windstorm was a
rare extratropical cyclone, moving eastwards exceptionally fast, and causing severe damage
in Norway and Sweden on 25 December [47]. On 26 December, the low-pressure center
of Tapani moved across central Finland, and caused widespread strong wind gusts in
highly populated areas in the southern and western parts of Finland. The following day,
Finland was hit by the Hannu windstorm that formed in similar conditions but with a slight
difference in the wind gust speeds and storm track, causing the most damage in the eastern
part of the country. Additionally, the impacts of both windstorms were strengthened by the
rainfall of December 2011 in Finland that was the largest ever measured, and the average
temperature that was warmer than usual in the large part of the country by five degrees,
and in the north by nine degrees [47]. The southern part of Finland, in particular, suffered
from moist and unfrozen soil.
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The Tapani and Hannu windstorms, as the largest disruption, are used to calibrate the
fragility functions of the model. Such a calibration, unsurprisingly, leads to model results
for the LL profile close to the historical reference in the Tapani and Hannu case. However,
such calibration is only possible for historic windstorms with known wind gust fields and
LL profiles. Studies of future windstorm cases necessitate other ways of obtaining the
fragility functions. One of the most obvious ways is to use the fragility function calibrated
for a historic case. The suitability of such a fragility function depends on its generality, an
indication of which can be obtained by testing the model’s ability to reproduce impacts
for a historic case for which it was not calibrated. This requires another windstorm case,
ideally the more recent one, which would also allow the testing of the model’s suitability
for the current system. However, no major windstorms have occurred in the most recent
years that have available interruption data, and (as will be discussed in Section 3.3) the
post-2014 interruption data appear to be less reliable. Therefore, two additional windstorms
are selected.

Eino (17 November 2013, named Hilde in Sweden and Norway) is the most significant
windstorm after Tapani–Hannu in terms of the peak NoFs. Eino came to Finland weakened
after its destructive passage through central and northern Norway and Sweden [48]. It
moved across Southern Lapland with the strongest mean wind and wind gust speeds mea-
sured in the central parts of Finland. Similar wind gust speeds are measured approximately
once every few years in Finland; however, they typically occur later in the winter, when
the soil frost has already anchored the trees to the soil. Additionally, the beginning of
November had been mild and, especially in the western and central parts of the country,
rainy as well [49]. The amount of damage can be partly explained by the fact that the
strongest wind gusts of Eino influenced Finland’s southern and central parts, which are
densely forested, and relatively densely populated. Furthermore, the soil was moist and
frost-free after the mild and rainy beginning of the month. A positive development since the
Tapani and Hannu windstorms was that the authorities cooperated more smoothly during
Eino than two years earlier. Moreover, Eino was accurately predicted, which meant that the
distribution system operators (DSOs) and authorities were prepared well in advance [50].

Rauli (27 August 2016) was the most damaging among the recent windstorms [46],
despite its moderate wind gust speeds compared to the previously mentioned windstorms.
Rauli is an excellent example of an impactful summer windstorm where factors other than
the wind gust speed influenced the final damages. The impacts of Rauli were significant
because of the time of the year: at the end of a rainy August, the soil was wet and unfrozen,
and the trees had the maximum canopy cover, including leaves on the deciduous trees. In
addition, summer windstorms are typically shorter in duration, and cover smaller areas
(see Figure 2). However, Rauli was relatively long-lasting [51].

The wind gust fields for the weeks when the three selected windstorms occurred are
shown in Figure 2. Within these fields, only the values above 15 m/s matter; 15 m/s is an
assumed limit, above which repair work can no longer take place, while fault probabilities
become significant at approximately 18 m/s. In Finland, the volume of forest damage
during windstorms has been observed to follow the wind gust speed, as a function of wind
gust speed with a power of ten [24]. Given that falling trees are the main powerline fault
mechanism, it should not be surprising that there is also an indication of a power relation
between the wind gust speed and faults [34]. Thus, the aggregated representation of wind
hazard can be difficult. Nonetheless, aggregations using a statistical moment (e.g., the
regional averages in the Figure 2 temporal profiles) or duration above a certain threshold
(e.g., as done for the Figure 2 spatial profiles) correlate, and give similar distributions.
The figure also includes the peak number of consumers without power, and the average
interruption duration for each windstorm case. The values are derived from the dataset
containing individual faults, compiled by the consultancy company Enease [52,53]. This
dataset is presented in detail in the next section. The dataset does not contain information
about repeating faults, which prohibits the derivation of the total number of customers
affected that is commonly reported in secondary sources (Tapani–Hannu, 570 k [45,46], Eino,



Energies 2023, 16, 5678 8 of 23

230 k [2,46,49], Rauli, 200 k [46]). The average duration is computed as the ratio between
the total consumer hours interrupted, and the peak number of consumers interrupted,
which makes the average larger than it would be by computing the ratio with the total
number of consumers interrupted. The interruption values for Rauli in the figure also
account for scaling to match the secondary source, as explained in Section 4.1.
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All the selected cases share some similarities, most notably the absence of soil frost, that
are indicative of the model’s applicability. Soil frost is a well-known major impact-driving
factor that is not accounted for in the model. Therefore, a model calibrated for one of these
cases is unlikely to be suited for windstorms that occur during periods when soil frost is
present. On the other hand, the most damaging windstorms that occur, and are expected to
continue occurring, do so in the absence of soil frost. Additionally, long-term windiness
trends show no indication that future windstorms will have significantly higher wind
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speeds. It is worth noting that there are some studies suggesting that the wind fields of the
windstorms may get larger in the future, increasing the area exposed to strong winds, as
well as causing a poleward shift in the storm tracks, possibly resulting in more windstorms
in Finland [54,55]. However, taken together, most of the evidence seems to indicate the
model’s ability to produce impact profiles for the most impactful future windstorms to be
similar to its ability to recreate historic impact profiles.

3. Electricity System Resilience

Energy system resilience refers to the ability of the energy system to survive, and
recover from, major disruptions, and is typically quantified by the system performance
throughout all the phases of disruption [56]. Obtaining information on this performance
requires modeling the energy system operation through the disruption, with an account
of the potential faults and repairs. This section presents a summary of the framework for
such modeling, and the information captured by it that can be used as an indicator of the
resilience of the system.

3.1. Modeling Framework

Figure 3 shows the structure of the modeling framework, documented in detail in [3],
with three major parts. The first part generates a synthetic electricity grid and consumption
profiles. The generated electricity grid covers the whole of Finland (except for the Åland
islands), with MV granularity, where the basic segment is an MV line between the two MV
to low voltage (LV) transformers. The system contains over 130 k of these segments (the
exact number varies with the year of the study case). The consumption profiles distinguish
the dependency on time (hourly resolution), space (municipal resolution), voltage level
(medium and low), and consumer sectors (industrial, commercial, and residential). The
second part combines the generated system with fragility functions and fixing-time distri-
butions, both of which are derived from the historical power interruption data. The final
part is the application of the model, by taking the spatiotemporal wind gust field of the
case studies as an input, and giving the spatiotemporal LL profile as an output. The input
data, along with their resolution, sources, and the part of the model in which they are used,
are summarized in Table 1. The annual data depend on the year, and the hourly data also
on the time of year of the study case but, in all cases, the same data sources are used.Energies 2023, 16, x FOR PEER REVIEW 10 of 23 
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Table 1. A summary of the model input data. LV/MV/HV stands for low/medium/high voltage,
respectively. The interruption record contains data on the occurrence, duration, affected consumption,
and number of consumers. In 2020, Finland had 309 municipalities, and interruption data are
available for DSO service areas aggregated into five regions.

Variable Resolution Source Used in
Spatial Temporal

Number of transformers (MV, HV)

DSO service area Year Energy Authority (regulator) [57,58] Spatial mapping
Length of powerlines (MV)
Cabling rate (MV)
Number of consumers (MV)
Consumption (LV, MV)
DSO service area shapefiles DSO service area Year Adato Energy (consultancy) [59] Spatial mapping
Municipality shapefiles Municipality Year National Land Survey [60] Spatial mapping
Population data shapefiles 1 km × 1 km Year Statistics Finland [61] Spatial mapping
Consumption by sector Municipality Year Finnish Energy (industry association) [62] Spatial mapping
Reference consumption profiles Country Hour Energy Authority (regulator) [63] Profile generation
Dwelling units by building type Municipality Year Statistics Finland [64] Profile generation
Consumption Country Hour Finnish Energy (industry association) [65] Profile generation
Temperature

31 km × 31 km Hour ERA5 reanalysis [40,41]
Profile generation

Wind gust speed Application
Forested area share Municipality Year Finnish Environmental Institute [66] Application

Interruption Aggregated
region Second Enease (consultancy) [52,53] Model and

application

3.2. Electricity System Vulnerability

A good indication of electricity system vulnerability to wind hazard can be obtained
from the electricity system representations (i.e., synthetic MV grids and consumption
profiles) generated. Four such system representations were generated for the three years
of the three windstorms introduced in Section 2.3, and for the year 2020, representing the
current system. The most important change in Finnish electricity system vulnerability
that has accrued during the 2011–2020 period was the underground cabling of powerlines,
shown in Figure 4. Lines cabled underground are also typically placed along roadsides [67],
which further reduces their vulnerability to windstorms, and the associated uprooting
of trees. The level of cabled line vulnerability is illustrated by a negligible component
of disruption costs, in the assessment of the powerline segment’s lifetime costs [67]. As
a result, the powerlines cabled underground can be viewed as being mostly immune to
windstorms, and are treated as such in the model. Furthermore, the cabling share can
be used as an indicator of the share of the consumption at MV and LV levels that are
no longer vulnerable to wind hazard. At the same time, the cabling carried out in the
order of decreasing segment importance allows for a reduction in the average number
of downstream nodes (see Figure 5) proportionally reducing the average impact of an
individual fault. Regarding the consumption, there are no significant differences between
years, while the seasonal consumption differences between the study-case-specific times of
the year are accounted for during the generation of synthetic consumption profiles. The
profile generation algorithm includes scaling up hourly reference profiles for the sector and
municipality specific annual consumption totals, then normalizing the sum of the scaled
profiles to match the national hourly consumption profile. Customer-type-specific reference
profiles are provided by the Finnish energy system regulator at an hourly resolution for the
whole year of 2018. The day-type selection used to map the reference consumption profiles
from the weeks in 2018 to the weeks in the case studies is presented in Supplementary
Material Section S1.
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Another major indicator of electricity system resilience is the fragility of its compo-
nents, described by fragility functions. The fragility functions in all four systems were kept
the same, as no solid basis was found to detect changes for them throughout the years.
Nevertheless, the form for the fragility functions was changed for this work. The original
fragility function in [3] had a power function form which, with the higher wind speeds
than studied before, lead to fault probabilities over one. To enable the model’s application
for more severe wind gust speed ranges, the new function form was changed to lognormal.
The lognormal function form enables an account of larger wind gust speeds, without
resulting in unrealistic probabilities over one. The lognormal form is also a commonly used
form for modeling mechanical engineering phenomena in general [14], and the fragility
functions of electricity system components in particular [17,68]. The parameters for the
lognormal function (expected value of 40, and standard deviation of 10) were chosen in
such a way that the fragility functions in both forms were similar in the wind gust speed
range between 18 m/s and 30 m/s, as shown in Figure 6. The wind gust speed of 18 m/s is
when faults start to occur, and 30 m/s is close to the record of the windstorm for which
the original function was fitted. The range of 18–30 m/s is close to the 16–27 m/s reported
to represent the range dominated by faults occurring from a complex set of factors [69].
Modeling this complexity with fragility functions is difficult, resulting in the predictions
of machine-learning-based models being more accurate [69]. However, above this range,
all the fault mechanisms become dominated by wind, and thus a single physics-based
fragility function form is well suited to represent the dependency [69]. The parameters of
the original power-form fragility function were obtained by calibrating the modeled LL



Energies 2023, 16, 5678 12 of 23

profile for the largest windstorm in Finnish grid history [3]. Calibration refers to running
the model multiple times, with different fragility functions, and selecting one function
with which the LL profile is the closest to the recorded reference profile. No additional
calibrations were made here for the LL profiles from other historical windstorms.
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3.3. Interruption Data Analysis

The account of interruption data is a significant factor for impact modeling ability, as
it is used to derive the fragility functions, and the fix-time distributions. This is especially
true in cases when the model is used for historically unprecedented windstorms, as the
modeling results are sensitive to any extrapolation of derived relationships. The aim to
capture as much information from the interruption data as possible includes the use of
all available data, their analysis at the maximum justifiable detail, and the scrutiny of
their reliability.

The interruption data used here include a list of individual faults, with information on
the fault cause, time, and duration, the number of disrupted consumers, and their annual
consumption. These data are collected by the former energy consultancy company Enease
Ltd. (Helsinki, Finland), and were obtained for research purposes in aggregated form
for five large areas in Finland, to anonymize company-specific data [52,53]. Data were
collected and combined from individual DSOs from 2005 until 2019, and used for yearly
power outage statistics reports [70]. Since 2019, Finnish Energy has no longer collected data
from the individual DSOs, and does not produce the yearly power outage statistics, due to
the lack of staff resources. Thus, the data analyzed in this paper cover the years 2005–2018
and include 235 k entries of faults caused by the wind.

The smallest subsets of these entries that can be analyzed independently are arguably
the storm and calm periods, as they represent independent meteorological events. Such a
grouping is performed here using only the interruption data, i.e., without meteorological
data. A storm period was chosen as a set of sequential days with over 100 faults for at
least one hour. An hourly NoFs was computed by summing the duration portions of all
faults that at least in part fell within that hour. For example, if the fault occurred at 0:30 and
lasted until 1:00 or later, its contribution to the NoFs in the first hour of the day would
be 0.5. Windstorms, and the dominant share of the associated generation of new faults,
typically last a few hours, and can extend up to a day. However, a large NoFs after a major
windstorm can take multiple days to clear. In other words, the storm periods discussed
in this paper represent the periods of windstorm impact on the grid, rather than periods
of strong wind. A calm period is chosen as constituting a year quarter with all non-storm
days, a period with a relatively limited change in the grid and environment conditions. The
faults were grouped, with the storm and calm periods, by the day that the fault started,
regardless of the fault duration.

The fault duration distributions of each storm and calm period were discretized for
the comparison of these periods, and for the derivation of the severity-dependent fix-time
distribution that is discussed in the next subsection. The discretization was performed by
taking the NoFs in a duration interval between the neighboring hour integers as a sum
of all durations within that interval, divided by the upper integer. For example, if there
were 100 faults with durations from 1 to 2 h that added up to a total of 160 h, it would be
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represented as 80 2 h long faults in a discretized distribution. This procedure conserved
the fault hours and lost load, while reducing the total number of entries in the distribution,
predominantly among the short faults. A significant portion of the power interruptions
in the analyzed dataset had durations of a few minutes or less. These interruptions were
most likely resolved via automatic means, without the dispatch of physical repair crews,
and thus are not a primary concern of the current modeling work. Nevertheless, it is
expected that the reduced weight with discretization would be a superior approximation
to the complete removal of faults shorter than some arbitrarily selected duration level. An
overview of the resulting total and peak NoFs for the storm and calm periods is shown in
Figure 7. Figure 7 highlights the significance of the few largest windstorms that occurred
rarely and irregularly.
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The analysis of the interruption data quality indicates that the data from 2015 onwards,
which include 29 k wind fault entries, are of questionable reliability. In 2015, data collection
practices changed, to increase the data granularity [71], but the direct impact of this change
is not known. Observations made from the data quality analysis that raise concerns
about newer data reliability include a significantly higher share of entries with internally
inconsistent or implausible data; a lower share of faults caused by the wind, and a higher
share from unknown sources; distinct clustering in storm-specific statistics (the fix-time
distributions and averages of LL per fault); and a major mismatch with the secondary
source for the LL profile of the selected windstorm. The statistics of the interruption data
reliability, and the profiles from the secondary sources on which these observations were
made, are presented in Supplementary Material Sections S2 and S3. The distinct clustering
of the storm fix-time distributions is presented in the next subsection. Due to reliability
concerns, the post-2014 fault data are not used for fitting the fix-time distributions, while
for the construction of LL reference profiles, they are used only in combination with the
secondary data.

3.4. Fixing Times

The fixing times are modeled with the storm severity-dependent distribution, to
account for repair queues in the presence of a limited repair capacity. As in [3], the severity-
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dependent distribution is generated through the fitting of the discretized fault-duration
distributions of fault subsets with the Weibull distribution, and then the fitting of the
obtained Weibull parameters for their dependency on the peak NoFs. However, here,
the generation is performed using 2005–2014 fault entries, grouped into 98 storm and
calm periods that differ 150 times in the total NoFs, instead of the 2011–2012 fault entries
grouped into three comparable size categories. This changes the methodological rationale,
the required calculation step details, and the subsequent results.

The rationale of a methodology with essentially two fitting levels can be justified by
the fact that the fits on the first level are carried out for the distributions resulting from
independent meteorological events. At the same time, a large number of storm and calm
periods provides many points for the second level fit. In turn, this provides a strong
statistical basis for the reliability of the generated severity-dependent distribution. This also
allows the capturing of the variability between the different periods, indicating the level
of uncertainties present. On the other hand, some periods include relatively few entries,
complicating their fit to the Weibull distribution. To avoid occasional bad fits, a floor of 77%
for the goodness of fit was imposed, by rejecting the fit, and repeating the procedure of
fitting, until a satisfactory fit was obtained. To account for the wide variation in the number
of elements between periods, the second-level fit was performed with the total NoFs as the
period weights.

The resulting first-level fits and their quality are shown in Supplementary Material
Section S4, while the second-level fits are shown in Figure 8. The second-level fits were
selected to be of the simplest linear form. However, the linear extrapolation of the shape
parameter dependency can lead to negative values, which are outside of the Weibull
distribution parameter bounds. To avoid such unrealistic outcomes, three storm periods
with the largest peak NoFs were excluded from the shape-parameter fitting, and a floor
for the minimum value was enforced. The minimum value chosen was equal to the shape
parameter of the storm period with the second-largest peak NoFs.
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Figure 8 includes several additional elements to aid the interpretation of results.
Firstly, the rightmost panel of the plot shows the linear dependency fitted for the average
duration. The average duration is not used in the latter analysis, but is easy to interpret,
and largely corresponds to the scale parameter of the Weibull distribution. Secondly, the
green dots show the values for the post-2014 data, assumed less reliable, and thus excluded
from the fitting procedure. They show distinct clustering toward longer interruptions,
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compared to the rest of the data. Thirdly, the confidence bounds and share of faults outside
these bounds indicate the fit representativeness. The confidence bounds are set equal
to 20% of the largest parameter value, within the historic range of peak NoFs. Stricter
confidence bounds, equal to 20% of the fitted value, are set for the shape parameter in
the range, with an imposed floor value. The 20% level is based on the indication of the
model accuracy in recreating the LL profiles for historic windstorm cases (see Section 4.2).
Alternatively, confidence bounds could be derived directly from the interruption data, using
mathematical methods such as the Kolmogorov–Smirnov test. However, it is not obvious
whether such a mathematical procedure would represent the actual level of uncertainty,
given the multitude of technical and environmental factors that differ between windstorms,
and affect repair times. Moreover, the small shares of faults beyond the 20% bounds indicate
the high representativeness of these bounds. Fourthly, the figure highlights the parameters
for the historic windstorm cases studied individually in the next section.

4. Replicating Historic Impacts

Replicating the impact profiles for historic windstorms is arguably the most important
test for the model, as there are no direct ways to test the model validity for studies beyond
the historic record. The model is applied to three windstorm cases, selected according
to their impact severity and recentness, as described in Section 2.3. The recreation of the
LL profiles is the primary objective for the model, as the cost from load interruptions can
be significantly higher than the direct cost of the physical damage to the electricity grid.
Nevertheless, the number of failed segments aids in the analysis of the study cases, and
thus is also included.

4.1. Means for Result Evaluation

The model results are compared to the LL and NoFs reference distributions in time,
for the whole of Finland, and in space, with the distinction of five outage regions.

Hourly reference profiles for each outage region are derived primarily from the dataset
of individual power interruptions described in Section 3.3. The profiles for the NoFs are
directly constructed from this interruption dataset, by treating each entry as a fault, and
applying the hourly discretization described previously in the same subsection. The con-
struction of the LL profiles combines the data on the annual consumption of consumers dis-
rupted by individual faults, with the hourly national consumption profile for Finland [65].
The two datasets are combined, assuming a constant consumption share of interrupted
consumers throughout the year. The obtained LL profiles for the Tapani–Hannu and Rauli
cases are compared with secondary sources (see Supplementary Material Section S3), with
a good fit for Tapani–Hannu, and a large mismatch for Rauli. Because of the mismatch with
data from secondary source for Rauli [72], and other issues with post-2014 data presented
in Section 3.3, the LL profile is constructed by scaling down each Rauli interruption by a
factor of three in amplitude, and a factor of two in duration, to match the secondary source.
Despite imposed scaling, the LL profile for Rauli still benefits from the use of interruption
data for individual faults, as they give information about the spatial distribution.

To quantify the model fit in recreating the reference profiles, two indicators are chosen.
The first indicator shows the national fit equal to the ratio of overlapping area, and the
geometric mean of the areas of the temporal profiles for the whole country (as indicated in
Figure 9a) for the LL. This national fit indicator provides an intuitive metric that represents
the ratio of visually observable areas. The national fit becomes the exact ratio of the areas
when both profiles cover areas of the same size, which should not be far from the actual
case, when the fit is relatively good. The mathematical expression of the national fit is:

National f it =
LLmod ∩ LLre f√

LLmod·LLre f

, (1)
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where LL = lost load, mod = model, and re f = reference. The LL values are integrated
over the time of the study period. The overlapping area is computed by integrating the
minimum LL of the two profiles.
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Figure 9. Schematic illustration of the indicators for (a) the national and (b) the regional fit between
the modeled and reference profiles of the lost load.

The second indicator shows the regional (i.e., spatial distribution) fit equal to the sum
of regional shares that are smaller between the two profiles for the whole study period.
This is illustrated for the case of two regions in Figure 9b, with the regional fit being equal
to the sum of the lower profile share for region 1, and the upper profile share for region 2.
The mathematical expression of regional fit is:

Regional f it = ∑5
reg min

((
LLreg

LL

)
mod

,
(

LLreg

LL

)
re f

)
, (2)

where reg = outage region. Again, the LL values in the equation are integrated over the time
of the study period. Note that while the indicators in Figure 9 and Equations (1) and (2)
are given for the LL, they apply identically for the NoFs.

The overlapping shares represent the intuitive quantification of the fit between two
profiles, and are independent of the study period duration, as long as the profiles are
captured. This quantification approach treats each fault hour and kWh of the LL equally.
The cost of kWh may differ within the disruption profile, if the dependencies on the time of
the day and the absolute disruption magnitude are accounted for, but such dependencies
are outside the scope of the current work.

4.2. Model Results vs. Reference Profiles

The model results in recreating the LL and NoFs profiles for historic windstorm cases
are shown in Figure 10. The best fit values are for the national LL profiles, the replication of
which is the primary objective of the model. These values are within a range of 77–92%,
which gives a rough indication of uncertainties in the order of 20%.

Such a level of accuracy seems to be relatively good, considering the modeling ap-
proach, accuracy of other models, available data, and intended model use. The fragility-
based modeling approach used here excludes a multitude of impact-driving factors with
unknown significance. The accuracy comparison with other impact models is a complicated
exercise in itself, but even data-intensive machine-learning-based models that account for
hundreds of environmental variables retain non-insignificant uncertainties [8]. The avail-
able interruption data include only a few large windstorm cases, limiting the statistical
basis for derived fragility functions, and severity-dependent fixing times. At the same time,
the three studied windstorm cases contain 29% of the NoFs among all the storm periods
in 2005–2018. Finally, the focus for the intended use of the model is on strategic energy
system development and regulation questions, where the national impact scale may be of
higher importance than the regional distribution.
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The biggest mismatches between the model and reference profiles include the Rauli
case, the underestimation of the disruption share in the east, and a worse match for the
NoFs in all cases. The lower fit for the Rauli case is not surprising, given the more distinct
windstorm (relatively low wind speeds and the presence of tree canopy) and primary data
reliability concerns. The underestimation of impacts in the east indicates some regional
differences that are not accounted for in the model. Examples of such factors could include
looser soil, or trees that have adapted to grow in less windy conditions. Improving the
regional fit requires a separate study of potentially relevant factors and, if found significant,
their account in the model. The worse match for the NoFs is likely to be due to some
differences between the distribution grid representation in the model and the real system
that affect the NoFs without affecting the LL. One such difference could be the omission of
disconnectors, due to the available data limitations, and the significant model complexity
increase required. Disconnectors are devices that isolate damaged segments from the
rest of the grid. Faults in the model are isolated within the MV line segment between
two MV-to-LV transformers. This corresponds with the assumption that each MV-to-LV
transformer has a disconnector, which is not the case in reality. The uneven distribution of
disconnectors could be the cause of the higher NoFs mismatch while the associate error for
the LL remains lower, as each fault disconnects the supply for a larger piece of the system.
We should remember that a typical fault disconnects multiple segments downstream in
a radial distribution grid (as shown in Figure 5). Whether this, or some other aspect, is
the reason behind the larger NoFs mismatch, the expected remedy involves a more detail
account of the distribution grid. However, the NoFs is considered a secondary variable for
the target application, and thus not a priority for a major model expansion.

The modeled LL profile in the Tapani–Hannu case shows a good height fit for both the
Tapani and Hannu peaks, but a good width fit only for the first Tapani peak. The height fit
indicates the fit of the fragility function, as it primarily determines the upward part of the
impact profile. A good height fit here shows that the form change for the fragility function
was adequate, and there was neither a need for, nor a significant fit improvement potential
from, recalibration. The width fit indicates the fit of the generated fixing-time distribution,
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as it primarily determines the downward part of the impact profile. It is worth recalling
that the fitted dependency of the fix-time distribution parameters on the NoFs in Figure 8
resulted in a deviation from historic windstorm cases; i.e., the blue lines in Figure 8 did not
go through the points describing the historic Tapani–Hannu distribution. Using historic
distribution parameters may improve the fit for the modeled impact profile, but would
defeat the purpose of the modeling, and is not possible for other (past or future) windstorm
cases without historic impact data. Furthermore, a change in the severity-dependent fix-
time distribution in the model would affect the downward profiles for both peaks. Thus,
the improvement of the width fit for the Hannu peak would come at the price of the width
fit for the Tapani peak. This suggests that the current representation of fix times only
partially captures the repair work dynamics throughout two major windstorms separated
by a period that does not allow for a full recovery from the first windstorm. However, this
observation cannot be tested, due to the absence of another such pair of windstorms in
Finland. On the other hand, the rarity of the Tapani–Hannu-like pair also suggests a low
likelihood of encountering the associated underestimation of the second peak width in
future windstorms. Alternatively, analytical methods for modeling fixing times may allow
to avoid such problems. However, fixing times depend on the availability and position
of repair personnel and material that depend on existing regulations and practices of
grid operators [73]. Modeling such factors analytically would require a lot of difficult-to-
obtain data and complex model formulations. Overall, even with underestimated width
of the second peak, modeled LL profile for Tapani–Hannu matches the reference profile
relatively well. Whether the model can generate similarly realistic impact profiles for
other windstorms requires testing for other windstorms for which fragility functions were
not calibrated.

The Eino and Rauli interruption data are not used for fragility function calibration
in any form, but the results are similar to the Tapani–Hannu case. The national fit for
the Eino windstorm is even better than that of Tapani–Hannu, capturing well both the
height and the width of the impact profile. This indicates the model’s ability to produce
realistic LL profiles for a range of windstorms, irrespective of the ways in which the Tapani
and Hannu windstorms could be distinct. The national fit for Rauli is worse, but still
relatively good, considering the significant differences in the natural environment, most
notably the presence of tree leaves. The period between Tapani–Hannu and Rauli also
covered significant changes in the electricity system, including an underground cabling
rate growth from 12% to 39%, as well as other grid-hardening measures not accounted
for in the model. Therefore, the fit for the Rauli profile further indicates the model’s
ability to produce relatively realistic impact profiles for a range of windstorms that include
significant differences.

5. Conclusions

This work presents an exploration of the ability of the fragility-based impact model
with a detailed electricity system representation to generate realistic LL profiles for the
most impactful windstorm cases, along three lines of evidence. The conclusions for each
explored line of evidence are the following.

Wind impact:

• The impacts of windstorms on the electricity system are driven by a multitude of
region-specific environmental, infrastructural, and organizational factors.

• The account of the significance of these factors, let alone the representation in a
fragility-based impact model, is difficult.

• Attempts to quantify these factors have been few, especially in the Finnish environment.
• Most impactful windstorms share some similarities, which are expected to remain

present in the most impactful future windstorms.

Grid resilience:

• Grid-cabling efforts in the last decade have significantly reduced Finnish electricity
grid vulnerability to wind hazards.
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• Storm and calm periods provide an optimal grouping basis for interruption data
analysis, as they can be considered to present individual meteorological events.

• The two-level fitting of fixing times with such grouping provides a strong statistical
basis for the resulting severity-dependent distribution and indication of the associated
uncertainties (around 20%) that are difficult to capture through analytical means.

• The fragility functions and fixing-time distributions are designed to be applicable
beyond the historical windstorm severity range, even though there are no direct means
to validate the model ability there.

Impact modeling:

• A fragility-based model accounting for only a few factors can reproduce major wind-
storm impact profiles for different windstorm and grid cases, without recalibration.

• The collective evidence indicates that the presented model can generate realistic
national LL profiles for the most impactful windstorms in Finland, with uncertainties
in the order of 20%.

• The obtained level of accuracy is expected to be sufficient for the intended model
use in studies on strategic electricity system development, and broader emergency
preparedness questions.

The exploration of the model’s ability was limited to high-severity windstorms occur-
ring in the absence of soil frost, and the absence of coinciding with other major hazards
to powerlines, such as a heavy snow load on trees. Further investigation is needed to
determine if the model is applicable to cases outside of the mentioned limits, potentially
with the recalibration of the fragility functions. For windstorm cases where the model is
applicable, the most notable limitations appear to be a lower accuracy for the number of
faults (compared to LL) and for spatial distribution (compared to the national temporal
profile). On the other hand, the model’s reliance on the interruption data and statistical
methods of deriving severity-dependent fixing-time distributions does not seem to be of
significant concern.

The presented modeling framework is expected to be applicable to other highly
forested countries at the mid-latitudes, as no unique aspects for Finland were encountered
during the study. Therefore, the exploration performed, in addition to providing strong
evidence of the presented model’s applicability in Finland, also provides indirect evidence
of a similar model’s ability in other countries. The indirect evidence is of high value, given
the rarity of major windstorms. This also means that similar studies in other countries
would provide relevant evidence of the fragility-based model’s use in Finland.

The feasibility of analogous exploration studies in other countries would depend on
the availability of interruption data, and the data needed to construct an impact model with
detailed electricity system representation. The former is arguably more crucial, as there are
multiple ways to generate synthetic grids and consumption profiles based on proxy data.
That said, exploration should be tailored to account for country-specific impact-driving
factors and their evolution. This includes both grid (i.e., dominant hardening measures)
and natural environment (i.e., vegetation and climate) factors. In Finland, a major change
on the grid side was the underground cabling, and on the weather side, a major variable
that could change in the future is the presence and depth of soil frost. In other countries,
however, the most relevant changes among impact-driving factors are likely to be different.

Considering future work, running additional historic cases would be beneficial, but
the added value would be less than the value obtained from the study of the initial set
of cases. The following planned work is the application of the model to a historically
unprecedented but meteorologically plausible windstorm case in Finland, to provide a
basis for the exploration of cost-driving factors in higher-severity disruptions. Alternative
directions for future work that are also promising include runs with longer study periods,
more rigorous treatment of uncertainties, extending the analytical representation of the
model to faults and repairs that currently rely on historic interruption statistics, and testing
the model on other types of storm with grid-damaging winds, and on storms in different
environmental conditions.
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