Santos Silva, Maria; Malitckii, Evgenii; Santos, Telmo G.; Vilaça, Pedro

Review of conventional and advanced non-destructive testing techniques for detection and characterization of small-scale defects

Published in:
Progress in Materials Science

DOI:
10.1016/j.pmatsci.2023.101155

Published: 01/09/2023

Document Version
Publisher's PDF, also known as Version of record

Published under the following license:
CC BY

Please cite the original version:

This material is protected by copyright and other intellectual property rights, and duplication or sale of all or part of any of the repository collections is not permitted, except that material may be duplicated by you for your research use or educational purposes in electronic or print form. You must obtain permission for any other use. Electronic or print copies may not be offered, whether for sale or otherwise to anyone who is not an authorised user.
Review of conventional and advanced non-destructive testing techniques for detection and characterization of small-scale defects

Maria Inês Silva a,*, Evgenii Malitckii a, Telmo G. Santos b, Telmo G. Santos c, Pedro Vilaça a

a Department of Mechanical Engineering, School of Engineering, Aalto University, 02150 Espoo, Finland
b UNIDEML, Department of Mechanical and Industrial Engineering, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
c Laboratório Associado de Sistemas Inteligentes, LASI, 4800-058 Guimarães, Portugal

ARTICLE INFO

Keywords:
Non-destructive testing
Small-scale defects
Electromagnetism
Radiation
Ultrasonic
Hydrogen-as-a-probe
Machine learning

ABSTRACT

Inspection reliability of small-scale defects, targeting dimensions below 100 µm, is crucial for structural safety of critical components in high-value applications. Early defects are often possible to repair, contributing for the circular economy and sustainability by allowing extended life and reuse of components. During in-service operation, the small-scale defects are typically originated from creep, fatigue, thermal cycles, and environmental damage, or any combination of these multiphysical loading conditions. What are thresholds in Non-Destructive Testing (NDT) techniques to detect and reliably characterise small-scale defects? What is the state of the art of NDT-based solutions, in terms of small-scale defects located at surface, and interior of materials? Examples of small-scale defects in engineering materials are established, and a holistic review is composed on the detectability in terms of sensitivity and resolution. Distinguishable high detection accuracy and resolution is provided by computed tomography paired with computer laminography, scanning thermal microscopy paired with Raman spectroscopy, and NDT techniques paired with machine learning and advanced post-processing signal algorithms. Other promising techniques are time-of-flight diffraction, thermoreflectance thermal imaging, advanced eddy currents probes, like the IOnic probe, micro magnetic bridge probe used in magnetic flux leakage, driven-bacterial cells, Quantum dots and hydrogen-as-a-probe.

1. Introduction

Early imperfections, such as leading damage, are physical discontinuities that are present in the atomic structure of the original material or are formed during manufacturing or service time. An imperfection becomes a defect when it jeopardizes the component’s integrity and/or function, by any change in its size, shape, or material properties, making it not suitable for its desirable or intended requirement, which may consequently lead to failure [1]. For instance, a component is susceptible to fail when there are internal defects and the service temperature is above 0.5 of the melting temperature (e.g. creep) [2,3]; when there are surface defects in components under bending and/or torsion dynamic loads (e.g. fatigue) [4]; or when loaded defective components operate in chemically active environment (e.g. stress-corrosion cracking) [5]. Therefore, the presence of small-scale defects may yield critically

* Corresponding author.
E-mail address: maria.santossilva@aalto.fi (M. Inês Silva).
negative consequences, like through the loss of products, reduction of a component’s service life, environmental damage, repairment costs and overall downtime costs [6]. The detection of early damage will not only avoid fails in service of critical components, but in concept, will also enable the healing of those components by repairment of the small-scale defects, e.g. via local heat treatment [7,8], surfacing and coating [9,10], ultrasonic processing [11–13], and powder metallurgy [14].

The main features of discontinuities are: morphology, such as volumetric (spherical or irregular, e.g. porosity or inclusions, respectively) or planar (with or without volume, e.g. cracks and delamination); location, whether they’re located at the surface (superficial layer and open to the exterior), subsurface (superficial layer but closed to the exterior) or internal within the material thickness; and size, ranging from few nm to several mm. Depending on the conjugation of these three factors, the discontinuity may be tolerated or not. For example, a spherical discontinuity, such as porosity, is less pernicious than a crack not aligned with the stress field, due to the stress concentration at the crack edge. Similarly, a crack discontinuity that is in a compressive stress zone is not so critical as it is in a tensile stress zone.

At the beginning of the 20th century, with new concepts and tools regarding quantum mechanics being developed, scientists started to explore how to describe the fundamental properties of pure materials [15–17]. In the following decades many defects/crystal imperfections were discovered and characterized, successfully proving early theories, e.g. dislocation theory, disclosed with the development of techniques like X-ray diffraction (1912) and advancements in crystallography [15,18]. The combination of theoretical studies and experimental results, in addition to new developments in computational capacity, and numerical and analytical techniques, allowed to understand and predict the properties and microstructures of engineering materials [15,19]. They also allowed to understand newly developed materials, like nanostructures, for which there is less experimental information available [15]. These developments also contributed to evaluating quantitively the defect’s location, shape, size, evolution, and effect on the performance of the components.

There are many known experimental characterization techniques that acquire information in the micro and nano scale, such as microscopy: optical, electron, acoustic and electromagnetic. Although with great spatial resolution, these techniques can only inspect small areas, have a small penetration depth and therefore are limited to surface domain inspection. They also require considerable time for analysis and interpretation of images, and implicate extracting a sample or cutting a section through the component to examine the exposed surface, which may affect the performance of the component [20–23].

Non-Destructive Testing (NDT) refers to different inspection methods and techniques to evaluate the physical conditions of an object, in order to understand its characteristics and consequent behaviour, without damaging it or interfering with its function [24]. The result from the application of the techniques can be qualitative or enable quantitative inference on relevant characteristics of the imperfection, such as density, size, location, and morphology. The most common NDT techniques are Visual Inspection Testing (VT), Dye Penetrant Testing (PT), Magnetic Particle Testing (MT), Electromagnetic Testing (ET), Thermal/Infrared Testing (IR), Radiographic Testing (RT), Acoustic Emission Testing (AE), and Ultrasonic Testing (UT) [25]. Depending on the level of sophistication of the energy signal processing, the variants of these techniques are frequently classified, and commercialized, as conventional or advanced solutions [26]. NDT is commonly used to inspect raw materials before being processed, to inspect sub-components and final products during and after their manufacture, and to inspect structural systems and equipment during operation and maintenance periods.

During World War II, the NDT experienced a sharp rise owing to the increase of industrial quality control. In the 1950s, the development of commercial NDT instrumentation increased the inspection resolution, allowing thickness measurements of components, detection of major inclusions and to differentiate grain sizes, among others [27]. Following the 1960s, the instrumentation improvement continued with the aid of statistical methods and interferometric concepts increasing once again the techniques’ resolution [27]. By that time, it was already common to inspect defects like cracks, voids, porosity, non-metallic inclusions and forging laps, of sizes in the range of millimeters, using NDT techniques [28,29]. Since about five decades ago, new engineering materials, higher quality demands and complex geometries with increasingly safety requirements, as well as the introduction of new defect morphologies with reduced dimensions, have challenged further developments in NDT. Examples are nanostructured materials, functional surfaces and thermal barrier coatings [30], microelectronics [31], optical components and topological defects in liquid crystal textures [32], biomedical and orthodontic devices [33], solar cells [34], microfabrication [35] and additive manufacturing [36,37]. NDT techniques have been also applied in demanding environments, such as power plants [2,38], or in support of demanding quality requirements, such as in defence industry [39], and transportation, with focus on aeronautic [40–42], and marine technology fields [43]. Furthermore, the rise in automation and computational tools have aid in the improvement of data acquisition, storage and processing [27].

In general, a NDT technique involves the application of some type of energy to certain regions or the entire component, followed by the evaluation of the signal resulting from the interaction of that energy with the material properties and condition. The evaluation is implemented directly, or indirectly, using a sensitive detector (e.g. probe, transducer), that can act as an energy source and/or an energy sensitive detector. Discontinuities, that may be imperfections or even defects, are detected from any non-regular interaction of the applied energy with the material domain being inspected. Overall, any energy that interacts chemically and/or physically with a material, can be used for NDT-based inspection. The detection of discontinuities, via acquiring and processing of the output signal, is limited to some level of sensitivity threshold, associated with the technique’s fundamentals, inspection conditions, procedure and parameters [24,28].

According to McMaster [28], a typical probing media can consist of movements of matter, transmission of energy or a combined movement of matter and transmission of energy. Movements of matter probing media use a third-body matter in solid, liquid or gas physical condition to inspect a material, for example, photoelastic coating tests, dye penetrant tests and leak testing, respectively. Transmission of energy probing media employ electromagnetic, gravitational and vibrational energy in tests and may or not encompass the presence or motion of matter. Example of methods based on this probing medium are inspection tests in visible
Each NDT technique is usually sensitive to specific regions of the inspected components, to certain types of discontinuities and mechanisms of failure, under limited conditions (e.g. temperature and accessibility) and for certain materials. This depends on the type and mechanisms of energy interaction with the material. The material properties that are typically evaluated by the techniques are geometric, mechanical, electrical, magnetic, acoustic, chemical, thermal. These are affected by properties such as the microstructure, composition, absorption, reflection and scattering. When compared to destructive testing, the NDT techniques include solutions requiring little or no specimen preparation, have portable equipment, can be performed automatically, and have a good temporal resolution. Many also enable online monitoring of fabrication and in-service condition [28].

There are limitations regarding the inspection procedure steps which may compromise the reliability of the information. For instance, the detector sensibility and background disturbances, e.g. from the signal generator, the coupling and certain test conditions, such as the surface finishing. There are also limitations in signal amplification, such as instabilities in high-gain amplifiers, need for frequent re-calibration or sensitivity to environmental changes (e.g. temperature). The modifications of probing medium from interaction with the material need to be big enough to be distinguished from the background noise, which becomes a challenge in very small defects (micro and nano defects). Additionally, enhancing certain parameters, like having higher resolution and better image quality, often results in longer measurement periods and higher operative costs. Therefore, for each NDT technique it is important to adjust the inspection resolution to the size of the sample, and inspection specifications. Moreover, an efficient application of the NDT

Fig. 1. Graphical representation of the paper’s structure, addressing the scope, aim, and review methods, with a systematic and rational analysis resulting from establishing the need for reliable inspection of multiscale imperfections versus multiphysical technological solutions.
Table 1
Examples of micro defects in metals and alloys.

<table>
<thead>
<tr>
<th>Type of defects</th>
<th>Dimension domain</th>
<th>Morphology and location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Welding solidification cracking defects</td>
<td>−100 µm</td>
<td>Surface defects</td>
</tr>
<tr>
<td>Welding pores that induced fatigue fracture</td>
<td>−10 µm</td>
<td>Internal defects</td>
</tr>
<tr>
<td>Artificial surface scratches that induced initiation of fatigue cracking</td>
<td>−10 µm</td>
<td>Surface defects</td>
</tr>
<tr>
<td>Pre-existing cavities and creep-induced cavities</td>
<td>−1 µm</td>
<td>Internal defects</td>
</tr>
</tbody>
</table>

Fig. 2. SEM micrographs of the bead-on-plate laser weld (250 W and 25 mm/s) on magnesium alloy AZ91D: (a) Top view; (b) Close-up showing cracks on the weld surface [70].

Fig. 3. SEM micrographs of fatigue fracture of a welded joint of TC17 titanium alloy: (a) Overall shape of a single pore of fatigue fracture; (b) Morphology of internal single pore fatigue initiation area (σa = 400 MPa, Nf = 1.0860 × 10^7, FGA = fine granular area) [71].

Fig. 4. SEM micrographs of fatigue fracture surface for Ti–5Al–2.5Sn ELI alloy specimen tested at 77 K (σa = 497 MPa, Nf = 141; 910). Photograph (b) is a magnified image as shown by the arrow in (a) [72].

Fig. 5. SEM micrograph in backscattered electron image (BSE) mode of: (a) As-received material with pre-existing cavities (mean diameter 2.56 µm); (b) Specimen (gauge) crept for 7000 h showing big pre-existing cavity as well as small creep cavities (diameter less than 0.6 µm) and precipitates [73].

(continued on next page)
techniques often requires prior knowledge on the defect characteristics, and accessibility to the region to be inspected, which is
difficult when it is located internally. No matter if the information from the NDT technique on the defects, is qualitative, or quanti-
tative, it does not allow to determine the defect’s severity. Effect of the defects, and appropriate repairment and other measurements
are complementary sought information [44,45].

Table 1 (continued)

<table>
<thead>
<tr>
<th>Type of defects</th>
<th>Dimension domain</th>
<th>Morphology and location</th>
</tr>
</thead>
<tbody>
<tr>
<td>In-service creep cavitation and</td>
<td>~1 µm</td>
<td>Internal defects</td>
</tr>
<tr>
<td>laboratory creep-induced cavitation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Micro-cracking in hot</td>
<td>~10 µm</td>
<td>Surface defects</td>
</tr>
<tr>
<td>deformation of coated steel sheets</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stress corrosion cracking in gas</td>
<td>~100 µm</td>
<td>Surface defects</td>
</tr>
<tr>
<td>pipelines</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fig. 6. In-plant creep damage: (a) Example of in-service creep cavitation damage in an X20 steam line,
observed from a surface replica of a branch weld; (b) Observed creep cavitation and crack initiation in a
notched specimen of steel E911 (HAZ) after creep testing (9500 h/625 °C) [74].

Fig. 7. Optical micrograph of a ZnFe-coated boron steel where microcracking occurred [75].

Fig. 8. Cracked surface in gas pipelines: (a) X42 steel; (b) X65 steel; (c) Magnified section showing cracks
originating from surface pits in X42 steel; (d) Magnified section showing cracks originating from surface pits
in X65 steel [76].
The defects are considered in terms of location, morphology, size of the defects, and their origin (natural or artificial). The review on the techniques addresses their depth of penetration, type of materials possible to inspect, spatial resolution, and typical duration of test procedure. After this introduction, the paper starts with examples and characterization of small-scale defects in different materials. The following sections are dedicated to the current state of the art of existing techniques based on the probing type of energy. Section 3 describes electromagnetic radiation-based testing techniques. Section 4 and 5 address ultrasonic-based testing and acoustic emission techniques, respectively. Section 6 reports on electromagnetism-based testing techniques. Section 7 reviews techniques with motion of matter, and physical and chemical interaction with the inspected surface. Section 8 describes replication metallography testing technique. Section 9 approaches the potential use of hydrogen-as-a-probe, an emerging and highly sensitive inspection method for small-scale defects. Section 10 reviews milestones in analytical and numerical modelling, and artificial intelligence as-aiding tools for enhanced NDT reliability. To sum up, Section 11 comprises an overview of the techniques, and Section 12 presents a reflection on the learnings from the review with final comments and considerations. Fig. 1 summarizes the structure, scope, aim, and review methods considered in this work providing an integrated analysis on the state of the art of conventional, advanced, and emergent non-destructive testing techniques for detection and characterization of small-scale defects.

2. Characterization of small-scale defects in engineering materials

It’s important to know the discontinuities present in a component to assess whether those will play, or not, a significant role on the material’s engineering performance and the component’s service life. The detrimental effect of defects, in terms of their critical size, morphology and location, depends on the material, component geometry and structural features, and application domain. Small-scale defects can have a harmful effect on the performance and safety of the components, especially with the new demands of small-scale morphology and location, depends on the material, component geometry and structural features, and application domain. Small-scale defects can have a harmful effect on the performance and safety of the components, especially with the new demands of small-scale products, in industries such as electronic [46–48], biomedical [49–53], and injection moulding [54,55], among others. Specific examples are in the renewable energy industry, the service life of wind turbines’ blades is compromised by the propagation of cracks from the order of 10 µm, due to cyclical loading on the component [56,57]. In corrosive environments, stress corrosion cracking propagation, from the order of 100 µm, can lead to a component’s failure under tensile stress state [58]. In the semiconductor industry, defects such as scratches, stains or localized failed patterns in wafers, produced during manufacturing, may decrease the component’s performance [59]. In nuclear power plants, different components of nuclear reactors, when subjected to nominal temperatures between 300 and 600 °C, will eventually fail owing to fatigue and/or creep-fatigue induced damage, that will grow into critical dimensions, from sizes in the order of 10 µm [60].

2.1. Metallic materials

In metals and its alloys, discontinuities at the atomic scale affect the crystalline structure of materials and can be classified as local discontinuities, such as interstitial impurities, substitutional impurities and vacancies; and linear discontinuities, such as dislocations and the intersection of three grains boundaries [61]. At a slightly larger scale, between sub-µm and µm scales, there are creep local damage and planar discontinuities, like particle–matrix interfaces, grain boundaries and twin boundaries. Discontinuities between sub-mm and mm scales, such as cracks and notches, occur in the tips of stress concentration sources and/or due to surface reactions at the boundary between the material and environment [62,63]. Discontinuities may originate during manufacturing and fabrication, leading to defects such as voids, porosity, cracks and inclusions; during in-service operation, due to overload, wear, environmental damage loading, brittle fracture and metal fatigue or any combination of these multi-physical conditions; or caused by thermal-based processing, like welding, coating, tempering and hardening [6,24,62–66]. Table 1 shows examples of defects caused by several manufacture and in-service mechanisms.

Fatigue-induced defects occur due to dynamic loads where local stress concentrations from microstructural defects and manufacture defects, not only, but often located in the vicinity of the surface of the components. Examples of crack initiation imperfections are inclusions, microcracks, surface scratches, surface roughness. These imperfections under the cyclic loading, assisted by eventual tensile residual stresses, generate local high stresses that exceed the yield strength and promote cyclic dislocation plasticity initiating and promoting fatigue cracks growth [4].

Creep-induced defects, like cavities or voids, occur due to time-dependent deformation at constant stresses and high temperatures, being also dependent on the material’s microstructure. A material experiences three stages of creep, namely: primary or transient creep stage, secondary or steady creep stage, and tertiary or fracture stage [67]. These stages are characterized by variations in strain rate and material plasticity, that are a result of multi-mechanisms operating independently, such as strain hardening, recovery, precipitation of carbides and cavity formation [2].

Creep-fatigue defects occur due to a multi-physical damage mechanism dependent on temperature, strain range and rate, hold time, and creep ductility and strength of a component. These defects can be predominantly induced by creep, if there is significant hold time; predominantly induced by fatigue, without any considerable hold time and/or with considerable strain rate; or induced by both mechanisms, with compromising hold time and strain rate [3,68].

Corrosion-induced defects occur due to environmental exposure, e.g. due to damaged coating in pipelines, leading to the degradation of the component, affecting its strength [5]. The degradation is a function of the severity of the environmental circumstances and exposure time. There are various types of corrosion damage, depending on the corrosion mechanisms, but common types are uniform corrosion, pitting corrosion and Stress Corrosion Cracking (SCC) [5,69].
2.2. Polymeric-based materials

In composites with polymeric matrix, imperfections may occur in the matrix, fibres, and at matrix-fibre interfaces. Damage in fibres, such as fibre breakage, wrinkling and misalignment, induced in the production of the material, may weaken them, and introduce stress concentrations in the material, therefore, reducing the mechanical properties. In production and storage phases, problems in the matrix can arise due to contamination that leads to a poor cure, e.g. because of incorrect storage, temperature and humidity. Existence of porosity can coalesce and become a void, introducing internal stress concentrations, and/or creating delaminations in the material. In-service, when the materials are subjected to cyclic or monotonic loads, defects like matrix cracking and delamination via separation between fibre and matrix occur. These defects may lead to water infiltration, reduction in elastic and shear modulus with increased chance of buckling, and fibre breakage [77–81].

In polymers, typical imperfections are voids created during the viscous flow and that may grow into cracks. Polymer microstructural imperfections from the polymerization and processing methods (e.g. sub curing, and overcuring) may result in localized residual stresses, microcracks and internal flaws, which are leading defect initiation conditions. In printed-based polymers, distortion and warping of the workpieces, due to expansion and contraction of the plastics as they are printed, leads to stress concentration, and the material can also be contaminated with inclusions (e.g. pigments and stabilizers). These defects may cause crack initiation sites, among other mechanisms that cause loss of mechanical properties and affect the performance of the produced components [82–84]. Table 2 shows examples of micro defects in composites and polymers.

Table 2
Examples of micro defects in composites and polymers.

<table>
<thead>
<tr>
<th>Type of defects</th>
<th>Dimension domain</th>
<th>Morphology and location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Porosity content influenced by vacuum levels in carbon fibre-reinforced polymer composite</td>
<td>from 1 µm to 1 mm</td>
<td>Internal defects</td>
</tr>
<tr>
<td>Delamination, matrix cracking, debonding and fibre breakage</td>
<td>from 1 µm to over 1 mm</td>
<td>Internal defects</td>
</tr>
<tr>
<td>Cracks in semicrystalline polymers</td>
<td>~10 µm</td>
<td>Surface defects</td>
</tr>
</tbody>
</table>

![Fig. 9. SEM micrographs of poor vacuum sample’s fracture surface under static mode I [85].](image1)

![Fig. 10. Various defects in carbon fiber/epoxy composite laminates subjected to single-leg three-point bending tests [86].](image2)

![Fig. 11. SEM micrograph of: (a) High-density polyethylene (HDPE) spherulite (magnification x3500); (b) PEO 10000 spherulite (magnification x1300). Both exhibit internal micro-cracks [594].](image3)
3. Electromagnetic radiation testing

3.1. Conventional and digital X-ray and gamma-ray

Radiographic Testing (RT) is a NDT technique that evaluates the internal conditions of an object through the use of high energy electromagnetic radiation, with very short wavelengths. The typically used ranges of radiation are X-rays, emitted by electron’s interaction with an anode target material, and with wavelengths ranging from about 10^{-8} to 10^{-12} m [87], and or γ-rays, emitted by atomic nucleus of radioactive materials and wavelengths shorter than 10^{-10} m [88].

In conventional radiography, a sample is placed between a radiation source, such as Coolidge X-ray tube, and a physical AgBr-based film producing a two-dimensional image upon revelation process; whereas in digital radiography, the radiation can be directly captured in a digital detector, or in a reusable film which is laser scanned. The spatial resolution in digital radiography depends on the digital detector resolution, or laser scanning focal spot. The image is formed based on differential level of energy attenuation due to material thickness, density and its atomic number, which influence the amount of penetrating radiation that is scattered or absorbed [89]. The variations caused by attenuation are recorded by the detector and displayed in two- or three-dimensional representations [46]. Compared to conventional radiography, digital radiography provides better software-based tools for enhancement of image quality, the inspection usually takes less time, does not require additional space, such as a dark room for development and image printing, and in the long term, is more cost-effective [90].

Regarding using X-ray as probing medium, there are various techniques dedicated to different types of material characterization and applications, such as X-ray diffraction, that provides information about the crystallographic structure, chemical composition, and physical properties of materials, such as residual stress measurement [91]; X-ray absorption spectroscopy, which measures the elemental and chemical composition of materials [92]; X-ray scattering, which provides sub-nanometer information about the size, size distribution, electron distribution and structure of nanoparticles [93]; and X-ray imaging, which comprises tomography, laminography, radiography and topography [94].

3.2. X-ray computed tomography

X-ray Computed Tomography (CT) is a digital or computerized X-ray imaging technique that allows the three-dimensional reconstruction of internal and external features of an object, through acquiring a continuous set of scanned images, or slices, composed of voxels [95]. A voxel is a volume element or data point that represents the X-ray absorption in the three-dimensional position of the inspected element. Slices of the object can taken from different rotational angles, by a combined movement of the radiographic detector and the X-ray source, in opposite directions and upon a rotary table. The images are then processed and assembled by a computer algorithm [95].

X-ray computed tomography comprises different imaging acquisition methods and can be used in in-situ investigations [44]. CT is used in fields like electronic [46], energy and energy storage [96–99], aerospace [100,101], medicine [102,103], additive manufacturing [104–107], and metallurgy [108]. There are important differences in the resolution and measurement geometry.

Fig. 12. Slices in planar direction for: (a), (b) Variable zoom X-ray CT; (c), (d) Conventional CT technique [111].
between the CT technologies employed in the different applications, such as medical, material characterization, industrial applications, and dimensional metrology [95,109].

CT has the drawbacks of limited sample sizes, e.g. cylindrical specimens up to about 500 mm of diameter, being time-consuming and expensive, and of having limited measurement capabilities due to the presence of artefacts like beam hardening, scatter radiation, ring artefacts, motion artefacts, noise, among others, although there are various tips in the literature on how to surpass them [44,95,110]. Additionally, it may be difficult to have a high resolution of very small defects in objects with large widths, compared to its thickness, or in objects that need to be placed very close to the X-ray source due to resolution requirements and which prevents a full scan. Nikishkov et al. [111], developed a novel CT technique, Variable Zoom X-ray CT, to overcome some of the mentioned issues, which includes a nonconventional radiograph acquisition trajectory and a modified Feldkamp–Davis–Kress (FDK) reconstruction method. Fig. 12 shows the comparison results of the novel technique and the conventional technique, using a carbon/epoxy composite laminate with 401 mm width and 3.5 mm thickness subjected to low-velocity impact damage [111]. The novel technique was also able to clearly detect delaminations, and damage in a hybrid composite laminate, where defect detection is challenging due to the large contrast variation between carbon and glass fibers.

Furthermore, computed laminography (see §3.3) can also overcome the problem with large widths. CT is also not suitable for materials with low atomic number (Z) and/or low X-ray attenuation contrast (due to low material density). It has difficulty in evaluating high Z materials, such as metals, due to the introduction of the artefacts mentioned above. Moreover, this technique can create very large data sets and requires long time for processing the images [44].

Even though the spatial resolution of CT is affected by the focal spot size of the X-ray source, a variety of CT configurations, such as macro-, micro-, submicron- and nano-CT, has been developed to achieve different spatial resolutions and suitable for different applications [106,112–114]. For instance, nano-CT inspections can be performed through a synchrotron X-ray source or with the help of focusing elements, such as X-ray microscopes (or lens-based systems) [112,115]. Synchrotron radiation are generated by synchrotrons and other accelerators when external forces drive relativistic charged particles to bend their trajectories, producing electromagnetic radiation [115].

Micro-, submicron- and nano-CT can achieve spatial resolutions between 2 and 50 µm, 0.3 and 3 µm, and 0.03 and 0.6 µm, respectively, and temporal resolutions between 0.01 and 3 h, 3 and 12 h, and 8 and 16 h, respectively [116–119]. Furthermore, they can detect discontinuities such as pores, voids, cracks, inclusions or infiltrations, in materials like metals, composites and wood-based materials [114,120,121].

Salarian et al. [105], compared the structural integrity of aluminium rectangular ducts with a thickness of 2.5 mm, produced by laser powder-bed fusion and inspected by micro-CT (3 µm scan) and nano-CT (500 nm scan). Existence of pores in additive manufacturing materials may compromise the integrity and durability of the components. The authors concluded that 3 µm scan did not detect the micro pores (only large pores are visible as shown in Fig. 13a and that there is a discrepancy between the density measurements of nano- and micro-CT (of around 0.41%), as shown in Fig. 13 and Fig. 14, due to each technique’s ability to detect small-sized pores, which may be significant when inspecting materials in demanding applications, e.g. fatigue life in aerospace components.

Gong et al. [122], studied the estimation of porosity and detection of lack-of-fusion and keyhole defects in 10 × 10 × 10 mm³ Ti-6Al-4 V samples, with different levels of porosity, produced by Selective Laser Melting (SLM) and Electron Beam Melting (EBM). The inspection was performed with a micro-CT with 7 × 7 × 7 µm³ voxel size. Fig. 15 shows single slices of the CT scan and the locally reconstructed models of SLM specimens with lack-of-fusion defects. The black areas in the scan indicate the presence of defects, however due to the limitation of detection to a minimum of 21 µm, it is difficult to differentiate it from the bulk material, especially when the porosity level is small, and it is also difficult to identify the defect morphology and locate small defects. Fig. 16 shows the single slices of CT scan and reconstructed models of EBM specimens with lack-of-fusion defects. The authors concluded that the machine setup and detectability play a critical role in defect visualization, and that the defects of SLM samples were harder to observe as compared to the defects of EBM samples, using a micro-CT.

![Fig. 13. 3D visualization of porosities at: (a) Micro-scale; (b) Nano-scale; (c) 3D visualization of pore subtraction of the 3 µm/pixel measurement scan from the 500 nm/pixel measurement scan in order to understand the capability of nano-scale imaging [105].](image-url)
Fig. 14. Density distribution histogram obtained at micro- and nano-scale scans [105].

Fig. 15. Single slices and locally reconstructed models of SLM specimens with lack-of-fusion defects: (a) \(V = 1080 \text{ mm/s}, \ RD = 0.3\% \); (b) \(V = 1320 \text{ mm/s}, \ RD = 2.0\% \); (c) \(V = 1560 \text{ mm/s}, \ RD = 6.0\% \) (\(V = \) scan speed, \(\text{RD} = \) estimated porosity) [122].
3.3. X-ray computed laminography

Computed Laminography (CL) is an X-ray analysis technique for the inspection of large and planar components, like printed circuit boards (PCBs) or welding beads. CL is used for inspection of fossils [123], electronics [124,125], welding [126], among others.

In classical laminography, during image acquisition, the X-ray tube and detector move synchronously in opposite directions, which combined with the central beam define a focal plane, i.e. an individual sectional plane of the object. At different positions of the CL components, individual images are generated. Through tomosynthesis (an imaging technique and reconstruction algorithm), it is possible to reconstruct the depth information of the inspected object [127]. Computed laminography is a simple approach since the components remain stationary and the only requirement is a linear translation of the object relative to the tube-detector system, which allows the inspection of larger and heavier objects. Besides, it has better resolution than classical laminography, one scan is enough to acquire all the layers of the specimen, it can overcome the problem of CT in inspecting objects with large widths and the amount of material that needs to be penetrated by X-ray beam is considerably less [123,127]. Similar to CT, CL may also have different artefacts, such as the incorrect centre of rotation (in the case of rotary laminography) and incorrect source-to-object distance, and has lower resolution in other directions than the one directly facing the beam [128]. CL can inspect defects like voids, cracks and pores [129–131].

Since CT and CL have different characteristics and provide different information about the specimen, Zuber et al. [123], proposed

Fig. 16. Single slices and locally reconstructed models of EBM specimens (varied line offset); (a) $LO = 0.18$ mm, $RD = 0.7\%$; (b) $LO = 0.24$ mm, $RD = 2.0\%$; (c) $LO = 0.30$ mm, $RD = 4.0\%$ ($LO =$ line offset, $RD =$ estimated porosity) [122].
an Augmented Laminography (AL) that combines both techniques in Fourier space, for example, taking advantage of the constant yet coarser resolution of CT in each direction of the specimen and the better resolution of CL images along the plane parallel to the specimen’s face but which may not provide information in all directions.

Fisher et al. [128] have proposed a way of implementing rotary laminography in conventional micro-CT scanners to minimize the need for specialized equipment, and to produce images with fewer artefacts and a more uniform resolution in all directions of the planar object. In conventional CT, the specimen rotates through a vertical axis and projections are taking at equal angle increments, whereas in the CL system, the specimen is tilted at \(\alpha = 30^\circ \) to the vertical axis, which facilitates the inspection of flat planar objects. The new system was able to generate high-quality reconstructions in the plane parallel to the specimen face, when compared to limited-angle CT, which was also used to validate and compare the results of the new system, as shown in Fig. 17.

Holub et al. [132], inspected a sample extracted from a BMW i3’s side frame, made of Carbon Fibre Reinforced Polymer (CFRP), using different techniques including two distinct CL machines: CLARA and RoboCT laminography. The samples have sizes ranging between 40 × 80 mm² and 40 × 120 mm². Fig. 18 shows the results of different inspection methods of a section of the sample which has a curvature. Axial short scan CT gave the best results and RoboCT provided the easiest inspection of complex components. Overall, laminography provided good results but showed dependency on the orientation of regions-of-interest.

3.4. Thermal characterization techniques

Thermography or Infrared Thermography Testing (IR) is a non-contact NDT technique that acquires and processes the thermal
response of an object, excited by infrared radiation, and that uses an infrared camera and thermographic image software to produce thermograms (thermal images) where there can be detected and identified internal defects through the contrasts of temperature presented.

There are two basic types of IR: passive and active thermography. In passive thermography, there is no external stimulation, and the defect is detected through the difference between the natural temperature of the object and the defect, which must be sufficiently high to be detected by the IR sensor. One limitation is that, when the difference of temperature between the object and defect is zero, the technique cannot detect the flaws [40]. In active thermography, there is an external thermal stimulation of the object to create a heat flux within the material, which generates a difference in temperature between the object and defect and allows the detection and characterization of defects. The heat propagation depends on the material’s properties, like thermal conductivity, heat capacity and density [133,134]. The heat sources produce thermal pulses that can last seconds depending on the thickness and material of the object. Examples of these sources are incandescent light bulbs and heat radiators.

IR is used in applications like electronics [135], energy industry [136], aerospace [137], to inspect materials like composites [138,139]. IR is non-intrusive, can inspect large areas in a short period of time, is portable and relatively cheap, when compared to ultrasonic testing and X-ray CT [40,133,140].

Conventional IR techniques, including optically stimulated thermography techniques like pulsed thermography and locked-in thermography, perform poorly when inspecting micro defects. Due to factors like noise, and uniform heating distribution in materials with low emissivity, such as metals [141], at best, it may detect defects in a spatial resolution between 3 and 5 μm [141,142]. IR measurements are commonly restricted by the order of wavelength measured.

Laser thermography is a non-contact technique that heats a sample through a focused laser beam. When in search of increasing the scanning rate, the laser spot can be substituted by a laser line [140]. Zhang et al. [143] proposed a micro-Laser Line Thermography (micro-LLT) technique to inspect submillimeter surface and near-surface defects (between 0.2 and 2 mm) in composites, which proved to be suitable for detecting some, but not all defects [144,145]. According to the authors, this technique can be cheaper when compared to micro-CT. It can detect micro-porosities of 0.162 mm diameter at a depth of 90 μm, but it is time-consuming because only one point can be inspected at a time. It wasn’t able to detect through-depth defects in thick samples and porosities smaller than 54 μm [143,146]. Fig. 19a-c shows slices of 10 × 152 mm2 from micro-CT with inspection resolution of 18 μm with some micro-porosities (A, B, C, D and E) and some fibres (F and G) outlined. For comparison purposes, Fig. 19d-f shows slices of the same area of inspection but from micro-LLT inspection. For instance, micro-porosity B with diameter of 0.216 mm at a depth of 0.18 mm is only visible with micro-CT maybe due to the micro-LLT camera resolution limitation or being at the subsurface and below fibre F.

The same authors of [143] conducted another study using micro-LLT and micro-laser spot thermography (micro-LST) with both pulse and lock-in methods for the inspection of composite materials with the same porosities as in Fig. 19. The authors concluded that using micro-LLT lock-in raw images doesn’t allow to detect some porosities (like porosity B), similar to micro-LLT [146], but after image processing, using principal component thermography (PCT) and Fourier Transform (FT), the porosities can be detected.

![Fig. 19. Micro-CT results of slices at: (a) Surface; (b) Depth of 90 μm; (c) Depth of 0.18 mm; and micro-LLT results: (d) Cold image; (e) Raw image with contrast adjustment; (f) Principal component thermography (PCT) [146].](image-url)
(Fig. 20), although not clearly as the ones already detected in the raw images [147]. FT in phase can’t detect micro porosity B. Micro-LST lock-in shows clearer results (porosity B) compared to micro-LLT lock-in, as shown in Fig. 21b and c for PCT and FT amplitude but not for FT in phase (Fig. 21d) [147]. From these results, it seems that the lock-in method can access deeper depth (porosity B) than pulse method for both micro-LLT and micro-LST.

Yang et al. [148], developed a visualization algorithm, using an edge filter, that removes noises and enhances the visualization of micro defects of raw thermal images acquired when a single-spot pulse laser beam excites semiconductor chips and ceramic-epoxy composites. The developed algorithm has the advantages of providing reference-free analysis, and instantaneous and automated

(Fig. 20), although not clearly as the ones already detected in the raw images [147]. FT in phase can’t detect micro porosity B. Micro-LST lock-in shows clearer results (porosity B) compared to micro-LLT lock-in, as shown in Fig. 21b and c for PCT and FT amplitude but not for FT in phase (Fig. 21d) [147]. From these results, it seems that the lock-in method can access deeper depth (porosity B) than pulse method for both micro-LLT and micro-LST.

Yang et al. [148], developed a visualization algorithm, using an edge filter, that removes noises and enhances the visualization of micro defects of raw thermal images acquired when a single-spot pulse laser beam excites semiconductor chips and ceramic-epoxy composites. The developed algorithm has the advantages of providing reference-free analysis, and instantaneous and automated

(Fig. 20), although not clearly as the ones already detected in the raw images [147]. FT in phase can’t detect micro porosity B. Micro-LST lock-in shows clearer results (porosity B) compared to micro-LLT lock-in, as shown in Fig. 21b and c for PCT and FT amplitude but not for FT in phase (Fig. 21d) [147]. From these results, it seems that the lock-in method can access deeper depth (porosity B) than pulse method for both micro-LLT and micro-LST.

Yang et al. [148], developed a visualization algorithm, using an edge filter, that removes noises and enhances the visualization of micro defects of raw thermal images acquired when a single-spot pulse laser beam excites semiconductor chips and ceramic-epoxy composites. The developed algorithm has the advantages of providing reference-free analysis, and instantaneous and automated

(Fig. 20), although not clearly as the ones already detected in the raw images [147]. FT in phase can’t detect micro porosity B. Micro-LST lock-in shows clearer results (porosity B) compared to micro-LLT lock-in, as shown in Fig. 21b and c for PCT and FT amplitude but not for FT in phase (Fig. 21d) [147]. From these results, it seems that the lock-in method can access deeper depth (porosity B) than pulse method for both micro-LLT and micro-LST.

Yang et al. [148], developed a visualization algorithm, using an edge filter, that removes noises and enhances the visualization of micro defects of raw thermal images acquired when a single-spot pulse laser beam excites semiconductor chips and ceramic-epoxy composites. The developed algorithm has the advantages of providing reference-free analysis, and instantaneous and automated

(Fig. 20), although not clearly as the ones already detected in the raw images [147]. FT in phase can’t detect micro porosity B. Micro-LST lock-in shows clearer results (porosity B) compared to micro-LLT lock-in, as shown in Fig. 21b and c for PCT and FT amplitude but not for FT in phase (Fig. 21d) [147]. From these results, it seems that the lock-in method can access deeper depth (porosity B) than pulse method for both micro-LLT and micro-LST.

Yang et al. [148], developed a visualization algorithm, using an edge filter, that removes noises and enhances the visualization of micro defects of raw thermal images acquired when a single-spot pulse laser beam excites semiconductor chips and ceramic-epoxy composites. The developed algorithm has the advantages of providing reference-free analysis, and instantaneous and automated
high-reliability inspection of micro defects, as shown in Fig. 22 (example of images taken from [148]).

Barker code, commonly used in radar systems, comprises binary phase sequence coding group of different lengths and 10 known categories [149, 150]. Barker code is generated as a modulated stimulation signal for IR. Bu et al. [149], used Barker Code Laser Infrared Thermography (BCLIT) to inspect a semiconductor Si-wafer with micro-crack defects. The wafer has a diameter of 101.6 mm (4 in.) and thickness of 0.50 mm. The thermal images were processed using Total Harmonic Distortion (THD), with THD - 13-bit Barker code pulse compression waveform, TH DA - peak related side lobe level and Fpeak - Barker coded discrete autocorrelation function. The inspection area and size of defects, as well as results after algorithm processing are presented in Fig. 23. Another study [151] revealed that Barker-coded thermal wave imaging (BCTWI), with correlation data processing, was able to detect artificial blind holes in mild steel, located at different depths (0.5–2 mm) each having 10 mm diameter or with same depth of 1.5 mm but with different diameters (3–5.5 mm).

Thermoreflectance Thermal Imaging (TTI) is a two-dimensional microscopic technique for reflective surface inspection, as it provides a surface thermal mapping due to the optical reflectance of the inspected surfaces. This technique uses shorter wavelengths than IR for measurement and excitation and can achieve sub-micron spatial resolution between 0.3 and 0.5 μm, in small electronic devices [141, 142]. A Charge-Coupled Device (CCD)-based thermoreflectance microscopy system was proposed as a non-contact
technique to analyse small defects that occur at the interface between the polysilicon resistor and metal contacts [141]. The system was able to identify hotspots related to defects of less than 1 \(\mu \text{m} \), in a polysilicon micro-resistor with 10 \(\mu \text{m} \) width, and 200 \(\mu \text{m} \) length, as shown by the red arrow in Fig. 24b. Optical microscope and SEM were used to validate the results, as also shown in Fig. 24, although the defect was barely detected with the former.

Another emerging thermal technique is the Scanning Thermal Microscopy (SThM), that uses Atomic Force Microscopy (AFM) probes with a temperature sensor, used for two-dimensional local temperature and thermal conductivity measurements with nanometer spatial resolution [152,153]. When an AFM probe, mounted on a z stage, approaches the sample, a force acting between the tip of the probe and the sample surface causes the probe cantilever to bend, and a light beam, for instance from a LED, reflects from the cantilever and falls upon the position detector. The displacement of the light spot is related to the cantilever bending. An AFM feedback loop corrects the vertical position of the probe to keep the force constant, and the information from this feedback loop during scanning allows the creation of a topographical image of the sample surface [152].

Micro-Raman spectroscopy is a technique that uses scattered light to study the vibrational energy levels of chemical bonds, i.e. the difference between the incident photon and the Raman scattered photon on Raman active materials [154,155]. The technique can characterize residual stresses, thermal conductivity, stacking faults and phase transformation [154,156]. However, it is a time-consuming technique because, like micro-LLT, it inspects each point of the sample rather than scan the complete surface at once. Besides, the technique can’t detect subsurface defects [23]. The spatial resolution of micro-Raman spectroscopy is of less than 1 \(\mu \text{m} \) and it has nanosecond temporal resolution [156,157]. For example, Pizani et al. [158] used Raman spectroscopy to measure a silicon sample with the surface machined by single point diamond turning. Fig. 25 shows the Raman spectra of the surface before being machined and after being machined in brittle and ductile modes, with evidence that in machining in ductile mode there is a new Raman broad band at about 470 \(\text{cm}^{-1} \), which was attributed to a thin amorphous layer at the surface of the sample, with a thickness smaller than the penetration depth of light.

Soudi et al. [159], have combined SThM and Raman spectroscopy to successfully inspect the heat dissipation in GaN nanowires...
with diameters between 40 and 60 nm, shown in Fig. 26. They were able to quantify the contributions from nanowire – substrate and nanowire – electrode thermal transfer to the total heat dissipation, the thermal resistance at their interfaces as well as the nanowire thermal conductivity.

Other commonly used techniques include Frequency Modulated Thermography (FMT) and Golay Coded Thermal Wave Imaging (GCTWI). FMT has been shown to detect defects in mm and cm range [160–163] but has been simulated by Finite Element Method (FEM) (see §10.1) do detect micro defects. GCTWI has also been shown to detect defects in mm range [164–168]. Other thermal techniques, like Ultrasound thermography (see §4.3) and Eddy current thermography (see §6.1), are presented in later chapters.

3.5. Terahertz imaging

Terahertz (THz) are electromagnetic waves, which in the radiation spectrum are located between the microwave and infrared regions, and their wavelengths range from about 0.03 to 3 mm [169,170]. This type of electromagnetic waves started being investigated about 30 years ago, with the establishment of ultrafast lasers that can emit these waves [171].

THz imaging is a non-contact NDT technique, used in applications like aerospace [42], welding [172], biology [173], and semiconductors industry [171], among others. In 2020, Tao et al. [174], wrote a review concerning the many applications of THz imaging. Discontinuities or the dielectric characteristics of a material affect the propagation of the THz signal, whose changes can be detected and recorded using a suitable detector, such as a detection antenna. These waves can penetrate a wide range of materials, like non-metallic materials, insulating materials and opaque materials; have higher spatial resolution than microwave radiation and lower than infrared radiation, although they have more penetration depth; can produce images of the cross-section of layered structures, and are not hazardous for the specimens under investigation, nor the inspectors [175–177].

THz imaging can be divided into Continuous-Wave (CW) THz imaging and pulse THz time-domain imaging. The former is less complex and less flexible than the latter, which may be advantageous in certain applications that don’t require a lot of information from the inspection [176].

THz imaging can detect micro defects, such as small protrusions and air gaps, in the micrometer range [174,178]. Costa et al. [178], used a CW THz imaging system composed of a THz source and a detector mounted on an 3D scanner, in a transmission configuration, i.e. the source and detector are placed on opposite sides of the specimen. The inspection was performed by fixing the source and detector, and moving the sample in between them, perpendicular to the beam. The system was able to detect copper wires with different
diameters, ranging between 35 and 500 µm, at different inspection heights, as shown in Fig. 27a. To validate the results, an inspection using different NDT techniques was performed in a PLA sample, with artificial defects such as 20 × 20 × 0.5 mm³ square defects, one filled with water, and a copper wire with diameter of 35 µm. The sample is shown in Fig. 27b. Overall, THz radiation presented high reliability compared to other NDT techniques, and both the wires and water infiltrations were detected, as presented in Table 3.

Table 3

Value proposition of the different NDT techniques for the analysis of the PLA sample [178].

<table>
<thead>
<tr>
<th>Technique</th>
<th>Empty Defect</th>
<th>Water infiltration</th>
<th>Metallic wire</th>
<th>Typical time</th>
<th>Health safety</th>
</tr>
</thead>
<tbody>
<tr>
<td>CW THz Imaging</td>
<td>✓</td>
<td>✓✓✓✓</td>
<td>✓</td>
<td>34x35 min</td>
<td>✓</td>
</tr>
<tr>
<td>Air-coupled Transmission UT</td>
<td>✓</td>
<td>✓</td>
<td>X</td>
<td>34 min</td>
<td>✓</td>
</tr>
<tr>
<td>Active Transient Thermography</td>
<td>✓</td>
<td>✓</td>
<td>X</td>
<td>2x2 min</td>
<td>✓</td>
</tr>
<tr>
<td>Digital X-ray Imaging</td>
<td>✓✓✓</td>
<td>✓✓✓</td>
<td>✓✓✓</td>
<td>Instantaneous</td>
<td>✓</td>
</tr>
</tbody>
</table>

* Only when close to the surface.

3.6. Interferometry techniques

Interferometry is a NDT method that uses the phenomena of wave interference in a material to detect discontinuities. The working principle consists of splitting the incident light (or radio or sound waves) into two beams that will travel two different optical paths, one through a reference mirror and another through a measurement mirror, and merge later to produce an interference. In the presence of a discontinuity, the optical paths of both beams will be different, and the discontinuity can be detected in the interference pattern. Interferometry NDT techniques, like digital holography, electronic speckle pattern interferometry and digital shearography, are used for example in aerospace [177,179], electronics [180], and industrial paints and coatings [181,182]. This group of techniques are of non-contact nature and are able to provide full-field measurements [183].
Digital holography is an imaging interferometry technique, which employs two beams of laser light and records the amplitude and phase of light reflected from an object as an interferometric pattern [184]. Digital holography has the advantages of high sensitivity to deformation, in the mm and µm range, and high quality fringes with low speckle noise [185–187]. Rajendran et al. [188], used digital holography to measure the size, orientation, and location of opaque micro-fibers with no a priori information. Fig. 28a and b show the hologram and reconstructed image with focused and out of focus fibers. The resulting 3D image and application of Principal Component Analysis (PCA) allow the identification of the 7 fibers and the measurement of their position, length, and orientation (see Fig. 28c).

Seo et al. [189], proposed a digital holographic microscopy technique based on a modified lateral shearing interferometer (LSI) with a subdivided two-beam interference (STBI), to detect µm and nm defects on transparent target objects. As shown in Fig. 29, the proposed system was capable of detecting the micro and nano defects in a touch-glass panel for mobile displays.

Electronic Speckle Pattern Interferometry (ESPI) is a NDT non-contact interferometry technique where speckle patterns applied to a component are recorded before and after a load or displacement is applied under test. By correlating the speckle patterns to fringe patterns, i.e. contour map of the measurement, and comparing the speckle patterns before and after the test, i.e. subtracting the deformed speckle interferometric pattern with the undeformed speckle interferometric pattern, it is possible to detect discontinuities in the component created due to the load/displacement [183]. This technique employs a single mode monochromatic laser that is split into object beam and reference beam [190]. ESPI has the advantages of high accuracy, full-field measurement and high speed of measurement, and has been shown to detect strain, surface defects and cracks in the mm and µm range [191–196].

Wen et al. [197], used ESPI to inspect artificial edge micro-defects, with length 70 mm and width of about 5 µm, in photovoltaic (PV) cells. By comparing defect-free samples with damaged ones, the authors were able to identify differences in the speckle fringes, as shown in Fig. 30. The speckle fringes for the micro-defect are not continuous across the edge crack and the fringes in the front of the crack tip appear with discontinuous tangential slopes. The interference fringes on the opposite sides of the defect have their own individual concentric fringes (see Fig. 30e and f, compared to Fig. 30c and d).

Additionally, Arai [198], showed that ESPI can be employed to measure the shapes of periodic structures and single silica microspheres beyond the diffraction limit.

Digital shearography is a NDT technique similar to ESPI in the sense that it also detects surface strain through interference of laser speckle patterns. However, shearography only uses one laser beam and doesn’t split the beam in order to have a reference beam [183,190]. Shearography has been shown to detect surface and subsurface defects in the mm range [199–205].
4. Ultrasonic testing

The Ultrasonic Testing (UT) characterizes the physical condition of an object using high frequency sound waves and can identify surface, subsurface and in volume defects, depending on its variant. The frequencies used for UT are higher than the limit of human hearing, usually between 0.5 and 25 MHz, and the chosen frequency depends on the material being inspected and the information needed [206].

Ultrasonic technology is used in safety and quality-related applications, for example additive manufacturing [207,208], aerospace industry [41,209], weld inspection [210,211], and in the biomedical field for diagnostic imaging and research [212,213].

Ultrasonic waves propagate via the mechanical vibration of the elementary particles that constitute the material. They can propagate through solid, liquid and gas mediums but not through a vacuum. The basic types of sound wave propagation are longitudinal waves, where the trajectory of the waves is parallel to the direction of its oscillation and can propagate through solids, liquids and gases; and transverse waves, where the trajectory of the waves is at perpendicular angles with the direction of its oscillation and can propagate only through solids [214]. In solids, there are more possible modes of wave propagation than in liquid and gas mediums, useful for UT, such as Rayleigh waves (or surface acoustic waves) [215], and Lamb waves (or guided waves) [216]. As the waves propagate in the material, when encountering an interface between mediums with different acoustic properties, there are three possible physical evolutions: (1) part of the sound wave is reflected and part is transmitted to the other medium, establishing a relationship between reflected and transmitted sound energy dependent on the relative acoustic impedance between the mediums; (2) the transmitted energy beam undergoes refraction, with variation in angle and velocity of propagation, and conversion into longitudinal and transversal wave (in the case of solids); and (3) diffraction at the edges of discontinuities, or when the wave encounters a discontinuity (e.g. opened crack) smaller than twice the wavelength of the incident wave [29]. Other characteristics of sound waves are used and explored depending on the purpose of the inspection and material of the specimen, such as attenuation via scattering and absorption phenomena.

The traditional UT equipment is composed of transducers, of which there are many types depending on the incident angle, transmission/reception of the signal, coupling and damping. Piezoelectric-based transducers [217], and Electromagnetic Acoustic Transducers (EMAT) [218], are the most commonly used. Different types and combinations of these transducers have been developed as dedicated solutions for the inspection purpose [219,220]. The equipment is also composed of a pulser emitter/receiver, that is an electronic device that produces high-voltage electrical pulses (e.g. for piezoelectric-based transducers at a frequency near the resonance frequency of the piezoelectric element), and a signal analyser for display of results. In the case of piezoelectric-based transducers, during the inspection, these are typically separated from the object by an ultrasonic couplant, which facilitates the transmission of the energy between the transducer and the object, to minimize attenuation effects and changes in acoustic impedance.

Besides the conventional application of UT with normal and angular piezoelectric transducers, this technique encompasses many different variants, namely: Creeping, Phased Array (PA), Guided Waves, Time of Flight Diffraction (ToFD), Air-coupled Ultrasound, Laser Ultrasound and Scanning Acoustic Microscopy (SAM).
Among UT’s typical advantages are the wide testing range of applications, including the inspection of thick metallic samples, with three-dimensional positioning of imperfections, and possibility of automated inspection. However, this NDT technique is sensitive to the coupling conditions, material’s internal features, such as grain size, microstructural texture in metals, attenuation in polymers and powder metallic-based components, and the defect size needs to be some orders bigger than the wavelength used to be detectable with reflected waves [29,221].

Kim et al. [222], conducted Ultrasonic Phase Velocity (UPV) measurements, in a pulse-echo configuration, to correlate the UPV with the pore number density, size, aspect ratio, and texture at low porosity levels (0–5%), in $5 \times 5 \times 5$ mm3 stainless steel 316L samples produced by Laser Powder Bed Fusion (LPBF). The results were also validated using X-ray CT, Electron Backscatter Diffraction (EBSD), and uniaxial tensile tests. The results indicate that there is a dependence between UPV and pore shape, porosity density and texture, which depends on the hatch spacing of the additive manufacturing process, and UPV can distinguish between texture and different pore aspect ratios as well as differences in number density of pores. Additionally, the uniaxial tensile tests indicate that yield strength, ultimate strength and elongation are sensitive to hatch spacing and orientation, and UPV could distinguish between different directions of the imperfections.

Le Nevé et al. [223], compared the capability of different UT techniques to detect High Temperature Hydrogen Attack (HTHA) damage on samples taken from reactor shells (material A204 Gr B). The techniques employed were PA, TOFD and Total Focusing Method (TFM). The results obtained are summarised in Fig. 31. Only TFM and TOFD 7.5 MHz are able to detect early damage.

4.1. Scanning acoustic microscopy

Scanning Acoustic Microscopy (SAM) is an imaging technique where its images are formed by changes in elasticity, density and acoustic damping of the sample rather than the reflection, transmission or diffraction of electromagnetic radiation (light in the case of optical microscopy) [224]. SAM allows the detection and visualization of surface and subsurface discontinuities and inclusions, can provide high-resolution three-dimensional information of the discontinuities in a material at sub-micron thicknesses, and has high detection efficiency. It is a suitable NDT technique for small complex devices, for example, electronic devices [46,225], and structural materials such as metals, ceramics, and composites [226]. SAM is also an appropriate technique for quick identification and localization of defects in multi-layered structures but it is typically limited to thin samples [227]. Moreover, it is expensive, time-consuming and a complex technique that requires skilled operators. SAM has a low lateral resolution (as opposed to great resolution in-depth direction) and is highly dependent on surface condition [23,225].

In reflection mode, SAM can detect laminar cracks with less than 50 μm and voids as small as 125 μm in diameter [46]. Fig. 32 shows an example of SAM inspection, via C-scan, of the top layer and interface layer of an adhesive composite structure. The surface presents no defects although the epoxy-metal interface layer shows incomplete adhesion (marked by the arrows) due to adhesive sub-curing and density variations [228].

Zhang et al. [229], proposed a sparse reconstruction technique for the detection of micro defects using SAM, which proved to improve the detection accuracy and Signal-To-Noise (STN) ratio compared to the original C-scan, as shown in Fig. 33. The sample dimensions are about 10 mm $\times 10$ mm $\times 500$ μm and the artificial microdefect was etched with the depth of about 50 μm by inductive couple plasmas (ICP) etching. The frequency used was 230 MHz and the step length of the scanning imaging used was 1 μm. The Target-to-Clutter Ratio (TCR) evaluates the effect of deblurring after the ideal image is calculated by the algorithm. The authors also
proposed a sparse reconstruction method based on the blind estimation (post processing algorithm) for the detection of micro defects [230]. The sample dimensions are 1 mm \times 1 mm \times 500 μm and the artificial microdefect was also created using ICP. The frequency used was also 230 MHz and the step length of the scanning imaging used was also 1 μm. The results show that compared to the original C-scan image after imaging process (Fig. 34a) and non-blind estimation image (Fig. 34b), that the blind sparse reconstruction method (Fig. 34c) had an improved resolution of 39.2% and 3.9%, respectively.

4.2. Guided waves, electromagnetic acoustic transducer and ultrasonic phased array

Ultrasonic guided waves can travel long distances without suffering much signal attenuation, because of being confined by the boundaries of a structure, enabling to inspect long sectors of tubular components including curved zones [231]. Guided waves are Lamb waves, used for NDT at frequencies between about 50 kHz and 10 MHz, for example, to detect microcracking at the surface of a material: it has been shown to work for a triangular notch with 15 mm in base and 25 mm in height [232], to evaluate the surface properties of components coated by electrodeposition [233], or for corrosion screening [234]. These types of waves enable the detection of imperfections in full thickness, but the omnidirectional dissemination disable to localize or characterize the imperfections.

Fig. 32. Images of adhesive joints of tungsten carbide inserts obtained from a C-scan using SAM. Incomplete adhesion is indicated by arrows in the image of the interface layer (right) (110 MHz transducer, lateral resolution of about 15 μm, 512 \times 512 px) [228].

Fig. 33. Results of complex defect inspection using SAM (unit in μm): (a) The topography of the defect measured by laser scanning confocal microscopy; (b) Original C-scan image; (c) The reconstructed image superimposed with the mask [229].

Fig. 34. TCR comparison of different processing of SAM inspection image: (a) Original C-scan after image processing; (b) Nonblind sparse reconstruction image (corresponds to Fig. 33c); (c) Blind sparse reconstruction image [230].
Electromagnetic Acoustic Transducer (EMAT) is a hybrid technique merging fundamentals of conventional UT with Eddy Current Testing (ECT) technique (see §6.1), that generates and receives ultrasound waves in conductive materials. When a high frequency Alternating Current (AC) flows through a planar coil positioned in the vicinity of the surface of components to be inspected, a primary magnetic field is induced. This primary alternating magnetic field generates an opposing secondary magnetic field and the inherent eddy currents in the surface of the specimen. These eddy currents interact with the bias static magnetic field from the EMAT permanent magnet and generate an alternating Lorentz force, normal to the eddy currents and the bias magnetic field, which produces sound waves in the specimen. The signal pick-up by the transducer is obtained from the ultrasonic waves interacting with the bias magnetic field, affecting the primary alternating magnetic field and inducing a modification of the impedance across the coil terminals. EMAT does not require direct contact, neither couplants [235,236].

Liu et al. [237], developed a high-energy acoustic excitation system without a static bias magnetic field, common in conventional EMAT, which has a reduced transducer size with higher ultrasonic signal intensity, and can detect high-temperature steel plates at higher lift-off distances. Instead of the static bias magnetic field, it is used a LC oscillator circuit, composed of inductive coil L and a capacitor C, that generate the dynamic magnetic field, which combined with the pulsed eddy currents, generate the Lorentz force.

The authors inspected a 600 × 60 × 1 mm³ steel plate with a crack defect with 0.4 mm width, 30 mm length and 1 mm depth (see Fig. 35a) and concluded that antisymmetric (A0) mode Lamb waves have higher STN ratio than the symmetric (S0) mode Lamb waves and can accurately locate the crack, as shown in Fig. 35b.

Park et al. [238], used nonlinear ultrasonic guided waves generated by EMAT to qualitatively detect micro defects in three different steel wire rods, SWOSC-V, SWOSC-VHV and SWOSC-VHS, with diameter of 3.2 mm and length of 322 mm. This technique identifies changes in material properties and micro defects through harmonic components, dissimilar to the conventional technique. The authors inspected 9 rod wires, three per material. Fig. 36 shows the results of comparing the relative nonlinearity of each material, which according to the authors tends to increase with increased propagation distance (between 1 and 60 and 121–180 mm). In the case of SWOSC-V, it decreases with propagation distance of 181–240 mm because of the material properties. However, it can be seen in Fig. 36b that SWOSC-VHV #2 has a different tendency than SWOSC-VHV #1 and #3 wire rods, which indicates some irregularity inside the material that is further proved by experiments that indicate micro defects in SWOSC-VHV #2 at a propagation distance of 180 mm and by acquiring SEM micrographs of wire rods SWOSC-VHV #1 and #2, shown in Fig. 37.

Isla et al. [239], presented an 8-element EMAT phased array, operating at 1 MHz and generating shear waves at about 60° angle, that can detect defects in surfaces opposite to the array transducer’s interacting surface. These small surface cracks can be found in welded components submitted to fatigue. The probe consists of a permanent magnet and a coil, whose schematic representation is shown in Fig. 38 and prototype is shown in Fig. 39a. The coils of the array overlap under a ferromagnetic core, which is bordered by magnets with like poles facing the core to increase the magnetic flux density [239,240]. The experimental setup performed on an aluminium block with a slot in the opposite wall, with 0.2 mm width and 0.8 mm depth, is shown in Fig. 39b. The closest coil of the
Phased Array Ultrasonic Testing (PAUT, or simply PA) is a NDT technique where the transducer is composed of multiple small elements, each being excited or pulsed individually. The excitation can be simultaneous for normal inspection, or with constant or continuously variable time delay for angular scans. The period of each pulse for delayed excitation is set according to the wave velocity, frequency, size of the element and focal domain and position, enabling e.g. to modify the inspection domain, with same PA transducer [241]. This technique can be used to inspect complex geometries, in a variety of different materials, and can create detailed cross-sections of a component.

Wang et al. [242] proposed a phased array ultrasonic testing, with high detection accuracy and resolution, to characterize sub-millimeter artificial deep bottom holes, with 0.8 mm diameter and 5.0 mm depth, in additive manufactured TC18 titanium block.
Both linear and annular array transducers (with a ring circular shape) are used, the latter integrated with a TFM-based post-processing algorithm. As shown in Fig. 41, linear array PA performed better than conventional UT, that can’t characterize the defects due to high attenuation characteristics of sound waves in the additive manufacturing titanium block. Annular array PA presented higher detection accuracy (i.e. higher SNR ratio) and resolution than the linear array PA, as shown in Fig. 42 [242].

Javadi et al. [243], inspected aluminium samples with 20 layers and 300 mm long, made by Wire Arc Additive Manufacture (WAAM), having artificial drilled-holes with 0.5 to 3 mm in diameter, using 5 MHz and 10 MHz PA transducers in conjunction with the TFM. The system was able to detect holes down to 0.5 mm in diameter and up to 45 mm deep, as shown in Fig. 43.

Li and Cho [244], proposed a nonlinear Rayleigh surface wave tomographic technique that combines nonlinear ultrasonics and guided wave tomography for locating, sizing and imaging micro defects. The authors inspected 500 × 500 × 10 mm3 aluminium
plates, each with one artificial chemical corrosive area whose diameters range between 40 and 70 mm, as shown in Fig. 44. Each damage area contains micro-pits and cavities with sizes in the order of 10 μm. As shown in Fig. 44, the new technique successfully characterizes the damaged region, which is the main source of nonlinearity, when compared with conventional linear ultrasonic tomography.
4.3. Laser ultrasonic testing, advanced ultrasonic backscatter and other ultrasonic imaging techniques

Laser Ultrasonic Testing (LUT) is a non-contact NDT technique for surface characterization where a laser Doppler interferometer is used to produce and measure ultrasonic waves in components. The focal diameter of the laser beam is smaller than the ultrasonic wavelength which enables the acquisition of acoustic field information in the presence of small discontinuities [245]. The technique can be used in high-temperature applications, such as welding, and for irregular geometries and restricted areas through fibre optics. It can also detect very small defects due to its high frequency, e.g. 50 μm artificial flat-bottomed holes in a 0.3 mm thick aluminium sample [246]. However, the technique only works for thin subsurface layers and is highly influenced by the state of the surface and microstructure [2, 247].

Yang et al. [248], inspected 30 × 30 × 5 mm³ AISI 316L stainless steel samples produced by SLM, with surface defects and different surface roughness, using laser ultrasonic C-scan imaging system. The steel powder diameter ranged between 30 and 60 μm. As shown in Fig. 45, the technique was able to detect the surface defects, which consisted of artificial notches made by Electron Discharge Machining (EDM) with width and depth ranging between 50 and 100 μm, and a length ranging between 1 and 3 mm.

Smith et al. [249], inspected 10 × 10 × 10 mm³ titanium alloy samples produced by SLM with a powder size ranging between 15

Table 4
Pore size results from 140 W and 190 W samples [249].

<table>
<thead>
<tr>
<th>SLM laser Power (W)</th>
<th>Difference Plot of Pores</th>
<th>Mean pore diameter (μm)</th>
<th>Standard Deviation of pore diameter</th>
<th>Total Pore Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>140 Optimal</td>
<td>115</td>
<td>44</td>
<td>126</td>
<td></td>
</tr>
<tr>
<td>140 Velocity</td>
<td>137</td>
<td>56</td>
<td>182</td>
<td></td>
</tr>
<tr>
<td>190 Optimal</td>
<td>119</td>
<td>47</td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>190 Velocity</td>
<td>134</td>
<td>63</td>
<td>95</td>
<td></td>
</tr>
</tbody>
</table>
and 45 μm, using Spatially Resolved Acoustic Spectroscopy (SRAS) which uses surface acoustic waves. The technique allowed the identification of surface and subsurface defects (porosity) with sizes between 134 and 137 μm, as summarized in Table 4.

Pieris et al. [250], inspected a 20 × 40 × 10 mm³ AlSi10Mg sample produced by SLM, with holes up to 26 mm in depth with diameters of 0.2 mm and 0.7 mm, using Laser Induced Phased Arrays (LIPA). Fig. 46 shows the normalized TFM image using shear waves (3 MHz frequency, effective wavelength of 1 mm in aluminium) and Fig. 47 shows a close up of features D1 (0.7 mm in diameter, 2 mm in depth), D2 (0.2 mm in diameter, 2.8 mm in depth) and D6 (0.2 mm in diameter, 3.4 mm in depth). The discrepancy between the CT and LIPA measurements is due to having regions of low sensitivity due to the angular dependency of the shear wave and because of the sample’s internal roughness. LITA can detect very small defects but can’t properly size them, as shown in Fig. 46.

Additionally, Guo et al. [251], studied the mechanism controlling the interaction between LUT waves and micro defects on an aluminium plate via numerical simulation and experiments, providing information on the relationship between defect depth and signal

Fig. 46. Normalized TFM image using shear-shear wave arrival. Black circles mark the centre of the indications and are proportional to the area. White cross hairs mark the centres located using CT and white circles represent the area based on the XCT measured diameter. The white dashed line illustrates the separation between the build plate and the part built on top of it [250].

Fig. 47. Close-up TFM images of Fig. 46, showing mock side drilled holes: D1, D2 and D6. A 3 MHz digital filter was used for all figures and the dynamic range is shown (dB scale). The white outline shows the boundary of −6 dB drop in image pixels [250].

Fig. 48. LUT B-scans for AM samples (D stands for depth and w stand for width) [253].
amplitude. Manzo et al. [252], developed a LUT system with laser heterodyne displacement sensing that was able to detect holes of size between 10 and 20 μm. Millon et al. [253], inspected surface notches created by EDM on 80 × 20 × 25 mm³ additive manufactured 316L stainless steel sample by means of LUT. The smallest detectable defect has a depth of 100 μm and a width of 50 μm, as shown in Fig. 48.

Advanced Ultrasonic Backscatter Technique (AUBT) is a tool used to inspect microstructural features like grain boundaries, inclusions, cavities and microcracks, because they reflect the ultrasonic wave, and through frequency analysis, it’s possible to understand the state of the material [2]. There exist several ways to establish the cause of backscattering signals, such as velocity ratio, spectral analysis, spatial averaging and frequency-dependent backscatter. One example of the use of this variant is for the inspection of micro defects in areas affected by hydrogen attack [254]. Similar to LUT, the technique only works for thin subsurface layers and is influenced by the state of the surface and microstructure, and is reported to only detect HTHA defects bigger than 500 μm [2,223].

Ultrasonic Infrared Thermography (UIT), also known as thermosonics or vibro-thermography, is a thermographic technique where vibrations are induced in a sample that cause frictional heating and allow to identify defects using an infrared camera [40,255–257]. Park et al. [258], used Ultrasound Lock-in Infrared Thermography (UIRT) to detect SCC micro defects in a nuclear power plant pipe welded with dissimilar metals, carbon steel SA106 B Gr. b and stainless steel STS 304. UIRT uses lock-in thermography, including an infrared camera, alongside an ultrasonic vibrator (output of 250 W and frequency of 19.8 kHz), and the experiments were performed inside an insulated chamber. The pipes rotated in four directions by 90° during the inspection. The ultrasound tool contacted the upper part of STS 304 and vibrated at 50 mHz for 3 min. Fig. 49 shows the results for the directions 0° and 90°. At 0° and 90°, hot spots (D1 and D2) are detected. In Fig. 49c and d, temperature graphs of before and after ultrasonic vibration is applied are presented, evidencing that the hot-spot patterns in the UIRT images were produced based on the detection of actual temperature differences caused by the ultrasonic vibration.

Favro et al. [259], employed high frequency pulsed UIT to detect small fatigue cracks (0.8 mm long) in aluminium (Fig. 50a) and delaminations in a CFRP composite (Fig. 50b).

Ni et al. [260], combined an interference-based image acquisition method with a joint image reconstruction algorithm that they claim can achieve accurate ultrasound images at 250 μm resolution with strong SNR and structural similarity index (SSIM) of 0.998. Fig. 51 shows results of different techniques used to inspect a nylon wire, including the proposed novel technique. Fig. 51a-c have side lobes caused by reflections of ultrasound waves that affect the image scanline during the beamforming operation, contrary to the image of the novel technique (Fig. 51d), that was reconstructed using data from a single pulse-echo transmission of a random interference wave.

Zhang et al. [147], used micro-UIT to inspect the same composite material with the same porosities as in Fig. 19 and Fig. 20. The technique can detect internal submillimetre micro-porosities (A, B and C) and provide the deepest detection depth (see Fig. 52), compared to micro-LLT and micro-LST (see §3.4), but the detection size is not accurate according to the authors.

Fig. 49. Ultrasound lock-in phase infrared thermography images of dissimilar metal weld specimen: (a) 0°; (b) 90°; and temperature graph of dissimilar metal weld specimen by detection direction: (c) 0°, (d) 90° [258].
Another common technique is ultrasound coded excitation, or harmony imaging, a signal processing technique where the high-pressure part of the ultrasound beam, by travelling faster than the low-pressure part, causes a nonlinear distortion in the shape of the wave which generates harmonics in the inspected component [261,262]. This technique has higher resolution than conventional UT because, as Uppal explains [261], since harmonics are multiples of the fundamental frequency, by transmitting a band of frequencies centred at 3 MHz, the resulting harmonic frequency bands will be centred at 6 MHz, 9 MHz, 12 MHz, and so on. This technique is commonly applied to inspect macro and micro defects [261,263–268]. Solodov et al. [269], presented case studies of the applicability of nonlinear ultrasonics (from where higher harmonic generation is included) for the detection of micro defects, like impact damage and delaminations in fibre-reinforced plastics, fatigue micro-cracking and cold work in metals, delaminations in laminates and fibre-reinforced concrete. Lines et al. [270], investigated and concluded that Golay-coded excitation can achieve and maintain SNR in the presence of high signal attenuation for UT using Full Matrix Capture (FMC) and TFM. Tang et al. [271], combined Lamb-wave-based Air-Coupled UT with coded excitation and pulse compression to locate blind-holes with diameters ranging from 3 to 7 mm in light-weighted plate structures. Deng et al. [272], proposed a 13-bit Barker code-based Magneto-Acousto-Electrical Tomography (MAET), that combines the high resolution of ultrasound imaging with the high contrast of electrical impedance tomography, to improve imaging quality and time. Sun et al. [273], proposed a 3D MAET based on a 1D ultrasound transducer and 13-bit Barker code excitation technology with the aim of providing more comprehensive understanding of the conductivity distribution of an object.

Fig. 50. Results of UIT for: (a) Aluminium samples - selection of four frames from a sequence of sonic IR images of a fatigue specimen containing two saw cuts, but with only one (right) having been used to initiate a fatigue crack; (b) Comparison of thermal wave images with sonic IR images of a thick (1.1 cm) CFRP slab containing interply delaminations from impact damage. The four rows of images were taken at progressively later times following flash (surface) or sonic (internal) heating. The left pair are images taken from the impact side, and the right pair from the rear side. [259].

Fig. 51. Experimental results using a nylon wire submerge into a water tank: (a) an image reconstructed using the conventional focused B-mode; (b) an image reconstructed using plane-wave imaging; (c) an image reconstructed using synthetic aperture imaging; (d) an image reconstructed using the interference-based joint reconstruction method using data from a single pulse-echo transmission [260].
5. Acoustic emission testing

Acoustic emission (AE) is a NDT technique based on the phenomenon that when external stimulus is applied to a material, e.g. temperature, loads and pressure, exceeding locally its mechanical resistance capacity, sudden local internal damage or micro-failure release high frequency stress waves or elastically stored energy. This energy propagates as mechanical waves within the material, which can be converted to electrical signals through the use of sensors, typically piezoelectric ones, e.g. made of ceramic elements like lead zirconate titanate (PZT). This phenomena and procedure allows the detection of small-scale damage in the material [274–277] at the moment of their formation, or evolution, although nor their positioning nor their dimensioning. Similar to UT, the mechanical waves can be longitudinal, shear, Rayleigh and Lamb waves [274]. Several mechanisms within a material can induce stress waves, like plastic deformation-induced dislocations and distortions, matrix cracking and fibre breakage in composites, phase transformations, precipitation fracture, cooldown cracking and thermal stresses [274,278,279].

There are two types of AE inspection, transient and continuous. The former assesses the condition of the material when the signal exceeds a defined threshold, i.e. when singular energetic events occur, like crack formation and growth in fatigue and crystalline distortion (twinning). The latter assesses the condition of the material within a time span, when there is plenty of low-level, background AE signal, which allows to detect leakages or plastic deformation, for example [274,280].

The signal parameters usually analysed in the AE signal waveform are peak amplitude, threshold to filter out background noise, duration, risetime, energy, counts (number of amplitude peaks greater than the threshold value), average frequency, ratio between risetime and amplitude (RA), and b-value and Ib-value (commonly used in seismology) [275,281].

AE is applied in fields like civil infrastructures [282–284], aerospace [285,286] and power plants [287–289], to monitor fatigue damage [290–294], corrosion and oxidation [278,295], creep [296–298], and machining tool wear [299], among others [300]. It can identify surface, subsurface and in volume defects, in materials like concrete [284,301], polymer matrix composites [302,303], ice [304–306] and steel [278,295]. The frequencies used for AE are usually between 20 kHz and 1 MHz, depending on the mechanisms that induce the stress waves [279].

AE can be conducted in-situ (laboratory and in-service inspection), to both small and large components; can be performed in short periods of time (few hours) or long periods of time (weeks); can detect a wide range of damage mechanisms, especially in their early stages, e.g. fatigue crack initiation [307]; can be applied in hazardous conditions like corrosive and nuclear conditions and in high temperatures. However, it can only detect defects that emit energy has they move or grow and it can only estimate qualitatively the damage, so the size and location of the defects are not quantified with this technique alone [307–309].

Fig. 52. The micro-CT results: (a) Surface; (b) Depth: 90 µm; (c) Depth: 0.18 mm; (d) Depth: 0.414 mm. The micro-vibrothermography results: (e) Pulse: 10 s; (f) Pulse: 10 s (defects marked) [147].
Kaita et al. [310], used a wireless AE process-monitoring equipment to inspect specimens made of Hastelloy X powder (Ni-alloy) and produced by SLM with different laser power, scanning speed (in the case of single-track test conditions) and hatch distances (in the case of multiple-track test conditions). Piezoelectric AE sensors were used with a resonant 250 kHz frequency. The authors were able to detect transient AE occurrences related to pores and microcracks in single-track tests, and to detect laser irradiation-induced cracks in multi-track tests. As shown in Fig. 53 (selected results for single-track test), the inspection using X-ray CT demonstrate the AE great capability to detect the formation of microcracking during additive manufacturing process (including an error position of few millimeters of AE events when compared to X-ray CT).

Calabrese et al. [311], studied martensitic stainless steel X12Cr13 submitted to five stress cracking corrosion tests, using three AE piezoelectric transducers with resonant 150 kHz frequency. Each test took between 300 and 400 h. The specimens used were dog-bone shape tensile test specimens, with a surface roughness of 0.3 μm, and two transducers were placed at the two ends of the specimen, while the third was connected to an independent block to acquire the background noise. The results show five temporal regions related to different corrosion mechanisms, or corrosion damage stages, like initiation stage, activation stage (which may be linked to activation of local surface defects like pits, usually in the range of about 50 μm), pre-quiescence stage, quiescence stage (which suggests cracking formation leading to the final failure) and re-activation stage. As shown Fig. 54, the use of b and Ib values trends allowed to differentiate the transition between corrosion stages. The plots are related to the different specimen regions, which have their own temporal division, denoted by the vertical lines, to indicate the b and Ib value trend during corrosion damage evolution. The increase of these values may render a good source to detect micro-crack formation and evolution.

Deschanel et al. [291], performed uniaxial strain-controlled tension–compression and stress-controlled cyclic fatigue tests on aluminium, 304L austenitic stainless steel, copper alloy and pure copper cylindrical specimens. Two AE piezoelectric transducers were placed at each head of specimens. The results indicate acoustic emission multiplets, i.e. repeated stress wave releases with highly correlated waveforms that are activated by consecutive loading cycles at close stress levels. This behaviour occurred in the different materials studied and may represent the incremental fatigue crack propagation (stage II). Examination by scanning electron microscopy (SEM) after interrupted test revealed signs of crack nucleation (after 600 cycles) that were not correlated with AE multiplets (multiplets were only detected after 1200 cycles). However, as shown in Fig. 55, there are some AE bursts in the first tens of cycles which correlates to dislocation motion corresponding to the cyclic-hardening stage, proving the high-sensitivity of AE to detect early-stage damage mechanisms.

As mentioned, AE is a widely applied technique and numerous reviews have been made on this concern, for instance, by Carrasco et al. [274], by Calabrese et al. [275], by Verstrynge et al. [312], and by Gholizadeh et al. [281].
Fig. 54. B-value and lb-value trends for different regions of the dog bone shape specimen [311].

Fig. 55. Acoustic activity during a fatigue test at $\Delta \varepsilon = 0.5\%$ on aluminium at 0.1 Hz: (a) Stress vs number of cycles with non-localized AE signals (green crosses) and localized signals (red circles). Magenta, cyan and orange clusters correspond to typical examples of multiplets: respectively named M1, M2 and M3; (b) Enlargement on M2 and (c) Enlargement on some loading cycles [291].
6. Electromagnetism testing

6.1. Eddy currents testing

Eddy Currents Testing (ECT) is part of the family of Electromagnetic Testing (ET) techniques. ECT is a non-contact NDT technique that indirectly inspects the surface and subsurface of an electrically conductive material, either ferromagnetic or non-ferromagnetic, based on the electromagnetic induction phenomenon [29,313].

In conventional ECT, an AC is applied in the excitation coil/filament, producing a primary magnetic field. When near a conductive material, this primary magnetic field generates an opposing secondary field and the inherent electric field, or eddy/Foucault current. This secondary magnetic field interacts with the primary one, affecting the electrical impedance in the excitation coil, in the case of absolute probes, or inducing an electric field in secondary sensitive coils, in the case of differential probes. For example, when there’s a discontinuity, change in crystal orientation and/or chemical composition in the material, there’s a local modification in the induced electric field, which means that a different power is drawn from the excitation coil and therefore, the coil’s electrical impedance is affected. This variation in the phase and magnitude of the electric impedance can be detected via monitoring the current and/or voltage [313]. Eddy current’s intensity relies on the electrical conductivity and magnetic permeability of the material, influenced by the microstructure of the material, the distance between the excitation coil, the surface of the inspected object and the AC frequency of excitation of the coil. The intensity of the field of eddy current decays gradually with the penetration depth, which depends on the frequency of the probe, magnetic permeability and electrical conductivity of the material [29,314].

ECT is a highly sensitive technique to detect defects, and other properties, in the surface and subsurface of planar, tubular and other complex-shaped objects. ECT enables both manual and automated scanning, in a large temperature range, while it is tolerant to the presence of some level of dust, oils and dielectric materials. The ECT can be used in for different purposes, like measurement of material thickness, coating thickness, material electric conductivity, detection of superficial and sub-superficial discontinuities and heat damage (eg. grain coalescence in metals) [315]. ECT is commonly used in industries like aerospace [316], nuclear [317,318], automotive [319,320], and in monitoring the quality of advanced manufacturing applications, such as friction stir welding [321,322].

Overall, the ECT spatial resolution ranges from millimeter scale, with conventional probes, to micrometer scale, with advanced variants, e.g. by an optimal choice of probe type, geometric architecture and operation frequency. The size of the inspected area and depth of penetration are limited and depend on the coil’s geometry, which is limited by the operating frequency [95,315]. As main limitations, the technique is very dependent on probe lift-off, sensitive to surface roughness and is influenced by the discontinuities’ orientation, e.g. small cracks with the same direction as the flow of the eddy current result in negligible disturbance in the flow [315].

Hoffman et al. [323], developed an imaging technique, Eddy Current Microscopy (ECM), based on Magnetic Force Microscopy (MFM), to generate and detect eddy current, which is possible through mapping the variation of local electrical conductivity and magnetic properties. This technique can detect surface and subsurface discontinuities, with a spatial resolution of about 100 nm, and its sensitivity depends on the magnetic field strength of the tip and elastic constant of the spring cantilever [314]. Fig. 56 shows the contact-mode topographic results obtained for an Al2O3 matrix (70 %) with TiC precipitates (30 %).

Magnetic sensors detect changes in magnetic fields either created or modified by objects or other conditions, due to the magnetoresistance of the sensors’ material, i.e. the ability to change the value of electrical resistance upon an induced external magnetic field. When small magnetic sensors are placed in arrays on a chip, they may detect small magnetic fields with high spatial resolution. Magneteto Resistive (MR) sensors have good sensitivity and higher spatial resolution than inductive sensors [324]. Superconducting Quantum Interference Device (SQUID) sensors are magnetometers that measure magnetic fields based on the effect of Josephson junctions containing superconducting loops. Although with good sensitivity (they can detect artificial cracks with length of 50 mm and...
width 0.3 mm [325]), the sensors are expensive and require a rather large inspection system and structure [326]. Giant Magneto Resistive (GMR) sensors are based on the GMR effect, where a multilayer pile of magnetic layers, separated by a thin non-magnetic film, induce a change in electrical resistance [327]. In one research, GMR probes were able to detect artificial defects in the order of 100 µm in 316L stainless steel produced by laser powder bed fusion [328]. Fig. 57 shows the CAD drawing and microscopic image of the defects as well as the GMR probe measurements, where all (four) artificial defects were distinguishably detected. The technique shows sensitivity for the variation in width of the defects and allows also to separate in space the defects, as the voltage values in free-defect zone are slightly higher than the ones in the defect area. In other related developments, such as the inspection of PCBs, GMR sensors provided inspections with micrometer spatial resolution [326,329,330].

Tunnel Magneto Resistive (TMR) sensors are based on the effect caused by tunnelling current through an insulating barrier, which is sensitive to temperature, voltage, thickness, and energy height of the barrier; and by scattering mechanisms. Cardoso et al. [324], optimized a Magnetic Tunnel Junction (MTJ) sensor that detected an artificial defect with a width of 400 µm and a depth of 500 µm in an aluminium block, as shown in Fig. 58. Pelkner et al. [331] developed an ECT probe (coils of 0.5 mm in diameter) using TMR arrays and Application-Specified Integrated Circuits (ASICs). The probe detected artificial defects with diameters between 440 and 445 µm, with varying spacing distances, in titanium and aluminium specimens, as shown in Fig. 59 (for the aluminium plate inspection). Zhang et al. [332], developed an Array ECT (AECT) probe with two rows of three-phase excitation coils and an integrated array of TMR sensors. The AECT probe was able to detect defects as small as 1 × 0.2 × 1 mm³ (length × width × depth) corresponding to defect 5 in sample #1 of Fig. 60a, compared to a coil array probe (Fig. 60b and c).

Very small-sized critical defects, such as root defects in Friction Stir Welding (FSW) of aluminium alloys, have zero volume, and in the case of oxides and second-phase particles alignment, are not fully continuous. These type of physical material discontinuities have very low energy reflection for UT-based techniques and are even difficult to be detected by high-resolution techniques, such as CT [333,334]. For this purpose, a differential planar ECT probe was proposed, entitled as IOnic probe. This probe is composed of a driver trace element in the middle (excitation filament) and two pickup planar coils wired on opposite directions (detector or sensitive coils) [335]. When an AC excites the driver trace, it induces 3D shape magnetic field, generating eddy currents on the material, which are
Fig. 59. ET-data of aluminium-sample Al-FN-22 for different probes (as grey-scaled plots on the left and as line cut across defect signals on the right): (a) Differential probe “KDS 2–2” of Rohmann GmbH; (b) Absolute probe BAM-made “A05”; (c) Absolute, high-precision probe BAM-made “AN05”; (d) TMR-ASIC-probe of the IMAGIC consortium for surface breaking defects [331].

Fig. 60. Aluminum sample inspection: (a) Samples with machined defects; (b) AECT results for sample #1 with defects orientated in the vertical direction and the line scan of the defects along the white dash line; (c) Coil array probe results for sample #1 using 30 kHz.
also sensed by the pickup coils. A discontinuity or overall perturbation in the component can be detected by the modification of electric field balance between the two pickup coils [333]. The operation fundamentals of this Ionic probe was modelled and geometric features were parameterized and optimized, as depicted in Fig. 61, by L. Rosado et al. [335]. This probe exhibits low leakage inductance and creation of heat, enabling it to be printed in flexible substrate material with enhanced sensitivity for NDT of small defects in complex shapes [321,333,337,338]. One study was conducted in AA2024-T351 plates with 3.8 mm thickness and three different laboratory-induced root defects: defect type 0 consisting of residual particles alignment along a path of approximately 150 μm; defect type I with 60 μm of size, approximately; and defect type II with 200 μm of size, approximately; and

Fig. 61. Fundamentals and representation of an ECT planar differential ECT probe, identified as “Ionic Probe”: (a) Printed probe with nomenclature of main components; and (b) Representation of probe’s tested geometric parameters, namely D1- Driver vertical displacement to the sensitive coils plane (0, 0.15, 1.6 mm); D2- Driver trace width (0.5, 1, 1.5 mm); D3- Driver trace length ratio with parameter S1 (0.5, 1, 1.5 mm); S1- Sensitive coils external diameter (6, 10, 14 mm); S2- Sensitive coils windings width and clearance (0.05, 0.1 mm) [335].

Fig. 62. Application of the ECT planar differential ECT probe, identified as “Ionic Probe” to inspection of different types of defects at the root of an friction stir welding (FSW) of an aluminium alloy AA2024 (plate thickness of 3.8 mm): (a) Transversal micrographs of three different FSW defective joints, namely defect type 0 (non-continuous oxide particles alignment), defect type I (about 58 mm), defect type II (about 200 mm); (b) formulation and graphical meaning of the defect index; and (c) establishment of the defect index for the three defects types and four different test frequencies [333].
defect type II with 200 μm of size approximately. As shown in Fig. 62, the Ionc probe identified different levels of FSW root defects, and an evident relation between the defects size and the signal perturbation can be observed [336].

Another advanced ECT technology is Meandering Winding Magnetometer-Array (MWM-Arrays) probes, where the primary and secondary windings in the sensor have a square wave pattern, as shown in Fig. 63. This allows the creation of spatially periodic magnetic field when a current is applied in the primary winding, and to measure the response of the signal (voltage) in the secondary winding [339]. By using arrays of secondary windings, individual or combined signal responses can be used for one primary winding. The sensors are produced via micro-fabrication, resulting in highly reliable and highly repeatable identical sensors at low unit costs [339,340]. MWM-Arrays can be supported by grid measurements, which are two-dimensional databases of the sensor responses that relate two measured parameters (e.g. lift-off and conductivity/permeability, as shown in Fig. 64), that don’t depend upon calibration and instrument set-up, as opposed to conventional ECT. By using grid measurements, it becomes easier and more efficient to convert the response in the secondary winding into geometric and material properties, like layer thickness, electrical conductivity and magnetic permeability measurements, which contribute to characterize stress, porosity, crack length, cold work, and microstructural changes in the material due to manufacture and in-service damage mechanisms, e.g. fatigue [339–341].

As presented by Zilberstein et al. [340], MWM-Arrays can detect early fatigue damage and short cracks (less than 50 μm long and less than 25 μm deep) in austenitic stainless steels components and aluminium alloy components under tension–tension cyclic loading, respectively. They have also shown that this technique is capable of on-line monitoring and detection of crack initiation and growth during fatigue tests of coupons, components and/or areas of difficult access (e.g. fuel tanks on aircraft) [340,341]. Another study proved the capability of MWM-Arrays to detect lack of penetration defects, as small as 0.75 mm, in aluminium alloys joined by FSW [342,343]. Fig. 65 shows two examples of MWM-arrays fatigue damage assessment.

Ma et al [344], proposed a novel flexible eddy current sensing system that incorporates double square winding excitation with a multi detection flexible array for cracks inspection (mm range down to 0.5 mm width). Yang et al. [345], developed an electromagnetic in-pipe detector based on passive resonance-enhanced differential planar coils, that detected corrosion pits and cracks with defect size in the millimeter range. Daura et al. [346], proposed a ECT inspection technique with integration of a transmitter–receiver (Tx–Rx) Flexible Printed Coil (FPC) array with dual resonance response Wireless Power Transfer (WPT), to inspect a pipeline sample with a dented area due to metal loss and corrosion. Long et al. [347], proposed a resolution enhanced ECT array probe to detect machined defects, in the μm-mm range, in a 304 stainless-steel sample. Sondhi et al. [348], developed a multilayer flexible screen-printed coil that can be used to generate low-frequency magnetic fields for applications such as WPT. Marchand et al. [349], developed two innovative flexible ECT probes composed of 64 and 96 micro-coils etched on a flexible film, which were able to detect defects as small as 100 μm on an Inconel and aluminum plate. Zhang et al. [350], proposed a flexible ECT probe with front-end differential setting to detect defects in the mm range in CFRP components. Camerini et al. [351], proposed an EC system using coils with orthogonal
configuration connected in differential model that successfully detected fatigue cracks (mm range) in clad pipelines.

Eddy Current Pulsed Thermography (ECPT), also known as induction thermography, is a NDT technique that combines ECT and thermography, where eddy currents generate heat, by resistive losses that release heat, directly to the surface of the component. This generated heat can be detected by an infrared camera [40,352]. ECPT is usually applied to inspect metals and composites [353–359]. Genest et al. [360], applied ECPT to a Thermo-Mechanical Fatigue (TMF) test uncoated specimen to detect cracks, as small as 0.25 mm, and to a high temperature tensile test (HTTT) uncoated specimen to obtain the Strain to Crack (SC) information (strain at which the first crack occurs), as shown in Fig. 66. They also employed an algorithm to enhance the crack contrast and obtain accurate crack measurements.

Liang et al. [361], inspected a CFRP sample with damage produced by 4 J low energy impact, using ECPT alongside PCA combined with wavelet transform. Fig. 67 presents the results, where visual damage was not found using stereomicroscopy, but can be detected using ECPT (Fig. 67b) and further enhanced with thermal image processing (Fig. 67c).

Li et al. [362], proposed a multiphysics structured ET and ECT in moving mode, with a novel L-shape ferrite magnetic yoke surrounded with array coils, that was able to inspect artificial cracks with a length of about 50–60 mm. Liu et al. [363], proposed a method of using the skewness of ECPT, under stationary and scanning conditions, to quantify the depth of rolling contact fatigue cracks, ranging between 0.35 and 8 mm. Yi et al. [364], proposed a Eddy Current Pulse-Compression Thermography (ECPuCT) that combines Barker code modulated eddy current excitation and pulse-compression technique, to characterize delamination on CFRP materials with defects in the mm range. Wang et al. [365], developed a new ECPT signal feature, Dynamic Apparent Time Constant (D-ATC), that associates the dynamic behaviour of the induced eddy current with the geometric dimensions of the test pieces by the time and amplitude signatures of the D-ATC curve, to detect the sub-millimeter thickness of non-ferromagnetic conductive plates under large lift-off conditions. Xie et al. [366], combined ECPT and a stacked autoencoder (SAE) model, called a Stacked Autoencoder - Eddy Current Pulsed Thermography (SAE-ECPT), to visualize internal artificial debondings, delaminations and cracks, in the mm range, in
CFRP-reinforced steel structures. Tong et al. [367], proposed using ECPT with hybrid post-processing strategy combining PCA and 2D wavelet transformation to characterize the depth profile of artificial fatigue cracks. Tu et al. [368], applied ECPT to successfully detect conductive defects in composite insulators, alongside algorithms like fast Fourier transform (FFT), PCA, independent component analysis (ICA), and partial least-squares regression (PLSR), to enhance the features of defects and/or separate different transient thermal patterns. Hernandez et al. [369], applied ECPT to inspect in-service corrosion in a painted aluminum aircraft panel. Defects as small as 0.4 mm were detected using phase, amplitude, and temperature contrasts, the former one being more suitable for defects smaller than 2 mm. Additionally, Sophian et al. [370], wrote a literature review paper about ECPT.

6.2. Alternating current field measurements

Alternating current field measurements (ACFM) is an electromagnetic technique used for the detection and sizing of surface opening defects, based on the alternating current potential drop (ACPD) technique [371–373]. The ACFM inducer probe introduces an AC locally into the component that generates electromagnetic fields close to the surface. The ACFM detecting probe measures the associated electromagnetic fields. If a crack is present, the electromagnetic field around the crack is disturbed. Components of the magnetic field in the \(x\) direction (Bx) will produce a dip along the crack that allows the measurement of the depth of the defect, while components in the \(z\) direction (Bz) will produce a strong peak and a trough near the end of the crack allowing the measurement of the length of the defect [371–373]. ACFM is applied in fields like railways [371,374,375], underwater structures [376,377], and oil
Li et al. [372], proposed a rotating alternating current field measurement (RACFM) method for the detection of arbitrary-angle cracks with high sensitivity (mm range). Table 5 shows the sensitive parameters (Sx and Sz) from the experimental results of RACFM and traditional ACFM, for a Q235 mild steel sample with a 45 mm length and 7 mm depth artificial EDM notch, with the angles between the scanning path and crack varying from 0° to 90°. The results suggest that compared to conventional ACFM, the new technique can inspect defects at different directions, with the minimum sensitivities of Sx and Sz being 27.3% and 59.7%, respectively, for crack angle of 50°, and that RACFM can achieve high detection sensitivity for underwater cracks.

6.3. Magnetic particles testing

Magnetic Particles Testing (MT) is a NDT technique that inspects surface and subsurface discontinuities in components made of ferromagnetic material. The MT is based on the phenomenon that when an object with high magnetic permeability is subjected to a magnetic field, a magnetic flux leakage may occur in the presence of defects in the component. The detectability and resolution of MT depends on the intensity of the eventual magnetic flux leakage, and on the mobility (depends on the particle shape and mass) of strongly ferromagnetic particles which are attracted to the regions with magnetic flux leakage. The technique’s procedure consists of cleaning the surface of the inspected object, magnetizing the component following by the application of magnetic particles, and then proceeding with the inspection of defects. After the inspection, the component is demagnetized and any residue of magnetic particles is cleaned [378]. The component can be magnetized either by permanent magnets, electromagnets, or electric AC or DC-induced methods. The magnetic particles can be applied either through a wet suspension or as a dry powder, and their size can range between 10 and 30 µm. When using MT, the magnetic flux should be correctly misaligned with the defects so that they can be detected. Magnetic particle inspection does not give information on the defect depth and components with complex geometries may present areas with little or no magnetic flux [379].

As state of the art on the detection of small-scale defects, Vasylenko et al. [380] developed a technique for detecting micro defects based on luminescent ferrofluids derived from CoFe2O4 nanoparticles, ranging in sizes between 5 and 11 nm. Luminescent ferrofluids were able to detect an artificial ring defect of 10 mm diameter with an opening width of 1.2 µm, invisible to the naked eye, in a steel

<table>
<thead>
<tr>
<th>Crack angle /degree</th>
<th>ACFM results</th>
<th>RACFM results</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sx / (%)</td>
<td>Sz / (%)</td>
</tr>
<tr>
<td>0</td>
<td>31.7</td>
<td>72.2</td>
</tr>
<tr>
<td>10</td>
<td>29.3</td>
<td>70.2</td>
</tr>
<tr>
<td>20</td>
<td>21.6</td>
<td>52.4</td>
</tr>
<tr>
<td>30</td>
<td>8.2</td>
<td>17.4</td>
</tr>
<tr>
<td>40</td>
<td>2.9</td>
<td>6.6</td>
</tr>
<tr>
<td>50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>70</td>
<td></td>
<td></td>
</tr>
<tr>
<td>80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>90</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

M. Ines Silva et al.

Table 5
The sensitivity of RACFM and ACFM experiments [372].

Fig. 68. Visualization of the artificial ring defect using: (a) Ferrofluids; (b) Luminescent ferrofluids. .
Adapted from [380]
plate. Fig. 68 shows the authors’ results when using ferrofluids, see Fig. 68a, and luminescent ferrofluids, see Fig. 68b. Using luminescent ferrofluids with a concentration of 3.1 g/L presents a better contrast than simply ferrofluids, which can be perceived even with quality differences in the images, maybe due to the use of different dyes and the effect of the dye concentration on the image contrast, as mentioned by the authors.

6.4. Magnetic flux leakage

Magnetic flux leakage (MFL) is an electromagnetic NDT technique that also inspects surface and subsurface discontinuities in components made of ferromagnetic material. MFL is based in the same phenomena as MT, however it is composed of a probe with a magnetic detector, like Hall sensors, placed between the poles of the permanent magnet and yoke, where it can detect the leakage field [381].

Li et al. [382], proposed a Micro Magnetic Bridge Probe (MMBP) to be used in MFL in order to detect micro-cracks. As shown in Fig. 69a, a magnetizing coil is used to generate an AC magnetic field and the U-shaped magnetic yoke is used to generate a magnetic bridge. In the testing magnetic circuit, a magnetic sensor measures magnetic flux changes. The sample tested is a Q235A plain carbon structural steel and the defects have length of 6 mm, width between 60 and 80 µm and depth between 7 and 60 µm. All the defects were detected, including the one with smallest depth of 7 µm (S6 in Fig. 69b).

Pham et al. [383] developed a planar Hall magnetoresistive (PH-MR) sensor, in an exchange-biased multilayer structure, for MFL detection. The authors claim that PH-MR has the advantages of high SNR, of small thermal drift due to the orthogonal arrangement of its output voltage and supplying voltage bars, and of being able to answer to a wide range of a bipolar magnetic field. Fig. 70 shows the MFL signal measured in real time using a PH-MR sensor prototype on a sample having four cylindrical-hole defects with an identical radius of 2 mm and different depths of 0.5, 1, 1.5, and 2 mm [383].
inspection results done for a carbon steel with artificial cylindrical-hole defects with radius of 2 mm and different depths of 0.5, 1, 1.5, and 2 mm.

Additionally, Gao et al. [384], compared MFL and ECPT for the inspection of multiple cracks (mm range), and proposed a new technique, ferrite-yoke-based pulsed induction thermography, that combines the ferrite-yoke structure of MFL and the high current and high frequency pulsed excitation of ECPT. This technique may prove suitable in the future to detect micro surface and subsurface defects in ferromagnetic materials. Ru et al. [385], proposed a new coupling sensor that merges ACFM and MFL, consisting of a rectangular-shaped ferrite magnetic excitation structure of coupling electromagnetic sensing that induces an uniform Eddy current field and a primary magnetic flux field, and that is able to detect surface and subsurface defects in the mm range. Hosseingholizadeh et al. [386], proposed a MFL system to increase the accuracy of defect characterization in the mm range that can distinguish different defect shapes located on the far side of a steel plate and that uses a sensor lift-off compensation scheme based on AC signal phase.

6.5. Other electromagnetic techniques

Magnetic Barkhausen Noise (MBN) is a magnetic measurement technique that evaluates the surface and subsurface of a sample of ferromagnetic material and can detect the microstructure (lattice strains and imperfections), stress field, chemical inhomogeneities, grain size, and surface or near-surface residual stress [387,388]. The Barkhausen effect consists of sudden movements and changes in the size and orientation of magnetic domains, i.e. small order magnetic regions that exist in ferromagnetic materials, that occurs when these materials are continuously magnetized or demagnetized by an alternating magnetic field. This changes in magnetization can be detected because the transitions of the magnetic field of the material induce an electrical pulse in an inductive coil placed near the specimen, affecting its magnetic field, and a signal resembling noise, the Barkhausen noise, is generated. Material characteristics such as the distribution of elastic stresses and microstructure affect the movement of domain walls which affects the electrical pulses produced by these movements and therefore, affect the MBN signal output [389].

Although there are no standard designs for the equipment, it typically consists of a probe or sensor with a magnetization coil connected to a measurement device and a computer [390]. There exist many different probes that are suitable for different applications, for instance, in welding [391], aeronautic [387], and transportation [392,393]. The resolution of the technique is related to the coil’s sensitivity, which in turn depends on the coil’s geometry. Other challenges of the technique include its complexity, the domain walls are very narrow, and the timescales involved in these phenomena are extremely short.

Even though a technique not yet employed for very small defects, it has been shown that localized peaks in the MBN results when scanning the surface of a martensitic stainless-steel plate subjected to controlled fatigue load revealed the presence of surface flaws with a dimension of 10 mm, as well as the stress pattern in the beginning and ahead of the crack tip. Furthermore, an assessment of the smallest size crack that can be detected through the variation of the different parameters is suggested for future works [389]. Liu et al. [394], investigated the correlation between Domain Wall (DW) motion and MBN under different tensile tests to successfully quantitatively analyse micro–macro magnetic properties and variations.

Metal Magnetic Memory Testing (MMM) is an emerging weak-field detection technique which uses the geomagnetic field, such as Earth’s magnetic field, rather than an artificial magnetic field, to measure the self-magnetized leakage field and detect damage in ferromagnetic components [395,396]. MMM is used mainly for detecting early damage, e.g. micro-crack and fatigue damage, due to the magnetic flux leakage signal of stress concentrations owing to the geomagnetic field excitation [397–404]. Shi et al. [405], have written a review concerning the current status and challenges of the technique.

The 3MA technique (Micromagnetic Multiparameter Microstructure and Stress Analysis) is a micromagnetic multiparameter NDT technique that combines different micromagnetic and electromagnetic measuring quantities, like the magnetic Barkhausen noise, harmonic analysis of the tangential magnetic field strength, multifrequency eddy current analysis and incremental permeability analysis. It uses regression analyses or pattern recognition algorithms for the quantitative determination of material properties for ferromagnetic materials [406,407]. The use of multiparameter avoids any disturbance that may affect stress measurement, like surface treatment and microstructure, and allows predicting several features at once, like residual stresses, hardness, and hardening depths. 3MA has been shown to help understand early material degradation [408].

7. Motion of matter at the inspected surface

7.1. Dye penetrant testing

Dye Penetrant Testing (PT) is a NDT technique that inspects the surface of an object. It can be applied to many different materials, such as ferrous and non-ferrous metals, including powdered-metal objects, glass, ceramics and some types of plastics, but not on materials with a rough or porous surface. It is commonly applied to inspect surface cracks, at both face and root domains of weld joints.

The procedure consists of cleaning the targeted surface zones of the inspected object, applying a dye penetrant to the surface and allowing some dwell time for it to penetrate the surface discontinuities, removing the penetrant’s excess and applying a developer. There are different penetrants for different desirable sensitivities, depending on their capillarity and viscosity, and are also classified based on dye fluoresces, e.g. under black light or white light, and based on the type of dye removal, e.g. water or other solvents. The
developer applied can be a dry power developer, or a powdered material suspended in water or a volatile solvent, known as a wet developer [28,409].

According to Carvalho et al. [410], PT allows the identification of some defects with approximately 0.9 μm, but only when the defect depth is larger than its superficial open area, since its physical principle is exclusively based on the high capillarity and low viscosity of the penetrant.

The chemical products may be harmful to the operators and the handling and disposal of the oil-based products impacts negatively the environment [411,412]. However, more ecological alternatives have been proposed, for instance, the use of bacterial suspension as penetrant, like Rhodococcus erythropolis DCL14 strain [413] and Escherichia coli bacteria [414], semiconductor quantum dots (Qdots) [412] and radiolabelled Qdots [415]. The application of these, and other, advanced technological dye penetrant solutions, are further addressed in §7.2 and §7.3.

7.2. Driven bacterial cells testing

A NDT technique based on bacterial cell suspensions was proposed by Santos et al. [413,416–420]. This technique consists of applying a non-pathogenic bacterial suspension-based penetrant to materials to identify micro-surface defects. Bacterial cells have properties that are a great asset for NDT purposes, such as small dimensions (some smaller than 1 μm), high penetration capacity due to biosurfactants production, motility, adherence, fluorescence (either natural or by addition of chemical compounds), reproducibility and death, endothermic and exothermic properties and response to electric and magnetic fields [413,416]. Even though the application and steps may be similar to dye penetrant, some of the bacterial properties, which are not present in the former, allow an improved sensitivity to detect surface defects. Additionally, according to the study, the bacterial cells penetrated and adhered preferentially to defects, controlled by the capillarity, wettability and viscosity of the suspension, even after removing the excess bacteria and without the application of magnetic or electric fields [417]. In other to avoid the creation of biofilms, which may be harmful to the materials [416], the penetration time needs to be well reduced and controlled and the sample needs to be properly cleaned after the inspection. Under these controlled steps, the technique is innocuous and environmentally friendly, since no harmful liquids need to be disposed or recycle nor are aerosols formed.

Santos et al. [413] used Rhodococcus erythropolis DCL14 strain, with dimensions between 0.9 and 1.5 μm, to study stainless steel AISI 304L, aluminium alloy AA1100 and electrolytic copper. Under the conditions of the tests, the detection limit for the artificial micro-indentations was 2.9 μm depth in steel, 4.3 μm depth in aluminium and 6.8 μm depth in copper with a penetration time of 4 min, 4 min and 3 min, respectively. In a following study [417], it was applied a magnetic field and used the same Rhodococcus erythropolis DCL14 strain to study micro indentations in a stainless steel AISI 316L and aluminium alloy AA1100. These new conditions resulted in a new enhanced detection limit of 1.8 μm depth and 8.8 μm side length for aluminium and 1.4 μm depth and 6.8 μm side length for AISI 316L stainless steel. Additionally, through the application of nanoindentations on the steel, with loads between 125 and 50 mN, this technique was able to detect defects with 0.6 μm depth and 5.3 μm side length. Fig. 71a shows the matrix of nanoindentations under SEM and Fig. 71b shows the matrix under fluorescence optical microscopy, after applying the bacterial cells and without the application of magnetic or electric fields. The suspension was also used to successfully detect 0.5 μm wide and 10 μm depth artificial cracks in a reference test block Type 1 ISO 3452–3, as shown in Fig. 72. The authors also concluded that it is possible to distinguish zones with different roughness. These articles show the potential of this technique for detecting sub-micron and nano surface defects.

In another study [414], it was shown that Fluorescein Isothiocyanate (FITC) conjugated Escherichia Coli (E. coli) bacteria used as fluorescent penetrant can be used for the inspection of small defects in different test materials, with the width and depth ranging between 200 and 400 μm. Fig. 73 shows the inspection results on a PSM-5 panel using FITC-E. coli and commercial dye penetrant.

![Fig. 71. Matrix of nanoindentations produced in AISI 316L, using Rhodococcus erythropolis bacterial cells (DCL14 strain), observed by: (a) SEM; (b) Fluorescence optical microscopy [417].](image-url)
7.3. Quantum dots fluorescent-penetrant testing

Quantum dots (Qdots) are semiconductor nanoparticles with optoelectronic properties that can transport electrons [421], used in fields like biomedical [422,423], and electronics [424].

According to Daneshvar et al. [412], quantum dots used as a fluorescent dye penetrant can detect cracks that are equal or bigger than 5 µm in weld joints. The authors created artificial cracks with widths between 5 and 10 µm and separated by 5 mm, in a 10 cm² aluminium plate. The surface of the sample was cleaned, then wetted by a colloidal solution, which stayed in the sample until the solvent evaporated. Then, excess material was removed, and the sample was analysed under an UV laser with emission line at 240 nm. Fig. 74 shows the scratched lines under UV light, which are clearly visible. Sezgin et al. [415], proposed the use of radiolabeled Qdots, i.e. synthesized Qdots (CdSe/ZnS) radiolabeled with 99 mTc tracer, commonly used in medical analysis, to inspect weld beams, where radioactivity measurements are done by using a CdTe detector after radiolabeled Qdots are applied to the surface of the weld defect sample.
8. Replication metallography testing

Replication metallography is a technique of replicating the topography of a surface by applying a material, like a film, onto the surface. Replication techniques include surface replication and extraction replication, both are considered NDT techniques. The former provides an image of the surface topography of the material, while the latter gathers particles from the surface of the specimen. In the case of surface replication, the process consists of polishing and etching the surface of the specimen under inspection, followed by the application of a thin film onto the surface, which after removal is mounted in a support and examined under a microscope.

Surface replication is used in fields like power plants and petrochemical components to determine the component’s remaining life. It is used for in-situ microstructural analysis, such as precipitate analysis, crack determination and creep damage, and can quantify defects, like voids, with less than 1 µm. An example of in-service creep cavitation damage in an X20 steam line, observed from a surface replica, is presented in Fig. 5 of Table 1 (§2.1). The advantage is that, unlike metallographic inspection, there is no need to cut and extract large samples from the component. However, crucial microstructural information is not available to help evaluate the component’s remaining life, and this variant is only suitable for surface defects, having in mind that most early damage starts below the surface and is only detected on the surface shortly before fracture. Besides, some voids may form as a consequence of surface preparation procedures [2,425]. With extraction replication, there is the possibility to cut a small sample of the component if the following repairments, in order to not compromise its integrity, are not costly, or repairment is not necessary [426–430].

Fig. 74. Quantum dots used as fluorescent dye penetrant in detection of artificial cracks (with widths between 5 and 10 µm) exposed to a 240 nm UV light [412].

Fig. 75. Energy levels of hydrogen at different trapping sites [434].
9. Hydrogen-as-a-probe for testing

Hydrogen is known to be trapped by material imperfections, namely: vacancies, substitutional atoms, dislocations, grain boundaries, phase interfaces, second phases, precipitates, micro voids and cracks [63,431]. For a component’s sample or replica, the concept of using hydrogen-as-a-probe for inspection of the material condition is based on scanning the hydrogen desorption over temperature, e.g. via Thermal Desorption Spectroscopy (TDS) technique. As different imperfections (or group of imperfections) will release the trapped hydrogen at different levels of activation energy (see Fig. 75), upon validation of the TDS results versus known imperfections, the hydrogen-as-a-probe is an ultimately sensitive NDT technique for small-scale defects. This technique takes advantage of the significant existing knowledge in the hydrogen-to-metal interaction. This phenomenon has been investigated since several decades ago, mostly on the scope of the hydrogen-to-metal interaction with respect to hydrogen embrittlement problem, reporting about the role of hydrogen trapping and diffusion on hydrogen-induced fracture mechanisms [432–438].

Fig. 76 presents the underlying mechanisms that lead to trapping of hydrogen and time-dependent fracture, with potential energy lower than in normal interstitial sites which slows down the diffusion of hydrogen [63,434].

Fig. 76. Underlying mechanisms that lead to trapping of hydrogen and time-dependent fracture [63].

Fig. 77. Mechanisms that allow hydrogen entry into a material: (a) Schematic illustration of the chemisorption and physisorption process; (b) The energetic landscape, E, that a H2(g) molecule encounters when approaching a metal surface with a distance × [434].
Hydrogen interaction with metals is frequently defined by its permeability, diffusivity and solubility. These parameters are controlled by temperature and microstructure of the studied material with a significant impact from chemical composition, crystal structure, microstructural features and defects [439–443]. State of the art experimental techniques in combination with computation modelling allow to interpret the hydrogen behaviour in a multiphase structure evidencing a significant impact of interphase morphology on hydrogen diffusion and permeation leading to a potential application of the research method for analysis of material’s condition [439,443].

The hydrogen uptake in metals can originate from the manufacturing process and from service environment exposure, e.g. via cathodic charging/protection, galvanic coupling, exposure to humid air, exposure to corrosive environments, use of long-life lubricants, palladium (Pd) plating process, electrochemical permeation technique, exposure to chloride solution in the case of AA7xxx aluminium alloys, during welding and when storing high-pressure gaseous hydrogen [441,444,445]. Besides, hydrogen’s entry is dependent on factors like surface conditions, pressure and temperature [434]. For using hydrogen-as-a-probe as inspection technique, the TDS of the component’s sample or replica can be applied to evaluate the hydrogen in as-original condition (i.e. hydrogen uptake from manufacturing and/or service), or in pre-charged condition.

Concerning the permeability, the mechanisms that allow hydrogen to enter a material are adsorption (surface phenomenon) and absorption (internal phenomenon). The adsorption stage is composed of the physisorption and chemisorption mechanisms, presented in Fig. 77a, and in which pressure plays an important role. Physisorption consists of a weak intermolecular force, van der Waals force, that increases slightly the potential energy as the molecule reaches out the surface, as shown in Fig. 77b [434,446]. Dissociative chemisorption happens when covalent bonds are formed between adsorbate (hydrogen atom) and adsorbent (metal surface atom), which is further simplified when the molecular hydrogen (hydrogen forms molecules in its natural state) dissociates into atoms, reducing the energy required to reach the surface [434,446]. Only in its atomic form can hydrogen diffuse interstitially into the materials.

The adsorption of hydrogen from a gaseous hydrogen source differs from that of a electrolytic hydrogen system source, the later expressed by the Hydrogen Evolution Reactions (HER) [434].

Following the adsorption stage, in the absorption phase the hydrogen assimilates into molecules in the bulk of the absorbent (metal), either through the interaction of the adsorbed hydrogen atom with water molecules or through the combination of two adsorbed hydrogen atoms. Not all atoms at the surface of the absorbent follow the process of absorption, e.g. they can recombine in the surface or subsurface of the material [434].

At elevated temperatures hydrogen has a high rate of transport within a metal, so it easily occupies a new interstitial site over great distances inside the bulk material.

Existing methods to analyse hydrogen content can be divided depending whether they allow to visualise the hydrogen distribution or to measure the absorbed hydrogen concentration [447]. Some methods are able to obtain information about lattice defects that would trap hydrogen, provide high spatial resolution, multi-scale microstructural mapping, quantify local hydrogen content, provide kinetic resolution and kinetic local analysis, and/or have a three-dimensional characterisation of the hydrogen distribution [63]. For instance, direct observation of hydrogen by Atom Probe Tomography (APT) analysis allows precise detection of crystalllographic defects and grain boundaries, as shown by Tweddle et al. [448], for multicrystalline silicon. However, the method has a significant limitation in size of the sample (about 1 µm³) that obstruct the large volume defect analysis. Volume effect of dislocation density change on hydrogen diffusion and trapping was effectively measured by Scanning Kelvin Probe Force Microscopy [449]. Kelvin probe analysis shows to be effective for detection of hydrogen in the lattice, that modify the sample surface potential, with spatial resolution of about 50 nm, mapping the hydrogen escape intensity with 2D plot of specimen microstructure [449–451]. The direct volume defects characterization, as that in APT method, is however impossible. In order to assess the hydrogen trapping, effective hydrogen diffusivity, or desorption and binding energies, the TDS analysis is used, in combination with the previous methods or individually
TDS is a technique that gives information about desorbed hydrogen from a sample bulk as a function of temperature. The effect of microstructural variation of steels and alloys on hydrogen thermal desorption behaviour was studied widely during the last two decades, with the aim of understanding the relationship between specific microstructure features and the associated local hydrogen content. Nagumo et al. [453], considered the TDS as a promising tool for evaluation of defects produced by plastic deformation showing thermal desorption spectroscopy change as a function of deformation applied to pure iron and eutectoid steel caused apparently by increased dislocation density and vacancy clusters formation. Additional peak of hydrogen desorption at elevated temperatures for eutectoid steel studied after high plastic deformation (above 25%) is attributed to defects within cementite phase or supersaturated carbon in ferrite [453]. The phenomena of TDS change caused by plastic deformation was often attributed to vacancy/dislocation complexes and defects formation, and phase change affecting the hydrogen trapping and diffusivity [453–460]. In metastable Transformation Induced Plasticity (TRIP) steels, the TDS shape variation is related to the deformation induced (from 5%) phase transformation enabling the quantitative approach in hydrogen behaviour prediction according to the steel phase fraction change [454,457]. Considering the complex structure of metastable S30408 austenitic stainless steel, the TDS reveals a complex relationship with applied deformation controlled by dislocations and stress-induced martensite [455]. The TDS of hydrogen is sensitive also to microstructural change caused by heat treatment procedures and alloying [442,447,457,461–467]. Thus, tempering at high temperatures decreases markedly the hydrogen trapping ability of Fe-0.2C steel, however, an increase of hydrogen concentration was observed at 600°C associated with recrystallization process and formation of new boundaries [461]. Microstructural change of high-strength steels caused by increase of austenitizing temperature results in decrease of hydrogen uptake, measured by TDS and associated with refinement of grain size, and increase of Nb content in solution, as postulated by Liu et al. [464]. Materials subjected to the complex loading conditions, like creep and fatigue, reveal also unique hydrogen trapping behaviour [432,435,468]. Malitckii et al. [435] investigated the trapping of hydrogen accumulated into dual-phase and complex-phase High-Strength Steels (HSS), with strength of about 1200 MPa, under fatigue loading. The measurements reveal a complicated hydrogen trapping behaviour driven by hydrogen interaction with deformation defects and retained austenite. Hydrogen concentration seems to increase in the studied steels during the fatigue testing in the air without preceding hydrogen charging, as depicted in Fig. 78.

Creep-associated TDS shape variation was observed by Yamashita et al. [468], for heat resistant ferritic stainless steel (18Cr-2.5Si), that comprises apparently the creep damage with microstructural change such as precipitation/coarsening of NbC and change in dislocation density. Defects created during rotational bending fatigue of martensitic HSS were analysed by Nagumo et al. [432], using hydrogen-as-a-probe. The results evidence the formation of TDS peaks attributed to the point defects, presumably vacancies, at the final stage of the fatigue, and increased dislocation density at the early stage of the fatigue test [432]. Presence of high-density non-metallic inclusions (NMI) changes significantly the hydrogen uptake and trapping of steels [469–474]. Addition of Y2O3 nanoparticles (10–20 nm) to ferritic-martensitic matrix with intention to increase the material strength causes increased hydrogen content and TDS shape change from single to twin peak shape, as shown by Malitckii et al. [474]. Hydrogen trapping correlates with NMI's size and effective NMI's surface area rather than its volume fracture, as studied by Turk et al. [473], for ferritic steel with vanadium carbide precipitates of size 7.9 nm and 5.5 nm. No effect on the hydrogen trapping was observed in presence of W2C in martensite steel matrix with size above 20 nm, as shown by Depover et al. [472], due to, probably, incoherent NMI interfaces. However, Wallaert et al. [469] reveals that the proper charging procedure, like charging in gaseous environment at elevated temperature, results in formation of high temperature TDS peak (450°C-650°C) of hydrogen release from incoherent interfaces of NbC and NbN particles with size up to 200 nm.

As these methods offer such microstructural sensitivity for small features and allow to understand the dependence of hydrogen diffusion and trapping on the microstructure of materials, they may render as useful allies for NDT to detect very small-scale defects in materials. Future work should address the reliability of applying the hydrogen-as-a-probe, to indicate the presence of grain-scale defects (nano-and micro-size cracks or voids) induced by in-service mechanisms, such as fatigue, creep, creep-fatigue and environmental.

10. Modelling, artificial intelligence and post-processing visualization

10.1. Analytical and numerical modelling

Both analytical and numerical modelling are useful tools to understand and predict the performance of NDT techniques in a specific component in order to save time in the inspection and increase the test’s reliability. Analytical modelling is typically used for fast assessment and more fundamental support in application of NDT techniques, including ECT [475,476], and UT [477]. Numerical modelling enables modelling of nonlinear problems and complex geometries and boundary conditions, but has high computation time and requires software user expertise, especially in application of commercial software [478]. However, it’s a powerful tool to aid in setting the inspections procedures, parameters and other conditions for demanding NDT techniques, such as ECT with array of probes and PAUT techniques, and even supporting in the development of dedicated solutions for new techniques aiming at small-scale defects [251,479]. For example, ANSYS software has been used to understand the thermal transient phenomena in active transient thermography [480,481], CIVA software has been used to simulate the UT inspection of planar backwall breaking defects [482] and complex component geometries [483], and COMSOL software has been used to simulate UT inspection in fiber reinforced materials [484] and high-energy pulse EMAT inspection [237].

Numerical modelling can be usually found applied for simulation of electromagnetic techniques [79,485–488], ultrasonic testing [239,251,489–491], infrared thermography [480,481,492], radiography [493,494], etc. There are even coupled analytical–numerical methods, such as the one presented by Mahaut et al. [495]. Additionally, these types of models are also used to estimate the critical size of defects, for instance, in the nuclear power industry [496]. For example, when modelling a MFL technique to predict defects,
Table 6
Recent articles about the application of artificial intelligence in NDT inspection.

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Article</th>
<th>Inspection techniques / Defects</th>
<th>Material / Application</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multilayer perceptron</td>
<td>[524]</td>
<td>Transient Thermography</td>
<td>Aluminium / FSW</td>
</tr>
<tr>
<td></td>
<td>[525]</td>
<td>UT and ECT</td>
<td>Aluminium</td>
</tr>
<tr>
<td>Single-hidden layer NN</td>
<td>[526]</td>
<td>UT</td>
<td>Low-carbon steel / Welded joints</td>
</tr>
<tr>
<td></td>
<td>[527]</td>
<td>Acoustic Emission (AE)</td>
<td>Aluminium / Naval and Aerospace, etc</td>
</tr>
<tr>
<td></td>
<td>[528]</td>
<td>PT / thermal fatigue cracks</td>
<td>Titanium alloy</td>
</tr>
<tr>
<td></td>
<td>[529]</td>
<td>MFL</td>
<td>Magnetic material not specified</td>
</tr>
<tr>
<td>Deep Learning</td>
<td>[530]</td>
<td>Radiography / Weld defects</td>
<td>Aluminium</td>
</tr>
<tr>
<td></td>
<td>[531]</td>
<td>Ultrasonic Phase Array imaging</td>
<td>Aerospace application</td>
</tr>
<tr>
<td></td>
<td>[532]</td>
<td>UT / Thermal fatigue flaws</td>
<td>Austenitic 316L stainless steel</td>
</tr>
<tr>
<td></td>
<td>[533]</td>
<td>AE</td>
<td>Piezoelectric ceramic samples</td>
</tr>
<tr>
<td>Recurrent NN</td>
<td>[534]</td>
<td>UT</td>
<td>Thermal power plants</td>
</tr>
<tr>
<td></td>
<td>[535]</td>
<td>X-ray microtomography</td>
<td>Austenitic 316L stainless steel</td>
</tr>
<tr>
<td></td>
<td>[536]</td>
<td>SEM images</td>
<td>Polymer matrix composites</td>
</tr>
<tr>
<td></td>
<td>[537]</td>
<td>PAUT</td>
<td>Stainless steel</td>
</tr>
<tr>
<td>CNN</td>
<td>[538]</td>
<td>Radiography</td>
<td>Wafer</td>
</tr>
<tr>
<td></td>
<td>[539]</td>
<td>Radiography</td>
<td>AISI 316L stainless steel</td>
</tr>
<tr>
<td></td>
<td>[540]</td>
<td>Edge collapse, corner collapse, white spots, glaze bubbles, glaze collapse, ink dripping</td>
<td>Aeronautics Engine</td>
</tr>
<tr>
<td></td>
<td>[541]</td>
<td>Pin defects</td>
<td>Aluminium Conductor Composite Core</td>
</tr>
<tr>
<td></td>
<td>[542]</td>
<td>Crazing, inclusion, patches, pitted surface, rolled-in scale and scratches</td>
<td>Ceramic tile</td>
</tr>
<tr>
<td>Region-based Convolutional Neural Networks (R-CNN)</td>
<td>[543]</td>
<td>Laser UT</td>
<td>Hot-rolled steel plates</td>
</tr>
<tr>
<td></td>
<td>[544]</td>
<td>Ultrasonic guided waves</td>
<td>Aluminium alloy</td>
</tr>
<tr>
<td></td>
<td>[545]</td>
<td>Defects in Resistance Spot Welding</td>
<td>Glass/epoxy cross-ply laminated composites</td>
</tr>
<tr>
<td></td>
<td>[546]</td>
<td>Microwave imaging</td>
<td>High-strength steels / Automotive</td>
</tr>
<tr>
<td></td>
<td>[547]</td>
<td>ECT</td>
<td>Multiple materials</td>
</tr>
<tr>
<td></td>
<td>[548]</td>
<td>UT</td>
<td>Steel</td>
</tr>
<tr>
<td></td>
<td>[549]</td>
<td>Microwave NDT</td>
<td>Ex-service reformer tube</td>
</tr>
<tr>
<td></td>
<td>[550]</td>
<td>Enhanced truncated-correlation photothermal coherence tomography (eTC-PCT) / blind hole and cracks</td>
<td>Aircraft structures</td>
</tr>
<tr>
<td>K-Means Clustering</td>
<td>[551]</td>
<td>UT</td>
<td>Glass Fibre Reinforced Polymer</td>
</tr>
<tr>
<td></td>
<td>[552]</td>
<td>Resonant acoustic technique</td>
<td>Industrial materials</td>
</tr>
<tr>
<td>Linear Discriminant Analysis</td>
<td>[553]</td>
<td>Visual Inspection</td>
<td>Aluminium and CFRP plates</td>
</tr>
<tr>
<td></td>
<td>[554]</td>
<td>Corrosion damage</td>
<td>Co-Cr additively manufactured lattice structures</td>
</tr>
<tr>
<td>Logistic Regression</td>
<td>[555]</td>
<td>Air permeability test, electrical resistivity test, UT / internal damage (corrosion)</td>
<td>Laminated composites / Aerospace Concrete</td>
</tr>
<tr>
<td></td>
<td>[556]</td>
<td>Fluorescent PT</td>
<td>Reinforced concrete</td>
</tr>
<tr>
<td>Random forest</td>
<td>[557]</td>
<td>MBN, magnetic incremental permeability (MIP) and ECT</td>
<td>Titanium alloy plates</td>
</tr>
<tr>
<td></td>
<td>[558]</td>
<td>Pulsed thermography</td>
<td>Automotive plate steels</td>
</tr>
<tr>
<td>Generative Kernel Principal Component Thermography</td>
<td>[559]</td>
<td>UT</td>
<td>Carbon Fiber Reinforced Polymer</td>
</tr>
<tr>
<td></td>
<td>[560]</td>
<td>Wafer Bin Map images</td>
<td>Balsa wood covered with fiberglass in a polymer matrix</td>
</tr>
<tr>
<td></td>
<td>[561]</td>
<td>Welding defects: stomatal, slag and incomplete penetration</td>
<td>Wafer</td>
</tr>
<tr>
<td></td>
<td>[562]</td>
<td>THz</td>
<td>Q345R standard defect test block</td>
</tr>
<tr>
<td>Mixed algorithms</td>
<td>[563]</td>
<td>UT</td>
<td>Ceramic matrix composite</td>
</tr>
<tr>
<td></td>
<td>[564]</td>
<td>ECT / corrosion</td>
<td>Cast austenitic stainless steels</td>
</tr>
<tr>
<td></td>
<td>[565]</td>
<td>UT</td>
<td>Aircraft structure</td>
</tr>
<tr>
<td></td>
<td>[566]</td>
<td>Thermography</td>
<td>Aluminium and CFRP</td>
</tr>
<tr>
<td></td>
<td>[567]</td>
<td>Barker coded thermography</td>
<td>Polyactic Acid (PLA) and Nylon (PA-12)</td>
</tr>
<tr>
<td></td>
<td>[568]</td>
<td>Acoustic Emission</td>
<td>CFRP</td>
</tr>
</tbody>
</table>

(continued on next page)
Machine Learning (ML) is a technique of data analysis and a branch of artificial intelligence, based on the idea that systems can learn from data, identify patterns and make decisions with minimal human intervention, i.e. machines are trained how to learn. In statistical learning, most problems fall into one of two categories: supervised and unsupervised learning. In supervised learning, a statistical model is built to predict an output based on inputs and their associated outputs/labels, i.e. correct answers, from historical data. In unsupervised learning, the inputs used have no supervising outputs, i.e. the real answer is not known, but as a statistical model, still allows to understand relationships in the data.

ML is being implemented in NDT inspections to aid in detecting and understanding signals and outputs from the performed inspections and help the evaluation process. Examples include CT, infrared thermography, ultrasonic testing, eddy currents and ACFM. Artificial Neural Networks (ANN), a type of machine learning architecture modelled after biological neurons, are commonly used to aid in the detection of defects. Throughout the article, many applications of PCA for post-processing of the output signal have been presented. Other examples of studies regarding the application of artificial intelligence in NDT are presented in Table 6. For instance, Song et al. has implemented Convolutional Neural Networks (CNN) for the detection of micro defects on metal screw surfaces based on images taken by an industrial camera. Hoshyar et al., proposed a Support Vector Machine-based (SVM) technique to identify cracks formed in the early stages, in civil structures, in order to reduce the risk of failure. Tripathi et al., were able to differentiate microdamage with sizes ranging between 500 and 900 μm from time-domain and frequency-domain UT signal feature types, using several machine learning algorithms, and proposed a hybrid feature that can distinguish damages as small as 100 μm. Niu et al., proposed a Surface Defect-Generation Adversarial Network (SDGAN), that uses generative adversarial networks (GANs), to generate images with defects in industrial defect-free images. Additionally, Taheri et al., wrote a literature review paper about ML techniques for NDT inspection. Uhlig et al., wrote a literature review about synthetic and augmented UT training data in NDT. Liu et al., wrote a literature review about machine learning approaches for pipeline anomalies. Sun et al., wrote a literature review about ML for the automated analysis of weld flaws from UT inspection.
Data fusion is the process of combining different data sources, that vary in information, size, and behaviour, into a single model to create more coherent and useful information than that provided by the individual data sets [576,577]. In NDT, data fusion uses data from complimentary techniques, like ECT, Radiography and UT, to not only create diverse and redundant data sets but to avoid uncertainty, lack of precision, and conflicts of information [578].

Data fusion can also work as way of gathering different information from ML models. For example, Cormerais et al. [579], combined data from UT and ECT inspections on an aluminium block with side drill holes by means of ANN in order to apply a data fusion algorithm to these NDT techniques and take advantage of their different assets. Oesch et al. [580], developed a framework to identify

<table>
<thead>
<tr>
<th>Technique</th>
<th>Surface defects</th>
<th>Subsurface defects</th>
<th>Internal defects</th>
</tr>
</thead>
<tbody>
<tr>
<td>X-ray CT</td>
<td>Composites, wood-based materials, metals</td>
<td>Pores, voids, cracks, infiltrations</td>
<td>−1 µm</td>
</tr>
<tr>
<td>X-ray CL</td>
<td>Metals used in small electronic devices, composites, polymers</td>
<td>Pores, voids, cracks</td>
<td>Order of − 10 µm</td>
</tr>
<tr>
<td>Micro-LLT, micro-LST, TTI, SThM, BCLIT, FMT</td>
<td>Steel, polymer, composites</td>
<td>Micro-porosities, cracks</td>
<td>Order of − 100 µm</td>
</tr>
<tr>
<td>Digital holography, ESPI</td>
<td>Metals like copper, lithium and nickel and aluminium, and some plastics (materials used in electronic devices)</td>
<td>Hotspots caused by micro-defects</td>
<td>Order of − 1 µm</td>
</tr>
<tr>
<td>THz imaging</td>
<td>GaN</td>
<td>Thermal conductivity, heat dissipation, residual stresses</td>
<td>Order of − 50 nm</td>
</tr>
<tr>
<td>SAM</td>
<td>Silicon crystal, mild steel</td>
<td>Micro cracks, artificial blind holes</td>
<td>Order of − 1 mm</td>
</tr>
<tr>
<td>SThM, Micro-Raman spectroscopy</td>
<td>Polymer, glass, materials used in PV cells</td>
<td>Micro fibres, line scratches and digs</td>
<td>Order of − 10 µm</td>
</tr>
<tr>
<td>BCLIT</td>
<td>Copper, PLA</td>
<td>Small protrusions, air gaps, water infiltrations, artificial square defects</td>
<td>Order of − 10 µm</td>
</tr>
<tr>
<td>Digital holography, ESPI</td>
<td>Stainless steel, A204 Gr B</td>
<td>Porosity, pore shape and texture</td>
<td>Order of 10–100 µm</td>
</tr>
<tr>
<td>THz imaging</td>
<td>Materials used in electronic devices</td>
<td>Laminar cracks, voids, delaminations, solder joints</td>
<td>Order of − 100 µm</td>
</tr>
<tr>
<td>UPV, TOFD, TFM</td>
<td>Steel, Aluminium, Titanium</td>
<td>Micro-cracks, deep bottom holes, corrosion</td>
<td>Order of − 100 µm</td>
</tr>
<tr>
<td>SAM</td>
<td>Aluminium, steels</td>
<td>Flat-bottomed holes, porosity, surface notches, micro-cracks, HTHA-induced defects</td>
<td>Order of − 10 µm</td>
</tr>
<tr>
<td>Ultrasonic guided waves, EMAT, PA</td>
<td>Carbon steel, stainless steel, aluminium, polymer, composites</td>
<td>SCC micro defects, fatigue cracks, porosities</td>
<td>Order of − 100 µm</td>
</tr>
<tr>
<td>LUT, AUBT</td>
<td>Steels, concrete, composites, ice</td>
<td>Fatigue damage, corrosion damage, matrix cracking and fibre breakage in composites, phase transformations, precipitation fracture, cooldown cracking and thermal stresses</td>
<td>Order of − 10 µm</td>
</tr>
<tr>
<td>UIT, UIRT</td>
<td>Stainless steel, titanium, aluminium</td>
<td>Cracks, surface notches and holes</td>
<td>Order of − 100 µm</td>
</tr>
<tr>
<td>AE</td>
<td>Aluminium, stainless steel, graphite, GLARE® composite</td>
<td>FSW root defects, fatigue damage, cold work</td>
<td>Order of − 10–100 µm</td>
</tr>
<tr>
<td>GMR, TMR</td>
<td>CFRP, Q235 mild steel</td>
<td>Cracks, low impact damage, cylindrical hole defects</td>
<td>Order of − 100 µm-1 mm</td>
</tr>
<tr>
<td>IOnic probe, MWM-Arrays</td>
<td>Ferromagnetic materials, carbon steel</td>
<td>Micro-cracks, artificial cylindrical-hole defects</td>
<td>Order of − 10 µm</td>
</tr>
<tr>
<td>ECPT, ACFM</td>
<td>Magnetic materials</td>
<td>Surface indentation (ring defect)</td>
<td>Order of − 10 µm</td>
</tr>
<tr>
<td>MFL</td>
<td>Magnetic particles - ferrofluids</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Magnetic particles - ferrofluids</td>
<td>Stainless steel, aluminium, copper</td>
<td>Micro and nano indentations, cracks</td>
<td>Order of − 10 µm</td>
</tr>
<tr>
<td>Driven bacterial cells</td>
<td>Aluminium</td>
<td>Cracks</td>
<td>Order of − 10 µm</td>
</tr>
</tbody>
</table>

Table 8
Existing NDT techniques with micro and/or nano spatial resolution and type of location of the targeted defects.

Table 9
Existing NDT techniques with micro and/or nano spatial resolution regarding the material and size of the component, types of defects and applications.
crack-like structures and measuring their characteristics such as crack extension (relative surface area) and surface connectivity, from large CT scan data from different sample types. Hu et al. [515], proposed a multi-feature fusion deep network to enhance the detection rate and extract both the spatial and temporal information for automated IRT. Table 7 presents a selection of other recent studies regarding the application of data fusion to NDT applications.

As mentioned in the beginning and throughout this article, after the applied energy interacts with the material properties and condition, the resulting output signal is processed and evaluated. Many processing algorithms have been mentioned so far, apart from PCA, like sparse reconstruction [229,230], Fourier transform method [147], and modified Feldkamp–Davis–Kress (FDK) reconstruction method [111].

Mosavi et al. [585–587], proposed an ultrasonic-based imaging technique, Temporal-enhanced Ultrasound (TeUS), that uses machine learning approaches to extract information from a temporal sequence of radio frequency (RF) data captured from a fixed material, using conventional ultrasound imaging data. Tang et al [588], applied inter-frame difference-multi-frame cumulative average, PCA, Fourier transform, and logarithmic polynomial fitting to process a sequence of FMT images. Subbarao et al. [589], applied a correlation-based pulse compression system for enhancing the detection of defects like voids, inclusions and cracks, using FMT. Arora et al. [590], applied a Gaussian Weighted Chirp (GWC) approach to FMT data to detect subsurface flat bottom holes. Lakha et al. [591], proposed a pattern recognition image processing using Singular Value Decomposition (SVD) that can aid interferometry NDT techniques. Petrov et al. [592], developed a Synthetic Aperture Focusing Technique (SAFT) to improve the accuracy and precision of detection of flaws in welds, using UT. Kreidl et al. [593], addressed algorithms for noise reduction of UT signal based on cross-correlation function.

11. Overview analysis

Table 8 presents a list of articles that address NDT techniques with micro and/or nano spatial resolution, most of them reviewed in this article. Table 9 gives a review of the NDT techniques presented in this article and their application regarding the material and size of the component, types of defects and applications.

12. Conclusions

Based on a large pool of peer-reviewed scientific publications, this work investigates the multiphysical challenges and need for detecting and characterizing small-scale defects in a wide range of engineering materials. Although some case-studies include larger defect thresholds, the main focus is on the few micrometre and nanometre range. The reliable identification of these small-scale defects contributes for structural safety of critical components in high-value applications. The sensitivity and reliability in detecting these defects is explored for large set of multiphysical-based Non-Destructive Testing (NDT) techniques, including emergent solutions and digital toolsets of modelling and signal processing. From this in-depth literature review work, the following conclusions are drawn:

12.1. Nature of small-scale defects in different engineering materials and need of reliable detection

The detrimental effect of defects, from their critical size, morphology and location, depends on the material properties, component geometry, system-level design features, and application conditions. As shown in chapter 2, defects as small as 10 µm already decrease the component’s performance and/or lead to its fracture under certain conditions. The main multiphysical challenges for NDT-based detection and characterization of small-scale defects are:

- for metallic components, the small size in-length of zero-volume defects, e.g. micro cracks, where the surface asperities are closed together, and small volume of early creep damage, and other micro-voids, at grain boundaries. The quasi-zero volume condition of these defects, with negligible mass, prevents relevant amount of absorption of electromagnetic radiation energy. The small size dimension of all these defects, namely equal or smaller than grain size, prevents relevant sensitivity of ultrasonic waves and electromagnetic energy, without excessive scattering and attenuation, inherent to the high-frequency-based energy propagation. The in-service generated early damage and small-scale defects (e.g. early creep, creep-fatigue and oxidation), whose generation rate are inversely proportional to defect size in the early stages (i.e. the early damage spreads out before growing in size), emits too small energy waves to be detected by conventional acoustic emission.

- for other engineering materials, such as polymeric-based materials and ceramics, the negligible electric conductivity and magnetic permeability, prevent fully, or at least straightforward, application of electromagnetic energy-based techniques. Additionally, for polymeric materials and composites, there is a significant attenuation of the sound waves, that decreases the amplitude of ultrasonic signal and makes it difficult to detect small defects. In the polymeric-based materials, micro-voids, micro-sized delamination, matrix cracking, debonding, fibre breakage, and high-contrast variation between different fibres in composites, makes small size defects in this group of materials challenging to detect with electromagnetic radiation energy.

12.2. Outstanding NDT solutions addressing the need for reliable inspection of small-scale defects

Among the considered solutions for the reliable inspection via NDT of small-scale defects, the outstanding technological approaches and digital methods are now emphasized, within the following groups advanced and emerging stand-alone NDT techniques; approaches based on hybrid NDT techniques; NDT techniques paired with advanced post-processing digital algorithms; and Machine
Learning-aided NDT.

Advanced and emerging stand-alone NDT techniques:

- Time-of-Flight Diffraction (TOFD) at 7.5 MHz, that detected early damage (10 µm diameter) induced by High Temperature Hydrogen Attack (HTHA), with a signal-to-noise ratio above 12 dB;
- Thermoreflectance Thermal Imaging (TTI), that detected a defect of less than 1 µm in a polysilicon micro-resistor;
- Advanced eddy currents probes, like the IOnic probe, that detected non-continuous Al2O3 particles alignment along a path of approximately 60 µm of length, within a dynamically recrystallized Al-alloy domain;
- Micro Magnetic Bridge Probe (MMBP) used in Magnetic Flux Leakage (MFL) that detected micro-cracks with width between 60 and 80 µm and depth as small as 7 µm;
- Novel surface techniques like driven-bacterial cells, that were able to identify micro and nano-hardness indentations (as small as 0.6 µm depth and 5.3 µm side length) and micro-cracks (0.5 µm wide and 10 µm depth), and Quantum dots (Qdots), that identified micro-cracks with width between 5 and 10 µm;
- Hydrogen-as-a-probe, a recently proposed and trending technique, that may prove suitable for the inspection of small-scale defects, as it offers microstructural-level sensitivity, e.g. defects induced by plastic deformation, cyclic loading and heat treatment procedures, with the aid of quantitative and qualitative methods for detection of hydrogen desorption.

Approaches based on hybrid NDT techniques:

- Computed Tomography (CT) with Computed Laminography (CL), to take advantage of the resolution of CT in each direction (µm and nm) of the specimen and the better resolution of CL images along the plane parallel to the specimen’s face;
- Scanning Thermal Microscopy (SThM) with Raman Spectroscopy, that detected the heat dissipation in GaN nanowires with diameters between 40 and 60 nm;
- Barker Code Laser Infrared Thermography (BCLIT) and other infrared thermography variants, like Ultrasonic Infrared Thermography (UIT) and Eddy Current Pulsed Thermography (ECPT), when paired with coded signals during the acquisition phase to improve the signal-to-noise ratio and increase sensitivity (mm-µm range).

NDT techniques paired with advanced post-processing digital algorithms:

- CT with a modified Feldkamp–Davis–Kress (FDK) reconstruction method;
- Scanning Acoustic Microscopy (SAM) with a blind sparse reconstruction method;
- Ultrasonic Phased Array (PA) with Total Focusing Method (TFM)-based post-processing algorithm;
- Micro-laser with lock-in method paired with signal processing using principal component thermography (PCT) and Fourier transform;
- Ultrasound Lock-in Infrared Thermography (UIRT) with an interference-based joint reconstruction method.

Machine Learning-aided NDT:

- Machine learning algorithms have also been shown to significantly aid NDT techniques like CT, Infrared Thermography, Ultrasonic testing and Electromagnetism testing, in analysing and interpreting complex data patterns in the micrometre range.
- The Machine Learning algorithms found to be used include Deep Learning (DL), Convolutional Neural Networks (CNN), K-Means Clustering (KMC), Random Forests (RF), Support Vector Machine (SVM), Principal Component Analysis (PCA), K-Nearest Neighbour (KNN) and Artificial Neural Networks (ANN).

Several proposed techniques already reach the envisaged threshold of detectability for small-scale defects, in the most used engineering materials. Best solutions are mostly provided by integration of advanced NDT techniques aided by advanced post-processing of signal. In terms of reliability, more case studies for these groups of outstanding NDT approaches should be published, especially targeting in-service defects, aiming for safer and more sustainable use of high-value engineering systems.

Funding

This research was funded by the Academy of Finland, via project no. 325108 (New high-resolution non-destructive methods for assessment of early damage in advanced welded steels for high-temperature applications with extended life: EARLY), and by the Portuguese Fundação para a Ciência e a Tecnologia (FCT - MCTES), via the projects UIDB/00667/2020 and UIDP/00667/2020 (UNIDEMI).

CRediT authorship contribution statement

Maria Inês Silva: Conceptualization, Data curation, Writing – original draft, Writing – review & editing. **Evgenii Malitckii**: Data curation, Writing – review & editing. **Telmo G. Santos**: Supervision, Writing – review & editing. **Pedro Vilaça**: Conceptualization, Supervision, Writing – review & editing.
Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have influenced the work reported in this paper.

Data availability

Since this is a review article, the availability of the data depends on the original paper policy.

Acknowledgments

The authors would like to thank the Academy of Finland for its financial support via project 325108 and Fundação para a Ciência e a Tecnologia (FCT - MCTES) for its financial support via the projects UIDB/00667/2020 and UIDP/00667/2020 (UNIDEIMI).

References

Progress in Materials Science 138 (2023) 101155

Greene E. Marine composites non-destructive evaluation 2014.

Wietzke S, O. A. Smolyanskaya

63

M. G. Ramezani, M. Hasanian, B. Golchinfar, and H. Saboonchi.

C. Kofler, C. A. Dohr, J. Dohr, and A. Zernig.

Oesch T, Weise F, Bruno G. Detection and quantification of cracking in concrete aggregate through virtual data fusion of X-ray computed tomography images.

dos Santos TG, Silva BS, dos Santos Vilaça P, Quintino L, Sousa JMC. Data fusion in non destructive testing using fuzzy logic to evaluate friction stir welding.

Mishra M, Bhatia AS, Maity D. A comparative study of regression, neural network and neuro-fuzzy inference system for determining the compressive strength

