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A B S T R A C T   

We explore long-term patterns of the house price-income relationship across the 70 largest U.S. metropolitan 
areas. In line with a standard spatial equilibrium model, our empirical findings indicate that regional house 
price-income ratios are typically not stable, even over the long run. In contrast, panel regression models that 
relate house prices to aggregate personal income and allow for regional heterogeneity yield stationary long-term 
relationships in most areas. The house price-income relationship varies significantly across locations, under-
scoring the importance of using estimation techniques that allow for spatial heterogeneity. The substantial 
regional differences are closely related to the elasticity of housing supply.   

1. Introduction 

The relationship between house prices and income is important for 
urban and regional development and the overall economy for several 
reasons. The income elasticity of house prices affects housing afford-
ability, and spatial differences in elasticity influence regional growth: 
the larger the long-term elasticity of prices with respect to income, the 
greater the counterforce posed by rising house prices on regional 
growth. Moreover, the relationship between house prices and income is 
expected to influence household consumption levels, consumption 
inequality, savings, and perceived financial well-being (Cooper, 2013; 
Berger et al., 2018; Etheridge, 2019; Atalay and Edwards, 2022). If 
regional house prices and incomes have stable long-term relationships, 
then deviations of prices from this relationship can be used to assess 
whether prices are under or over their long-term equilibrium levels. As 
house price dynamics influence credit and macroeconomic cycles, the 
house price-income relationship and its regional heterogeneity are of 
importance not only for regional policy makers, but also for central 
authorities aiming to stabilize macroeconomic cycles (Piazzesi and 
Schneider, 2016). 

We explore the long-term relationship between house prices and 

income by considering the implications of a standard spatial equilibrium 
model and testing the predictions of this model empirically using data 
for the 70 largest U.S. metropolitan statistical areas (MSAs). Following 
numerous earlier studies of house price dynamics, our focus is on 
metropolitan-level relationships, as it is well established that house price 
dynamics vary across markets (Glaeser et al., 2008; Oikarinen et al., 
2018; Ma, 2020, among others) and these dynamics affect the devel-
opment paths of urban economies (Glaeser and Gyourko, 2018). For 
numerous agents, including households, construction companies, in-
vestors, and credit institutions, local developments are of great 
importance. 

Further understanding of the house price-income relationship is 
desirable as the assumptions and implications of extant research on the 
relationship vary considerably across studies. Also, the house price- 
income ratio is an often-used metric to identify house price over-
valuations in academic studies (e.g., Case and Shiller, 2003; Himmel-
berg et al., 2005; Vogiazas and Alexiou, 2017; Bourassa et al., 2019) and 
many institutions, such as central banks, use the ratio as a bubble in-
dicator. In order to apply the price-income ratio as a reliable bubble 
indicator, stationarity of the ratio needs to be assumed. A stationary 
price-income ratio would imply that the long-term coefficient on income 
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is one in a regression model explaining house prices. There are reasons 
to question the validity of the assumption, including variations in supply 
elasticities across locations (Saiz, 2010) that are expected to affect 
regional house price-income relations. 

Previous empirical findings on the issue are mixed. The results of 
Gregoriou et al. (2014) are overall not supportive of stationary 
price-income ratios in U.K. regions. Oikarinen and Engblom (2016), in 
turn, observe cointegration, i.e., a stationary relationship, between 
apartment prices and income in Finnish cities, but the coefficient on 
income generally differs significantly from one. While these two studies 
conduct pairwise city- or region-specific tests, it is common in the 
literature to apply tests using panel data. In a panel study of U.S. 
metropolitan areas, Malpezzi (1999) cannot reject the hypothesis of 
non-stationary price-income ratios. In contrast, based on more advanced 
panel techniques that control for spatial dependence, Holly et al. (2010) 
conclude that the hypothesis of non-stationary ratios can be rejected in 
U.S. state level data. 

There are some panel studies that address regional heterogeneity in 
the price-income relationship, allowing the coefficient on income to 
vary across regions and thereby also to differ from one. Harter-Dreiman 
(2004) finds a stationary vector between prices and aggregate personal 
income in U.S. metropolitan areas separately in panels of 
supply-constrained and unconstrained cities using conventional pooled 
panel estimators. Gallin (2006), using panel tests that allow for 
cross-correlations across cities, concludes that U.S. metropolitan area 
house prices are not cointegrated with per capita income and popula-
tion. While Gallin (2006) is the first to control for spatial dependence in 
the context of unit root tests for the house price-income relationship, 
Holly et al. (2010) control for spatial dependence in their regression 
models in addition to unit root tests. They reject the hypothesis of a unit 
root in a regression between U.S. state-level house prices and per capita 
income, thereby accepting the alternative hypothesis of stationary 
relationship between the variables. However, rejection in such unit root 
tests does not necessarily imply that the price-income relationship is 
stationary in all or even most regions, as we will discuss in Section 4. 
Overall, the results reported in earlier studies are mixed not only 
regarding the stationarity of the house price-income ratio but more 
generally concerning the question of whether there is a stable long-term 
relationship between house prices and per capita or aggregate income at 
all (allowing the coefficient on income to differ from one and across 
locations). 

To our knowledge, ours is the first study in which the implications of 
a standard spatial equilibrium framework for the house price-income 
relationship are considered. While Leung (2014) derives a dynamic 
stochastic general equilibrium model that informs the understanding of 
the house price-income relationship at the country level,1 the spatial 
equilibrium model provides important insights regarding the city- or 
region-level relationships. The framework predicts that local house 
price-income ratios are generally not stable over the long run. Interde-
pendence among urban economies plays a notable role in this result. In 
the empirical analysis, we apply panel econometric tools – including 
estimators and tests that have not been applied to housing price-income 
relation analyses before – that allow us to explore the implications of the 
spatial equilibrium model. 

A further contribution is that, in addition to the price-income ratio, 
we study cointegration of MSA-level house prices and income using both 
per capita and aggregate personal income and test formally for a one-to- 
one relation between house prices and these income measures. We also 
permit income elasticity to be heterogeneous across MSAs, and control 
for spatial dependence in the unit root and cointegration tests. As 
additional contributions, we test formally for spatial heterogeneity in 

the price-income relations and investigate how variations in the price- 
income relationships across MSAs are related to supply elasticities and 
demand side factors. In addition to housing affordability and regional 
growth, our findings are relevant to the analysis of house price bubbles 
because a stable (i.e., stationary) long-term relationship between in-
come and prices is needed to measure deviations from long-term 
equilibrium. 

Consistent with the predictions of the spatial equilibrium model, our 
empirical results indicate that long-term stability of local house price- 
income ratios is the exception rather than the rule and that the in-
come elasticity of house prices varies considerably across MSAs. As ex-
pected, MSA-specific price-income ratio trends and income elasticities 
are strongly correlated with supply elasticities in particular, but demand 
side factors also play a role. In line with the theoretical predictions, a 
panel regression model that allows for regional variation in the coeffi-
cient on aggregate personal income demonstrates a stationary long-term 
relationship for house prices in many more metropolitan areas than does 
the ratio of price to per capita income. We also show that the overall 
panel unit root test statistics may be misleading because they do not say 
anything about the proportion of regions, or cities, with stable re-
lationships between prices and incomes – an issue not considered pre-
viously in the related literature. 

Similar to several earlier studies, we are interested in whether MSA- 
level income variables alone form a long-term trend for local house prices, 
and hence do not include other possible fundamentals as control vari-
ables in the cointegration analysis. If we added other variables, we 
would no longer be studying the stationarity of pure price-income re-
lationships. In other words, a stationary relation is not an indication of a 
stable price-income relationship if the stationarity necessitates the in-
clusion of some other (non-stationary) variable(s) in the model. 
Although our focus is on long-term relations rather than short-term 
dynamics, we provide a brief investigation of the potential causes of 
shorter-term deviations of house prices from their long-term trends. This 
analysis implies that cycles of metropolitan house prices around their 
long-term relationship with local aggregate incomes are associated with 
developments in local unemployment rates and in the national mortgage 
market. Also, a stationary relationship between house prices and 
aggregate income is more often observed for MSAs with relatively in-
elastic housing supply. 

The next section of the paper considers the key predictions of a 
standard spatial equilibrium framework for the house price-income 
relationship. Section 3 discusses our data, including preliminary anal-
ysis of the variables’ time series properties. Section 4 contains the 
empirical analysis. A final section concludes. 

2. Spatial equilibrium and the house price-income relationship 

Understanding the factors affecting the house price-income rela-
tionship and its development over time in a given city or region requires 
a theoretical framework that considers the whole system of cities or 
regions.2 Partial equilibrium models (i.e., models that consider a single 
city in isolation, such as the closed city model that assumes no migration 
and takes local population and income as exogenous) miss important 
effects because housing costs, wages, city populations, and their growth 
rates are jointly determined and, therefore, population and income are 
endogenous to house prices (Glaeser and Gottlieb, 2009; Moretti, 2011). 

A suitable framework for such analysis is provided by a general 
spatial equilibrium model with the typical assumption that welfare is 
equalized across space (Glaeser and Gottlieb, 2009) and is assumed to be 
determined by three factors: wages, housing costs, and the quality of 
amenities. Our theoretical predictions are based on a derivation of the 
standard Rosen (1979) and Roback (1982) model with spatial 

1 The model suggests that the price-income ratio can be stationary in some 
countries and nonstationary in others, but that nonstationarity of the ratio does 
not necessary imply lack of cointegration between house prices and income. 

2 While we refer to ‘cities’ in the theoretical discussion, the same logic applies 
to wider metropolitan areas or regions as well. 
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equilibrium and are largely grounded on the model presented in Moretti 
(2011). Carlino and Saiz (2019), for instance, provide empirical evi-
dence consistent with such a model. We consider the long-term de-
velopments in the price-income relationship because, in the short run, 
there are frictions that can restrain labor and firm mobility and the 
adjustment of house prices and supply toward equilibrium (Anenberg, 
2016; Moretti, 2011). Our considerations also provide insights into the 
complex relationship between labor and housing markets, which plays a 
key role in the model. We are not aware of earlier studies that would 
have considered the implications of spatial equilibrium for the house 
price-income ratio. 

Here, we present the principal idea of the standard model we apply 
to investigate the house price-income ratio. Appendix A describes the 
model and its derivations in more detail and provides a simple numerical 
illustration. 

Following Glaeser and Gottlieb (2009), among others, we assume 
that the utility of workers in city i (Ui) is given by the Cobb-Douglas 
utility function 

Ui = MiCγ
H,iC

1−γ
O,i , 0 < γ < 1. (1) 

In (1), Mi is the quality of amenities3 in city i, CH and CO represent the 
consumption of housing and other goods, respectively, and γ is the share 
of expenditure on housing, which is assumed to be similar over time and 
across cities. Piazzesi et al. (2007), Davis and Ortalo-Magné (2011), and 
Piazzesi and Schneider (2016) provide support for this assumption, 
which is common in spatial equilibrium models. Similar to Glaeser and 
Gottlieb (2009) and Hsieh and Moretti (2015), the indirect utility (Vi) 
then equals4 

Vi = MiWi(Pi)
−γ

, (2)  

where Wi denotes the nominal wage level and Pi is the cost (or price) of 
housing in city i. In log form 

vi = mi + wi − γpi, (3)  

where the lower-case letters denote natural logs. Utility is positively 
related to wage level and the quality of amenities, and negatively 
affected by higher housing costs. In spatial equilibrium, the utility levels 
are the same across cities; i.e., workers are indifferent between loca-
tions. Hence, in spatial equilibrium 

wi − γpi + mi = wj − γpj + mj (4)  

holds for every city i and j. 
In our model, the function for long-term equilibrium house prices at 

the city level follows conventional assumptions in the literature and is 
given by [for derivations, see Appendix A, Eqs. (A6)-(A9)] 

pi = αi + β1iwi + β2ini; β1i = β2i =
1

ωi + 1
> 0, (5)  

where ni and ωi denote (log of) population and the price elasticity of 
housing supply in city i, respectively, while β1i and β2i are the city- 
specific coefficients on income and population to be estimated in the 
empirical analysis. Higher wages, greater population, and lower supply 
elasticity due to topographic or regulatory constraints cause higher 
housing costs. The considerable spatial variation in ωi (Saiz, 2010) is 

expected to yield notable variation in β1i and β2i across cities. In the 
model, the quality of amenities affects housing demand and thereby 
house prices indirectly through city populations. 

The interdependence among cities affects local house prices through 
population movements, in particular. For instance, an increase in pro-
ductivity (and thereby wages) or the quality of amenities in city j leads to 
lower house price levels in city i due to some households moving to j. On 
the other hand, house prices increase in city j as the population inflow 
increases housing demand, and the spatial equilibrium condition in (4) 
is maintained. As the local wage level is determined by productivity in 
the city, the house price-income ratio (pi − wi) and its time path in city i 
is dependent on developments in other cities j. 

In summary, the conventional spatial equilibrium model predicts 
that :5  

1) The equilibrium house price-income ratio is not necessarily stable 
over the long run – in fact, long-term stability of the ratio is expected 
to be a special case rather than the rule.  

2) The price-income ratio can be altered by various shocks, such as a 
shock in productivity or in perceived quality of amenities, in the city 
itself or in other cities.  

3) The elasticity of housing supply is a key determinant of the influence 
of various shocks on the house price-income ratio, and the elasticities 
in other cities, too, affect the outcomes in a given city. Greater 
elasticity of supply is related to smaller growth trends in the price- 
income ratio. 

Other implications of the framework for the relationships between 
house prices, incomes, and population are more familiar from the 
literature (although assumptions and results regarding point 5 vary, as 
discussed above):  

4) House prices, wages, and population are jointly determined.  
5) The income elasticity of house prices is expected to vary across cities. 

We empirically investigate whether the predictions of the theory 
model hold true in practice. In the empirical analysis, we focus on points 
1 and 5, but we additionally relate income elasticities and trends in 
price-income ratios to supply elasticities (point 3) and examine corre-
lations between wages, populations, and house prices across MSAs 
(point 4). 

3. Data 

Our empirical analysis is based on quarterly data for the 70 largest 
(as of 2018) U.S. Metropolitan Statistical Areas or Divisions (referred to 
below as MSAs) for the period 1979Q3 through 2018Q2. This period 
includes one or more prominent house price cycles in all the MSAs. 
These cycles take place especially during the 2000s but also in the late 
1980s through early 1990s. For house prices, we use the quarterly 
Federal Housing Finance Agency (FHFA) all transactions house price 
indexes (p).6 The MSA per capita personal income (w) and aggregate 
personal income (wa) series are from the Bureau of Economic Analysis 
(BEA). As the income series are annual, we interpolate quarterly values 

3 Urban amenities are defined as local-specific characteristics that positively 
influence household utility and hence increase local housing demand and pri-
ces. Carlino and Saiz (2019) provide a review of literature supporting the role of 
amenities in households’ location choices. Spatial variation in amenities can 
affect house values within cities as well. However, our focus is solely on the 
variations of local amenities across cities.  

4 As is typical, we abstract from the constant term that is assumed to be the 
same across cities. 

5 While spatial equilibrium models conventionally assume perfect labor 
mobility, these predictions hold even in the case of frictions to mobility, such as 
transaction costs and other relocation costs.  

6 We limit the sample to the 70 largest MSAs since smaller MSAs tend to 
exhibit too much implausible volatility in the FHFA house price indexes and 
many lack complete data. Due to extreme volatility (likely due to measurement 
error) in the early years of the price index, we also exclude Honolulu, which 
would have been ranked 69th with respect to population. In terms of short- and 
long-run house price dynamics, the FHFA data are similar to CoreLogic data 
(Oikarinen et al., 2018). 
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Table 1 
Descriptive statistics.  

Variable Mean across all MSAs (annualized) Standard deviation of MSA-specific means (annualized) Lowest mean across MSAs (annualized) Highest mean across MSAs (annualized) 

Real house price growth (Δp) 0.011 0.049 –0.004 0.036 
Real per capita income growth (Δw) 0.016 0.021 0.008 0.028 
Real aggregate income growth (Δwa) 0.028 0.023 0.001 0.053 
Population growth (Δn) 0.012 0.008 –0.007 0.041      

Correlations p y ya pop 
Real house price (p) 1.000    
Real per capita income (w) 0.630** 1.000   
Real aggregate income (wa) 0.392** 0.749** 1.000  
Population (n) 0.090** 0.323** 0.869** 1.000  

Δp Δy Δya Δpop 
Δp 1.000    
Δw 0.403** 1.000   
Δwa 0.393** 0.945** 1.000  
Δn 0.073** 0.087** 0.407** 1.000       

p y ya pop 
Mean of cross-sectional correlations 0.581 0.956 0.963 0.693 
CIPS unit root test statistics 
Variable pit wit wait Δpit Δwit Δwait 

Test value –2.477 –2.115 –2.300 –3.937** –4.906** –4.742** 

Note: The sample period is 1979Q3–2018Q2. For the correlations and unit root tests, * and ** denote statistical significance at the 5%, and 1% level, respectively. Correlations are reported for all MSA quarterly data 
stacked together. The mean of cross-sectional correlations is the average of cross-sectional correlations between all MSA pairs. The CIPS test values are based on city-specific CADF regressions. An intercept is included in all 
the CADF and ADF regressions. The regressions in the tests for levels additionally include a linear trend following Holly et al. (2010). The number of lags in the CADF regressions is allowed to vary across cities. For each 
MSA, the lag length is based on the general-to-specific method, using a threshold significance level of 5% and a maximum lag length of four. All the average residual cross-correlations of ADF regressions are statistically 
significant. 
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of per capita income based on changes in the national GDP, which is also 
from the BEA. While the quarter-to-quarter variations in the income 
variables do not affect the long-term estimates in cointegrating equa-
tions, the use of quarterly data provides us with a much greater number 
of observations and thereby more powerful tests. All variables are in real 
terms and in natural log form.7 Table 1 provides descriptive statistics of 
the data. Although not separately included in the regression models, we 
report statistics for MSA-level populations as well (also from the BEA). 

As expected, there are considerable regional variations in the mean 
growth rates of house prices, incomes, and population. The mean real 
house price growth was negative between 1979 and 2018 in six MSAs, 
all of which are inland. The highest price growth (annualized rate of 
3.6%) was observed in San Francisco. In San Jose and Nassau-Suffolk, 
too, the figure was over 3%, while in Tulsa it was –0.4%. Population 
growth was very rapid in Las Vegas, 4.1% per year on average, and the 
growth rate reached 3% in two other MSAs as well. The highest house 
price growth rates were not in any of the MSAs with the highest popu-
lation growth rates. There were five MSAs with contracting population, 
four of them in the Great Lakes region and the other being Philadelphia; 
of these, Detroit had the largest rate of population loss (0.7% per year). 

The mean real per capita and aggregate income growth rates were 
positive in all 70 MSAs. Across all the MSAs, the annual mean growth 
rates were 1.6% and 2.8%, respectively. In San Francisco, per capita 
income growth was 2.8% per year, while the growth rate was only 0.8% 
in Detroit and Riverside. Real aggregate income growth was highest in 
Austin (5.3%) and lowest in Detroit (0.1%). 

Portland, OR offers an interesting illustration of how city-specific 
developments of the three variables, p, w, and n, can differ relative to 
the average developments across cities. While Portland’s annual real 
house price and population growth rates were relatively large during the 
sample period, 1.9% (the mean across the MSAs is 1.1%) and 1.6% 
(1.2%), respectively, in terms of real per capita income growth Portland 
was ranked only 50th (1.4%). Based on the spatial equilibrium frame-
work, these patterns could be explained by growth in the perceived 
quality of amenities in the city: higher quality of amenities leads to 
lower required income net of housing costs, inducing greater population 
and thereby higher prices relative to income. Indeed, Portland is 
perceived as a city in which the quality of amenities has substantially 
increased, thereby increasing the supply of labor (population) in the city 
(Miller, 2014). 

In accordance with the theoretical model, Table 1 shows that all 
correlations between variables are positive both in levels and in differ-
ences, and the mean of cross-sectional correlations across MSAs is large 
in all cases. That is, as expected, house prices are higher in larger cities 
with higher income levels. 

As a preliminary check, we conducted panel unit root tests to 
examine the stationarity of each variable used in the regression analysis. 
Since the residual series from conventional augmented Dickey-Fuller 
(ADF) regressions include significant cross-sectional correlation and 
hence the conventional panel ADF test statistics could be biased, we 
follow Holly et al. (2010) and report the cross-sectional augmented IPS 
(CIPS) panel unit root test (Pesaran, 2007). The CIPS test is based on 

ADF regressions that are augmented with cross-sectional averages of the 
variables (CADF) and is thereby not biased by spatial dependence in the 
data. As shown by Gueye (2021), it is important to take account of 
cross-sectional dependence when conducting unit root tests for house 
prices and economic fundamentals, and for residuals from regressions 
between house prices and fundamentals (i.e., in cointegration tests, 
conducted in Section 4 of this paper). The test also allows for regional 
heterogeneity, as CADF regressions are estimated separately for each 
MSA. The results reported in the lower part of Table 1 indicate that the 
variables should be treated as non-stationary in levels. For all the dif-
ferenced variables, the test statistics indicate stationarity. 

4. Empirical analysis 

In this section, we test some of the key implications of the spatial 
equilibrium model. In particular, we study the stationarity of the house 
price-income ratio and report regression results and cointegration tests 
based on several alternative estimators and model specifications. We 
also investigate the extent of heterogeneity across MSAs and relate this 
heterogeneity to the supply elasticity of housing and demand side fac-
tors. Appendix B provides more information on the various estimators 
and tests used in the empirical analysis. 

The spatial equilibrium model predicts that the house price-income 
ratio is generally not stationary at the city level and therefore also 
points to complications with using the ratio to identify house price 
misalignments. In the regression models, we relax the restrictive 
assumption – a coefficient of one on income – imposed implicitly by the 
ratio. The regression models are based on the house price Eq. (5). 

pi = αi + β1iwi + β2ini; β1i = β2i =
1

ωi + 1
> 0,

The estimated models are: 

Model 1 : pi,t = αi1 + βy,iwi,t + εi1,t (6a)  

Model 2 : pi,t = αi2 + βya,iwai,t + εi2,t, (6b)  

where wai is the natural log of aggregate income in city i (i.e., equals wi +

ni), αi are the MSA-specific fixed-effects, βy,i and βya,i are MSA-specific 
slope coefficients, and εi1 and εi2 are MSA-specific error terms. That is, 
we let the coefficients on w and wa vary across MSAs. Model 1 allows the 
coefficient on income per capita to differ from one but ignores the effects 
of population growth on housing demand. Model 2 takes account of 
population developments by including aggregate instead of per capita 
income. Note that Model 2 corresponds to the price Eq. (5): since β1i =

β2i, there is no need to include income and population in the regression 
model separately. This also circumvents the collinearity complication 
that is typically present in house price regressions when incomes and 
populations are separately included as explanatory variables.8 

The price-income ratio can be presented in the same form as Model 
1: pi,t − wi,t = αi + εi,t → pi,t = αi + βw,iwi,t + εi,t , where βw,i = 1 for all 
cities i. 

If εi,t is stationary, then the (estimated) relationship can be regarded 
as a stable long-run relation, implying that factors other than ωi and 
either wi,t or wai,t have only temporary effects on house prices. In the 
case of the price-income ratio, stationarity of εi,t would additionally 
suggest that βw,i = 1. In contrast, if εi,t is non-stationary, the respective 
model does not imply a stable long-term relationship. The theoretical 
model predicts that Model 2 should outperform both the price-income 
ratio and Model 1 in terms of producing stable long-run relationships, 
as it corresponds to (5). As noted previously, if we added variables other 

7 All variables, including income, are deflated by the national urban CPI less 
shelter costs. If we were to deflate income by the CPI for all items (including 
shelter), house price growth would affect the deflated income series. Although 
house prices are not included in the CPI, rents are included, and house prices 
and rents are essentially measuring the same thing in the long run. For example, 
if housing demand grows substantially, inducing greater house prices and rents, 
while other prices stay constant, then the all-items CPI would increase. This 
would lower our real income measure even though income and all other (non- 
housing) components of the CPI have remained constant. Therefore, housing 
demand growth would not only cause higher real house prices but also lower 
real incomes, meaning that house price growth would have a disproportionate 
impact on the relationship between prices and incomes. 

8 Apparently due to collinearity complications, some studies of house price 
dynamics report negative coefficients on population when income and popu-
lation enter the model separately. 
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than wi,t or wai,t in the estimated long-term equations, we would no 
longer be studying the stationarity of pure price-income relationships. 

The stationarity of residuals – which indicates that the model is 
cointegrated, i.e., that house prices and (aggregate) income have a 
cointegrating relationship – also has some other practical implications. 
First, since a stationary (i.e., cointegrating) equation for house prices 
can be interpreted as a long-term fundamental price level towards which 
house prices adjust, any short-term deviations of prices from this 
equation need to correct over time – that is, house prices being notably 
over their long-term level indicated by such equation would reflect 
substantial overpricing of housing that should correct in the future. 
Therefore, such relationship may be reasonably used as a bubble indi-
cator. In contrast, a nonstationary regression equation can exhibit 
spurious regression bias and cannot be reliably interpreted as a long- 
term price equation, as there is no tendency of prices to revert to such 
a relationship. Given the importance of house price cycles for the 
economy and the fact that house price-income relationships are used as 
bubble indicators by many prominent institutions, this issue is highly 
relevant to policy. Second, as cointegration of an estimated model in-
dicates that house prices react to deviations from the equation, 
observing stationary residuals has important implications regarding the 
price dynamics and thus concerning the predictability of future house 
price movements. Neglecting cointegrating relations would result in 
excluding information contained in the non-stationary levels variables 
(Engle and Granger, 1987). 

The fully-modified OLS (FMOLS) estimator of Pedroni (2000, 2001) is 
a good starting point for estimating our regressions given that at least the 
population component of aggregate income is likely to be endogenous. 
While the estimators generally used in previous studies, such as conven-
tional fixed-effects or random-effects OLS estimators, can exhibit endo-
geneity bias, the FMOLS estimator is consistent in the presence of 
endogenous regressors and endogeneity due to possible omitted variables 
(Pedroni, 2001, 2007). We report results for both the pooled FMOLS 
(PFMOLS) estimator that allows regional heterogeneity only through 
city-specific fixed-effects and the FMOLS mean-group (FMOLS-MG) esti-
mator that allows regional heterogeneity in all parameter estimates. The 

FMOLS estimators are also super-consistent in the presence of 
non-stationary but cointegrated data, which is not the case for the 
fixed-effects OLS estimator. For comparison purposes, we also report re-
sults from the basic pooled fixed-effects OLS (POLS) estimator. 

A potential complication with the aforementioned estimators is that 
they do not control for spatial dependence. Hence, we also report results 
based on the Pesaran (2006) common correlated effects mean group 
(CCEMG) estimator and the Chudik and Pesaran (2015) dynamic 
CCEMG (DCCEMG) estimator. Although these two estimators aim to 
remove the potential biasing impact of spatial dependence by including 
the cross-sectional averages of the dependent and independent variables 
as additional regressors (while allowing for regional heterogeneity), 
they can exhibit bias due to endogeneity. Moreover, due to the several 
additional variables that aim to remove cross-sectional dependence, the 
slope coefficient estimation may no longer be super-consistent. Hence, 
some of the attractive robustness features associated with 
super-consistent estimation under cointegration are potentially lost 
(Pedroni, 2007). Indeed, it turns out that the (D)CCEMG estimators do 
not work well with our data, which could be due to these complications. 
Based on the properties of the estimator, FMOLS-MG is preferred. 

4.1. Baseline results 

Consistent with Holly et al. (2010), the CIPS unit root tests reported 
in Table 2 reject the hypothesis of a unit root in the log price-income 
ratio, pi,t − wi,t. The CIPS tests also reject the hypothesis of 
no-cointegration (i.e., of a unit root in εi,t) in all the regression models 
except for those based on the (D)CCEMG estimator. 

Stationarity of p – w would indicate that the long-run coefficient on w 
is one and homogenous across MSAs, which is in contrast with the 
theoretical predictions. However, based on the size-adjusted F-test for 
the FMOLS-MG model (Pedroni, 2007) and the Swamy test of slope 
homogeneity for the (D)CCEMG models (Pesaran and Yamagata, 2008), 
the hypothesis of homogeneous coefficients on w is clearly rejected. 
Moreover, Wald F-test statistics reject the hypothesis that the group 
mean or pooled coefficient on w equals one for all models. Hence, the 

Table 2 
Cointegration tests and regression results.   

FMOLS-MG POLS PFMOLS CCEMG DCCEMG 

CIPS cointegration test statistics   
p – w: –1.774**      
Model (1) –2.156** –2.081** –2.052** –1.329 –1.332 
Model (2) –2.549** –2.076** –2.007** –.674 –0.714        

Coefficient estimates and test statistics  
Model 1 

yit 0.745** 
(0.042) 

0.844** 
(0.008) 

0.771** 
(0.044) 

1.776** 
(0.177) 

1.744** 
(0.190) 

Average residual cross-correlation 0.340 0.347 0.341 –0.008 –0.009 
F-test of homogeneity (p-value) 0.000**     
Swamy test (p-value)    0.000** 0.000** 
Wald F-test on βy = 1 (p-value) 0.000** 0.000** 0.000** 0.000** 0.001**  

Model 2 
yait .479** 

(0.023) 
.412** 
(0.005) 

.351** 
(0.028) 

1.650** 
(0.142) 

1.642** 
(0.146) 

Average residual cross-correlation 0.338 0.332 0.343 –0.002 –0.003 
F-test of homogeneity (p-value) 0.000**     
Swamy test (p-value)    0.000** 0.000** 
Wald F-test on βya = 1 (p-value) 0.000** 0.000** 0.000** 0.000** 0.000** 

Note: The sample period is 1979Q3–2018Q2. p – w is the log house price-income ratio. Dependent variable = pi,t. The intercepts are not reported. * and ** denote 
statistical significance at the 5%, and 1% level, respectively. Except for POLS and PFMOLS, the reported regression coefficients represent the mean group estimates, i. 
e., the mean estimates across all MSAs. The standard errors for the mean group estimates are computed following Pesaran and Smith (1995). The models include 
MSA-specific intercepts (fixed-effects). The null hypothesis in the Swamy test and F-test on homogeneity is that of homogeneous slope coefficients across MSAs. The 
CIPS statistics are based on CADF regressions that do not include intercepts, as these are cointegration tests on model residuals. The number of lags in the CADF 
regressions is allowed to vary across cities. For each MSA, the lag length is based on the general-to-specific method, using a threshold significance level of 5% and a 
maximum lag length of four. Critical values in the CIPS test are –1.53 –1.65 at the 5% and 1% level of significance, respectively. The lag length in the Bartlett 
(Newey-West) window width in the FMOLS estimations is four. The lag length choice does not notably affect the results. 
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regression results for Model 1 are in stark contrast with the concept of a 
stationary house price-income ratio. The test statistics for Model 2 (with 
aggregate personal income) also reject the hypothesis of β = 1 and 
indicate significant variations in the coefficient estimates across MSAs. 

The two estimators that aim to control for cross-sectional depen-
dence, CCEMG and DCCEMG, remove practically all cross-sectional 
correlation from the model residuals (the remaining correlation is less 
than 0.01). However, in these models the residual unit root hypothesis 
cannot be rejected, and the city-specific residual series are clearly 
trending for most MSAs. This implies that the (D)CCEMG estimators do 
not work well for our data: The FMOLS results clearly indicate that there 
are stationary relationships between house prices and income in these 
MSAs, which is also supported by the lack of obvious trends in most of 
the model residuals (shown in Fig. 4 for Model 2) – if one estimator 
yields stationary relationships but another does not, instead producing 

clearly trending residuals, the former is obviously preferred as it pro-
vides an equation with non-trending residuals and in effect finds existing 
cointegrating (i.e., long-term equilibrium) relationships that the other is 
unable to detect.9 These complications are not unexpected given the 
properties of the (D)CCEMG estimators discussed above. 

The preferred FMOLS-MG estimator yields mean group estimates of 
0.75 on w and 0.48 on wa, and the POLS and PFMOLS estimates differ 
somewhat from the FMOLS-MG ones. The mean-group estimate of 0.48 
in FMOLS-MG Model 2 is close to what Eq. (3) would predict 

Fig. 1. Residuals from (log of) house price-income ratios (demeaned).  

9 Despite these complications, we also report the results based on the CCEMG 
and DCCEMG estimators because they are more recent innovations aimed at 
data with cross-section correlation, and also are methods that have been used in 
previous related literature (in Holly et al., 2010, in particular). 
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[1/(ωi +1) = 0.41] based on the median supply elasticity of 1.44 across 
the MSAs estimated by Saiz (2010). 

4.2. A closer look at the results 

The interpretation of the unit root test results from panel level 
analysis is complicated due to the nature of the alternative hypothesis. 
While the null hypothesis is that of a unit root in each series, the alter-
native hypothesis is more complex, especially in heterogeneous panels: 
rejecting the null does not necessarily mean that all or even most indi-
vidual series are stationary; this point has not been considered in the 
related literature. The null hypothesis (H0) and the alternative hypoth-
esis (H1) in our panel cointegration tests are: 

H0. Each of the residual series is non-stationary (i.e., none of the MSA- 
specific equations is cointegrated). 

H1. One or more residual series are stationary (i.e., one or more MSA- 
specific equations are cointegrated). 

Pesaran (2012) suggests that the rejection of the panel unit root null 
hypothesis should be interpreted as evidence that a statistically signifi-
cant fraction of the individual series is stationary. That is, a rejection of 
the null hypothesis does not necessarily mean that the respective rela-
tionship is stationary for all or even most cities: a relatively small group 
of MSAs with stationary relations can cause the panel unit root test to 
reject the null hypothesis. 

In accordance with theory, Fig. 1 shows that many of the (demeaned) 
price-income ratios have notable trends, implying that in many MSAs 
the ratio is not stable even over the long run. In line with the visual 
inspection, a unit root in the residuals from p – w can be rejected in only 
11 of the 70 MSAs at the 5% level of significance based on individual 
CADF statistics. Given the well-known power problems with individual 
ADF-type tests, the 10% level of significance may be a more reasonable 
threshold, but even at the 10% level the unit root is rejected in only 17 
MSAs. Hence, the fact that the CIPS test rejects the null hypothesis of a 
unit root in p – w cannot be used as evidence of stationarity of the price- 
income ratio in all, or even most of, the MSAs. 

If we regress the panel of price-income ratios on an intercept and a 

Fig. 1. (continued). 
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time trend using the Pesaran et al. (1999) mean group estimator that 
allows for regional heterogeneity in the coefficients, we find statistically 
significant trends in 57 MSAs (approximately 80%). The MSA-specific 
trends are significantly associated with the price elasticities of housing 
supply reported in Saiz (2010). Fig. 2 illustrates that, generally, the slope 
of the trend in the observed p – w relationship is larger, i.e., house prices 
have increased more relative to income, in cities with relatively inelastic 
supply. For example, the two MSAs with the least elastic supply – Boston 
and Miami – both have positive price-income trends. In contrast, Indi-
anapolis has the highest supply elasticity and one of the lowest 
price-income slopes. Consistent with its perceived increase in the quality 
of amenities, Portland is the MSA with the highest price-income slope; it 
has a relatively low (although slightly greater than one) supply elastic-
ity. Tulsa, OK, has the lowest price-income slope and the second highest 
supply elasticity. 

In fact, the most common trend in p – w is negative, suggesting that 
housing affordability has increased in a majority of the MSAs.10 Fig. 3 
(panel A) shows that the p – w trends tend to be positive, and therefore 
housing affordability tends to get worse, on the east and west coasts and 
negative elsewhere. In line with the price-income trends and theoretical 
considerations, the MSA-specific FMOLS-MG estimates on w and wa (the 
income elasticities of house prices) are highly negatively correlated with 
supply elasticities: the correlations are −0.63 (Model 1) and −0.44 
(Model 2). 

The developments in house price-income ratios are relevant to trends 
in the wealth-income relationship. The findings of Piketty and Zucman 
(2014) suggest that capital gains on housing explain a large part of the 
rise of wealth-income ratios in several countries, including the U.S., 
since 1970, and Knoll et al. (2017) report a substantial rise in house 
prices relative to GDP across a number of developed countries. However, 

the price-income developments at the country level can hide heteroge-
neous developments across regions within a country. Indeed, our data 
provide evidence of downward trending price-income ratios in a large 
number of MSAs, suggesting that increases in the wealth-income ratios 
due to house price trends have not occurred in these cities since 1979 
and are not inevitable in the future. 

The price-income trends also are in line with Glaeser and Gottlieb 
(2009), who argue that the rise of Sunbelt cities is related to abundant 
housing supply rather than rising amenity values. If amenity values 
drove the growth of Sunbelt cities, then we would expect the 
price-income trends to be increasing in these cities. However, with the 
exception of most California MSAs and Miami and Fort Lauderdale in 
Florida, all of which are supply constrained, the price-income ratio has 
trended downwards in the Sunbelt metropolitan areas (in 15 out of 17 
such areas outside California) as shown by Fig. 3A. Moreover, the 
price-income trends are not significantly correlated with the 
MSA-specific average January temperatures. 

Table 3 summarizes the MSA-level unit root statistics for the price- 
income ratio and both FMOLS-MG models. If the assumption of a coef-
ficient of one on per capita income (imposed by the price-income ratio) 
is relaxed, and the coefficient is allowed to vary across cities (Model 1), 
the number of MSAs for which the unit root can be rejected at the 10% 
level in individual CADF tests increases from 17 to 35. The model with 
aggregate income (Model 2) works even better, with stationary re-
lationships in 43 cities. Thus, the relationship is stationary in more and 
more cities when the restrictive assumptions – that are not consistent 
with the theoretical considerations – are progressively relaxed. The re-
sults therefore indicate that population should be included in re-
gressions (by using aggregate instead of per capita income) to better 
capture regional price dynamics and to reach more reliable conclusions 
regarding possible disequilibria in regional house price levels. 

Fig. 2. Annualized trends in house price-income ratio and the supply elasticity of housing.  

10 While decreasing house price-income ratios imply improved affordability at 
the metropolitan area level, affordability can still deteriorate for some house-
holds as pointed out by Gan and Hill (2009). 
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Fig. 3. Geographic distribution of house price-income relationships.  
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Hence, Model 2 is the most useful for examining regional house price 
cycles relative to long-term fundamental levels.11 Importantly, the re-
siduals from Model 2 do not exhibit evident trends in any of the MSAs. 
This is in stark contrast with the simple price-income ratio, as shown in 
Fig. 4. However, the inability to detect cointegration in Model 2 in over 
one third of the MSA-specific equations may indicate that other funda-
mentals should be included in models aiming to capture long-term 
trends in house prices in some MSAs or that there have been structural 
changes in the price elasticities over time.12 

Fig. 3B displays the geographic distribution of the aggregate income 
coefficients from Model 2. These tend to be higher in relatively supply 
inelastic coastal locations on the west coast and in the North, Mid- 
Atlantic, and Great Lakes regions. Overall, Fig. 3 highlights that it is 
particularly important to consider policy actions that can improve 
housing supply elasticity in the coastal regions where water bodies and 

other topographic constraints restrict housing supply. 
In contrast with the MSA-specific residual series based on the 

FMOLS-MG equations, the POLS and PFMOLS equations – that assume 
homogenous slope coefficients across MSAs – yield clearly trending re-
siduals in many MSAs. This reinforces our conclusion that the homo-
geneity assumption is too restrictive and that heterogeneity across MSAs 
should be allowed to get more reliable assessments of house price 
elasticities and misalignments. 

4.3. Analysis of residuals and trends 

Our Model 2 is a success in terms of such a simple model – only one 
explanatory variable – being able to capture the long-term developments 
of house prices in most of the MSAs. Even for the remaining 27 MSAs the 
model residuals do not trend up or down, suggesting that the model 
captures, to a large extent, the house price developments during the 
sample period in those MSAs as well. Also, in a set of 70 MSAs, the CADF 
test power complications may lead to acceptance of the null of no 
cointegration in some MSAs where the model actually is cointegrated. 
Nevertheless, we provide a simple further analysis of the potential rea-
sons for the lack of cointegration for some MSAs and of potential factors 
associated with the deviations of house prices from estimated long-run 
equilibrium levels and with the price-income ratio trends, as such con-
siderations may entail additional policy implications. 

For this purpose, we include in the analysis national-level variables 
that may influence the relationship between house prices and income: 
the loan-to-GDP ratio and the real mortgage interest rate. Metropolitan 
level growth rates of income and population, housing supply elasticity, 
unemployment rate, college employment ratio, and an amenity index 

Table 3 
MSA-specific CADF unit root test statistics for house price-income ratio and FMOLS-MG models (MSAs ordered by 2018 population).     

Regression model    Regression model   
p–w 1 2   p–w 1 2 

1 New York, NY-NJ (MSAD) ** ** *** 36 Kansas City, MO-KS    
2 Los Angeles, CA (MSAD)  ** ** 37 Columbus, OH    
3 Chicago, IL (MSAD)    38 Cleveland, OH    
4 Houston, TX    39 Indianapolis, IN    
5 Atlanta, GA  ** *** 40 Boston, MA (MSAD) *** ** ** 
6 Dallas, TX (MSAD)    41 San Jose, CA  ** ** 
7 Washington, DC-VA-MD-WV (MSAD)   *** 42 Montgomery, PA (MSAD)    
8 Phoenix, AZ   ** 43 Fort Lauderdale, FL (MSAD)  * ** 
9 Riverside, CA *  *** 44 Nashville, TN *   
10 Minneapolis, MN-WI    45 Virginia Beach, VA-NC  ** * 
11 San Diego, CA  * *** 46 Detroit, MI (MSAD)  * *** 
12 Anaheim, CA (MSAD)   ** 47 San Francisco, CA (MSAD)  * * 
13 Tampa, FL    48 Providence, RI-MA  * * 
14 Seattle, WA (MSAD)  ** ** 49 Milwaukee, WI * * ** 
15 Denver, CO   * 50 Jacksonville, FL   * 
16 Nassau, NY (MSAD) *** *** ** 51 West Palm Beach, FL (MSAD)  * * 
17 Oakland, CA (MSAD)  ** *** 52 Oklahoma City, OK **   
18 St. Louis, MO-IL  ** *** 53 Raleigh, NC *   
19 Baltimore, MD    54 Memphis, TN-MS-AR  * * 
20 Miami, FL (MSAD)  *  55 Frederick, MD (MSAD)  * ** 
21 Charlotte, NC-SC *  ** 56 Richmond, VA *** **  
22 Orlando, FL  ** *** 57 New Orleans, LA   * 
23 Warren, MI (MSAD)    58 Louisville, KY-IN **  * 
24 San Antonio, TX    59 Camden, NJ (MSAD)    
25 Portland, OR-WA   * 60 Salt Lake City, UT  * * 
26 Fort Worth, TX (MSAD)    61 Hartford, CT  *** *** 
27 Cambridge, MA (MSAD) *** *** *** 62 Buffalo, NY    
28 New Brunswick, NJ (MSAD)  ** ** 63 Birmingham, AL ** * ** 
29 Sacramento, CA ** * *** 64 Grand Rapids, MI    
30 Pittsburgh, PA * ** *** 65 Rochester, NY  * * 
31 Las Vegas, NV  ** ** 66 Tucson, AZ    
32 Cincinnati, OH-KY-IN    67 Fresno, CA *** ** *** 
33 Newark, NJ-PA (MSAD)  ** ** 68 Tulsa, OK   ** 
34 Austin, TX    69 Worcester, MA-CT *** ** ** 
35 Philadelphia, PA (MSAD)    70 Bridgeport, CT  *  

Note: *, **, and *** denote statistical significance at the 10%, 5%, and 1% level, respectively. Critical values at the 10%, 5% and 1% level of significance are: -2.26, 
-2.60, and -3.30. p – w is the log house price-income ratio. MSAD refers to areas that are metropolitan divisions. 

11 Although Model 2 corresponds to our theoretical considerations, we also 
estimated a model where income and population are included separately thus 
allowing for different coefficients on them. This model is highly problematic, 
since the coefficient on population takes the wrong (negative) sign in 47 MSAs 
and the mean-group estimate also is negative. Moreover, the model is cointe-
grated in fewer MSAs than Model 2. These complications are likely due to the 
strong time series collinearity between income and population in many of the 
MSAs (correlation of up to 0.98 in several MSAs). Gallin (2006), for instance, 
faces a similar complication with negative coefficients on population.  
12 Bourassa et al. (2019) report that a parsimonious regression model with 

only aggregate income on the right-hand side works as a better indicator for 
house price bubbles than a model that also includes other explanatory 
variables. 
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are also included.13 The loan-to-GDP ratio is aimed at capturing de-
velopments in housing loan constraints over time (Oikarinen, 2009; 
Karpestam and Johansson, 2019) that likely affect housing demand. The 
mortgage rate reflects time-variations in the discount rate and in 
liquidity constraints. 

Diamond (2016) shows that, in addition to increased concentration 

of college graduates in cities with high wages, there have been endog-
enous increases in amenities within these higher skill cities. The 
differing time trends in the MSA shares of college workers and in the 
quality of amenities across MSAs may have affected the house 
price-income ratio trends. The MSA-specific change in the college 
employment ratio from 1980 to 2000, used by Diamond (2016), is added 
in the analysis to investigate these potential effects on the price-income 
relationship. Moreover, we use the MSA-level amenity index over 
1990–2015 of Broxterman and Kuang (2019), aiming to capture time 
trends in the quality of amenities. 

The spatial equilibrium model indicates that amenity variations over 
time can cause price-income ratio trends. In our Model 2, the influence 
of amenities and worker skill distributions are in principle captured 
indirectly through the aggregate income variable, i.e., through local 
populations and income levels: higher quality of amenities leads to 
greater population, and greater share of highly educated workers should 
cause higher productivity and thereby higher incomes and greater 
population. Nevertheless, we also investigate whether the college ratio 
and amenity variables are associated with the stationarity vs. 

Fig. 4. Residuals from regression Model 2 (continuous blue) and from price-income ratio (dashed red).  

13 The loan-to-GDP ratio and mortgage interest rate data were downloaded 
from the Federal Reserve Bank of St. Louis economic database: https://fred. 
stlouisfed.org; the unemployment data were sourced from the Bureau of 
Labor Statistics: https://www.bls.gov; the college employment ratio data used 
by Diamond (2016) were downloaded from https://www.openicpsr.org/openi 
cpsr/project/112969/version/V1/view?path=/openicpsr/112969/fcr:versions 
/V1/replication&type=folder; the amenity indices are described in detail in 
Broxterman and Kuang (2019), we are thankful to those authors for providing 
these data. This is a revealed preference amenity index that ranks cities by 
amenity level using travel demand as a proxy for amenity quality; this index is 
apparently the only one providing a time series dimension for as long as 25 
years (1990-2015). 
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nonstationarity of Model 2 across the MSAs. We further add the local 
seasonally adjusted unemployment rates that likely capture, at least to 
some extent, the differences in MSA-specific education levels. The un-
employment data has the benefit of being available at the quarterly 
frequency from 1990 onwards, whereas the college ratio data of Dia-
mond (2016) are available only for census years 1980, 1990, and 2000. 

We summarize the key observations and implications of this analysis 
below. Table 4 presents some of the most interesting estimated 
regressions. 

On average, nonstationary MSAs (referring to Model 2) have much 
lower quality of amenities and higher supply elasticity than the MSAs for 
which we observe a cointegrating relationship. However, there is no 
difference between the stationary and nonstationary MSAs in terms of 
the change in amenity index values or college shares, and trends in 
neither amenities nor college shares exhibit notable correlation with the 
house price-income ratio trends. 

The loan-to-GDP, mortgage rate, and unemployment data allow for 
panel regression analysis. The loan-to-GDP ratio is positively associated 
with the equilibrium errors, i.e., deviations from estimated long-run 

relations of Model 2. This is in accordance with prior expectations, 
since higher loan-to-GDP ratios are associated with looser loan con-
straints that stimulate housing demand. While the ratio appears to some 
extent to explain cycles of house prices around their long-run relation-
ship with aggregate income, the inclusion of the ratio helps to make only 
one of the 27 nonstationary MSAs stationary (Nashville), and controlling 
for the mortgage rate does not help either. The equilibrium errors and 
unemployment developments, in turn, are negatively related: a lower 
price level relative to aggregate income is associated with a higher un-
employment rate.14 This may relate to both income distribution and 
uncertainty effects on housing demand. These panel analysis results 
apply regardless of whether we use the FMOLS-MG or the basic MG 

Fig. 4. (continued). 

14 We prefer to use the whole sample period (1979-2018) to investigate long- 
run stationarity of the price-income relations, since having more years increases 
the power of cointegration tests. As expected, with a shorter sample period 
(1990-2018 with the unemployment data), several MSAs for which we observe 
long-run equilibrium relationships with aggregate income over 1979-2018 
would falsely seem to have no such relationship. 
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estimator and level variables or differenced (stationary) variables. 
Table 4 reports the FMOLS-MG model in levels including both loan-to- 
GDP ratio and unemployment rate. 

Cross-section probit regressions are conducted with the dependent 
binary variable being the Model 2 residual stationarity: 1 = stationary, 0 
= nonstationary. These regressions include as explanatory variables the 
college employment ratio and amenity index mean values and their 
changes, supply elasticity, and income and population growth rates. 
Supply elasticity is the dominant explanatory variable, and is highly 
significant regardless of the other explanatory variables included in the 
regression. Without the elasticity, the probit models do not have an in- 
sample prediction power better than the naïve model of always guessing 
1, whereas the models with elasticity perform substantially better than 
the naïve guess.15 The relationship between elasticity and stationarity is 
negative as indicated by the observed negative correlation. None of the 
other variables are statistically significant when elasticity is controlled 
for. It should also be noted that the nonstationarity in some MSAs may 
be due to structural changes in the supply side. We cannot study this, 
unfortunately, as we are not aware of any time series of MSA-level 
supply elasticities. 

Finally, we estimate cross-section regressions for the price-income 
ratio slopes. Regardless of the other explanatory variables included 
and whether we consider the price-income slope of the whole sample 
period or during 1980–2000 (when including the college employment 
share growth), or 1990–2015 (corresponding to the amenity data), the 
supply elasticity is always significant at the 0.1% level. While the elas-
ticity alone can explain up to 50% of cross-sectional variation in the 

slope, the other variables together have much less explanatory power. 
This underlines the strong connection between supply elasticity and 
housing affordability trends over time. The population growth rate also 
has significant explanatory power with a positive sign.16 This result is 
intuitive: a larger population means higher prices at a given income 
level and can likely capture amenity quality growth too, to some extent 
at least. Interestingly, the college employment ratio growth rate is sig-
nificant with a positive sign even when controlling for supply elasticity 
and population growth. The population growth rate should capture 
amenity quality increases, at least to some extent, but this finding sug-
gests that growth in the share of highly-educated population has had 
independent explanatory power that may relate to the influence of 
amenities and income distribution on housing demand. The pure ame-
nity variable does not possess explanatory power. Table 4 presents two 
different cross-section regression specifications for both the full sample 
period price-income slope and for that corresponding to the college 
share data (1980–2000). 

Overall, the results highlight the role of supply elasticity for the 
house price-income relationship and its developments. In any case, the 
data in this simple analysis are far from perfect and allow for suggestive 
evidence only. The potential influences of amenity developments and 
the increased geographic sorting of high-educated workers across the U. 
S. is an interesting topic for further research in this area. 

5. Conclusions 

This study contributes to the analysis of the relationship between 
house prices and income and regional heterogeneity in this relationship 

Table 4 
Regressions for Model 2 residuals and house price-income ratio trends.  

Explanatory variable PANEL MODEL 
Dependent: Residuals from Model 2 
Sample period: 1990Q1–2018Q2 

CROSS-SECTION 
(1) 

CROSS-SECTION 
(2) 

CROSS-SECTION 
(3) 

CROSS-SECTION 
(4) 

Dependent: price-income ratio slope 
1979–2018 

Dependent: price-income ratio slope 
1980–2000 

Loan-to-GDP ratio 0.742** 
(0.021)     

Unemployment rate –2.769* 
(0.137)     

Constant  0.005** 
(0.002) 

0.000 
(0.003) 

–0.003** 
(0.001) 

–0.001 
(0.001) 

Supply elasticity  –0.006** 
(0.001) 

–0.006** 
(0.001) 

–0.002** 
(0.000) 

–0.002** 
(0.000) 

Population growth  0.112 
(0.068) 

0.164* 
(0.082)  

–0.249* 
(0.098) 

College share growth   0.047* 
(0.023) 

0.025** 
(0.009) 

0.018* 
(0.008) 

Average residual cross-correlation .308     
F-test of homogeneity (p-value) .000**     
Breusch-Pagan-Godfrey homoscedasticity test (p- 

value)  
0.438 0.096 0.249 0.235 

Jarque-Bera test on residual normality (p-value) .000** 0.483 0.533 0.250 0.286 
RESET test (p-value)  0.185 0.448 0.627 0.969 
R2 .116 0.525 0.540 0.351 0.421 
adj. R2  0.508 0.514 0.327 0.389 

Note: * and ** denote statistical significance at the 5%, and 1% level, respectively. Standard errors are reported in the parenthesis. The panel model is estimated with 
FMOLS-MG estimator, and the reported regression coefficients represent the mean group estimates, i.e., the mean estimates across all MSAs. The standard errors for the 
mean group estimates are computed following Pesaran and Smith (1995). The panel model includes MSA-specific intercepts. The lag length in the Bartlett (New-
ey-West) window width in the FMOLS estimation is four. The lag length choice does not notably affect the results. R2 for the panel FMOLS-MG model is computed as the 
squared correlation between predicted and actual Model 2 residuals. Price-income ratio slopes are quarter-level growth trends estimated with the MG estimator. 
Population growth is the mean quarterly growth rate over 1979–2018 (cross-section models 1–2) or 1980–2000 (cross-section models 3–4). College share growth is the 
(%-point/100) increase in the share of college workers from 1980 to 2000. In the Breusch-Pagan-Godfrey F-test, the null hypothesis is that of homoscedastic residuals. 
Ramsay RESET test includes squared fitted values, and the null hypothesis is no model misspecification. 

15 For instance, in a model with the elasticity as the only explanatory variable 
the gain in correct predictions over naïve model is 13 percentage points. In 
models with additional variables the gain is somewhat smaller. Naïve model 
refers to always predicting the outcome that takes place more often, i.e., in our 
case always predicting stationarity. 

16 This explanatory variable is potentially endogenous, as a higher price- 
income ratio can restrict population growth. The estimated coefficient may 
therefore be biased downwards. 
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in several ways. We consider a standard spatial equilibrium model and 
conduct an empirical analysis that examines whether results using panel 
data from the 70 largest U.S. MSAs are in line with that model’s pre-
dictions – which they are. Our primary conclusion is that, at the MSA- 
level, an assumption of a constant house price-income ratio over the 
long run is in line with neither theory nor empirical facts. Instead, long- 
term stability of the price-income ratio in a given area or region is ex-
pected to be a special case rather than the rule, and house price pre-
dictions as well as evaluations of house price deviations from their long- 
term fundamental levels should be based on less restrictive assumptions, 
allowing income elasticities of house prices to differ from one and vary 
across regions. In addition, population growth should be considered 
when assessing local house price levels and dynamics by using aggregate 
income measures. 

Our analysis leads to several additional conclusions: (1) It supports 
the argument that local supply constraints are related to greater in-
creases in regional house prices relative to incomes, thus generating a 
counterforce for regional growth through adverse effects on the 
affordability of housing (while on the other hand supporting wealth 
accumulation). (2) Panel level cointegration, or unit root, tests can lead 
to misleading conclusions regarding the nature of the regional house 
price-income relationships. (3) Consistent with variations in supply 
elasticities across locations, our results underscore the importance of 
allowing for spatial heterogeneity when modeling regional house price 
dynamics. 
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Appendix A. Spatial equilibrium model 

The spatial equilibrium model 

Our theoretical predictions are based on a derivation of the standard Rosen (1979) and Roback (1982) model with spatial equilibrium and is largely 
grounded on the model presented in Moretti (2011). This framework considers the whole system of cities and thus the impacts of interdependence 
among urban economies on local house price-income relations and their dynamics. We consider the long-term developments in the price-income 
relationship because, in the short run, there are frictions that can restrain labor and firm mobility and the adjustment of housing prices and sup-
ply toward equilibrium (Anenberg, 2016; Moretti, 2011).17 

We start by assuming that each city is a competitive economy in a system of cities and produces a single output good Y. This good is traded in the 
‘international’ market so that its price is the same in all cities. The price of one unit of Y is set to be 1. Similar to, e.g., Moretti (2011) and Kline and 
Moretti (2014), the production function in city i takes the Cobb-Douglas form with constant returns to scale: 

Yi = XiNh
i K1−h

i , 0 < h < 1. (A1)  

Here Ni represents the number of workers, Ki is the amount of capital in city i, and Xi is a city-specific productivity shifter. Firms and workers are 
mobile and locate where their profits and utility are maximized. It is assumed that the number of workers determines the number of households and is 
perfectly correlated with population in each city. 

For simplicity, we assume homogeneous labor and that each worker provides one unit of labor. Hence, local labor supply is determined solely by 
the location decisions of workers. Following Glaeser and Gottlieb (2009), among others, we assume that the utility of workers in city i (Ui) is given by 
the Cobb-Douglas utility function 

Ui = MiCγ
H,iC

1−γ
O,i , 0 < γ < 1. (A2) 

In (2), Mi is the quality of amenities in city i, CH and CO represent the consumption of housing and other goods, respectively, and γ is the share of 
expenditure on housing, which is assumed to be similar over time and across cities.18 Piazzesi et al. (2007), Davis and Ortalo-Magné (2011), and 
Piazzesi and Schneider (2016) provide support for this assumption, which is common in spatial equilibrium models. Similar to Glaeser and Gottlieb 
(2009) and Hsieh and Moretti (2015), the indirect utility (Vi) then equals19 

17 While spatial equilibrium models, such as ours, conventionally assume perfect labor mobility, the key predictions hold even in the case of frictions to mobility 
such as transaction costs and other relocation costs.  
18 Carlino and Saiz (2019) provide a review of literature supporting the role of amenities in households’ location choices. Spatial variation in amenities can affect 

house values within cities as well (e.g., Letdin and Shim, 2019). However, our focus is solely on the variations of local amenities across cities.  
19 As is typical, we abstract from the constant term that is assumed to be the same across cities. 
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Vi = MiWi(Pi)
−γ

, (A3) 

where Wi denotes the nominal wage level and Pi is the cost (or price) of housing in city i. In log form 

vi = mi + wi − γpi, (A4)  

where the lower-case letters denote natural logs. Utility is positively related to wage level and the quality of amenities, and negatively affected by 
higher housing costs. In spatial equilibrium, the utility levels are the same across cities; i.e., workers are indifferent between locations. Hence, in 
spatial equilibrium 

wi − γpi + mi = wj − γpj + mj (A5)  

holds for every city i and j. 
Given the utility function in (A2), the Marshallian demand for housing of a household located in i (Dhh

i ) is 

Dhh
i = γWi

/
Pi; dhh

i = lnγ + wi − pi. (A6) 

The market level demand in city i (di) then equals (in logs) 

di = c1 + wi + ni − pi, (A7)  

where c1 (= lnγ) is a constant term. 
Local housing supply (Si), in turn, is provided by absentee landlords, and is positively related to the level of housing costs (which reflect the return 

on housing investment), with ωi (> 0 for every i) denoting the price elasticity of housing supply :20 

Si = C2iPωi
i ; si = c2i + ωipi; ωi > 0. (A8) 

In the short and medium run, the elasticity of housing supply can vary depending on whether prices are decreasing or increasing (Glaeser and 
Gyourko, 2005). This model focuses on long-term trends in the price-income relationship, however. Moreover, the demand for housing, measured as 
real aggregate income, trended upwards during the sample period (1979–2018) in all the metropolitan areas included in our empirical analysis. 
Therefore, we do not distinguish between upwards and downwards adjustment of housing supply. 

To keep the framework tractable, we assume that housing production does not involve the use of locally varying inputs. In equilibrium, housing 
supply equals housing demand; hence, the equilibrium price level is given by 

pi = αi + β1iwi + β2ini; αi =
c1 − c2i

ωi + 1
, β1i = β2i =

1
ωi + 1

> 0. (A9) 

Higher wages, greater population, and lower supply elasticity (smaller ω) due to topographic or regulatory constraints cause higher housing costs. 
If the number of households increases in a city but wages do not (i.e., population growth is induced by relative improvement in the quality of 
amenities), housing space per person must decrease in the city. The considerable spatial variation in ωi (Saiz, 2010) is expected to yield notable 
variation in β1i and β2i across cities. For simplicity, we assume that the constant term (α) in the price equation is the same across cities. 

We follow Moretti (2011) and Kline and Moretti (2014) by assuming that there are two cities, a and b. This allows us to keep the model simple while 
still being able to illustrate the key implications of the spatial equilibrium condition for the house price-income ratio. Given the spatial equilibrium 
condition, the inverse labor supply function in city a is: 

wa = wb + γ(pa − pb) + (mb − ma). (A10) 

Using Eq. (A9) for pa and pb yields 

wa = [(1 − γβ1b)wb + γ(β2ana − β2bnb) + (mb − ma)]/(1 − γβ1a). (A11) 

A higher quality of amenities in city a induces larger local labor supply, i.e., a greater number of households and therefore higher house prices. In 
other words, the utility gain from higher amenities makes workers willing to live in a city even if their net wages after housing costs are lower. Given 
the upward sloping housing supply curve, the labor supply curve is also upward sloping: since greater ni causes higher pi, wages need to be higher to 
attract more workers in the city. 

The total number of workers, N, is exogenous and divided between the two cities (N = Na + Nb) so that the spatial equilibrium condition is 
fulfilled. The impact of a greater number of workers on local housing costs restricts city growth when wages increase (due to a positive productivity 
shock, for instance) or the quality of amenities improves relative to the other city. 

Finally, the model is closed by the labor demand equation. We assume that firms are perfectly mobile and price takers, and labor is paid its 
marginal product. Hence, the (inverse) labor demand is21 

Wi = hXiNh−1
i K1−h

i ; wi = xi + (h − 1)ni + (1 − h)ki + lnh. (A12) 

Labor market equilibrium is obtained by equating (A11) and (A12) for each city. 

20 Although supply elasticity could be endogenous to city size (S), it is conventional in spatial equilibrium models to assume that it is exogenous (Hsieh and Moretti, 
2015; Kline and Moretti, 2014; Moretti, 2011). This assumption does not have any bearing on the conclusions we derive from the model and allowing supply 
elasticity to be endogenous would greatly diminish the model’s tractability.  
21 It is assumed that there is an ‘international’ capital market where capital is infinitely supplied at a given price, so that firms in each city can rent as much capital 

as is optimal at this price. 
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Productivity shock and the house price-income relationship 

Next, we use this standard spatial equilibrium model to consider the influence of a local labor demand shock on house price-income ratios. 
Following Moretti (2011), we assume that the two cities are identical initially, after which total factor productivity increases in city a due to a shock in 
the local productivity shifter. That is, there is a small shock in xa, causing a wage increase wa2 − wa1 = Δ (> 0) in city a, where subscripts 1 and 2 
indicate time periods before and after the shock, respectively, and Δ equals the productivity increase. Using (A11), we can write :22 

Δ = [γβ2a(na2 − na1) − γβ2b(nb2 − nb1)]/(1 − γβ1a). (A13) 

Eq. (13) cannot readily be used to compute the effect of the shock on the number of workers in a, as the number of workers in b is dependent on that 
in a. To circumvent this complication, we utilize the fact that Nb = N − Na. Assuming that the cities are identical before the shock, nb2 − nb1 = −

(na2 − na1). However, if na1 ∕= nb1, for a small change in Nb (corresponding to a small change in xa and thereby a small Δ): nb2 − nb1 ≈ − Na1 /(N −

Na1) × (na2 − na1). Using this approximation to achieve greater generality, we get the population change in a due to the shock: 

na2 − na1 ≈ (1 − γβ1a)/[γ(β2a + δa1β2b)] × Δ, (A14)  

where δa1 (= 1 in the case of identical cities) is the initial number of workers located in city a relative to workers located in b [Na1/(N − Na1)]. The 
growth of city a after the productivity shock is moderated by more inelastic housing supply in a (greater β1a and β2a) and in b (greater β2b). The 
elasticity of housing supply in b affects the growth rate of a, because less elastic supply in city b leads to a greater drop in housing costs in the city as 
workers move to city a.23 This greater housing cost decline yields greater growth in income net of housing costs in b, which lessens the movement of 
workers from b to a. 

Taking advantage of Eqs. (A9) and (A10), the change in the house price-income ratio in city a due to the productivity shock is 

d(pa − wa) = (1 − γ)β2a(na2 − na1) + γβ2b(nb2 − nb1) + (1 − γ)β1aΔ, (A15)  

where d(pa − wa) = (pa2 − wa2) − (pa1 − wa1). Using the above approximation for nb2 − nb1 and Eq. (A14), we can express d(pa −wa) solely in terms of 
model parameters and the productivity increase: 

d(pa − wa) = [θ(1 − γβ1a) + (1 − γ)β1a] × Δ, (A16)  

where θ =
(1−γ)β2a−δa1γβ2b

γ(β2a+δa1β2b)
=

β2a
γ(β2a+δa1β2b)

− 1. Based on (A16), the price-income ratio remains constant after a productivity shock only in the special case 
where θ(1 − γβ1a) + (1 − γ)β1a = 0. 

Comparative static predictions can be formulated with the following partial derivatives: 

∂[d(pa − wa)]

∂β1a
=

δa1β2b

β2a + δa1β2b
> 0  

∂[d(pa − wa)]

∂β2a
= (1 − γβ1a)

δa1β2b

γ(β2a + δa1β2b)
2 > 0  

∂[d(pa − wa)]

∂β2b
= −(1 − γβ1a)

δa1β2a

γ(β2a + δa1β2b)
2 < 0 

Since higher income and population elasticities of house prices (β1a and β2a, respectively) in city a yield greater d(pa −wa) as productivity in a 
increases, and β1and β2 are positively dependent on supply elasticity, the model predicts that productivity increases lead to higher price-income ratios 
and thus greater growth in the ratio in more supply restricted cities. The decreasing influence of greater population elasticity (i.e., smaller supply 
elasticity) in city b on d(pa −wa) is that fewer people will move from b to a after the productivity shock, since house prices drop more in b in response to 
declining population. Because of the stronger downwards reaction of house prices in city b, fewer people move from b to a and house prices increase 
less in city a. 

A Simple numerical illustration 

Consider two cities that are identical initially: N = 1 so that Na and Nb reflect the population shares in the cities; the supply elasticity is 1.5 in both 
cities24 so that the elasticity of house prices with respect to income (β1) and population (β2) is 0.40; and the parameters in the production function are 
Xa1 = Xb1 = 10 and h = 0.5. Since Na1 = Nb1 = 0.5, we get Wa = Wb = 5. Finally, we set the share of expenditure on housing (γ) to 0.25 based on the 
findings reported in Davis and Ortalo-Magné (2011) for U.S. cities. 

Suppose there is a total factor productivity shock in city a so that wa increases by 5%. As shown in Table A1 (column I), in the new equilibrium 
population is 22.5% greater and the house price level is 11% higher in city a than before the shock. Consequently, the house price-income ratio is 6% 
higher. In city b, in turn, the 22.5% population decline causes a 9% decrease in the price-income ratio; i.e., housing becomes more affordable. 

To illustrate the role of supply elasticity, consider the same shock but with a lower supply elasticity (0.6) in city a.25 Column II in Table A1 shows 

22 Note that the wage level in city b does not change, since the amount of capital used by firms in b offsets the effect of the change in nb (Moretti, 2011).  
23 In the short and medium term, when housing supply tends to be more inelastic downwards than upwards, the price level in city b would drop even more and 

population would decrease (increase) somewhat less in b (a). This would not affect the key conclusions of our model and, in any case, we are interested in the long- 
term dynamics.  
24 The assumed supply elasticity is close to the median for the 70 metropolitan areas investigated in this study.  
25 The 0.6 supply elasticity is the lowest among the 70 metropolitan areas that we consider. 
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that the price-income ratio increase in a is greater and the decrease in b is milder because of the more inelastic supply in a; housing is more expensive in 
both cities than in the baseline case. Given the assumption of equal city sizes before the shock, the lower supply elasticity in a also means that initially 
the productivity shifter in city a, Xa, is 10.63: higher wages are needed to compensate for the more expensive housing (which is an outcome of the 
supply inelasticity). 

Now assume that a similar productivity shock takes place in both cities, with both wa and wb rising by 5%. As there is a similar wage increase in 
both cities, there is no flow of workers between a and b in the baseline case (column III). The income increase induces house price growth of 2%. Thus, 
the price-income ratio decreases by 3%. Column IV reports the effects assuming an elasticity of 0.6 in a: because β1a > β1b, some households need to 
move from a to b so that the spatial equilibrium condition is maintained. Due to the inelastic supply in a, housing costs increase more in both cities than 
in the baseline case. 

Finally, suppose that, instead of a productivity shock, there is a positive shock in the value of amenities in city a (column V). This shock could take 
place due to a change in workers’ preferences for various amenities (e.g., quality of public transportation or climate) or a change in the amenities 
themselves (e.g., better services, less crime, or cleaner environment). The wage levels in the two cities are unaltered as there is no change in pro-
ductivity. Hence, the spatial equilibrium condition requires that some workers move from b to a, causing housing costs to adjust so that the equilibrium 
condition is maintained: the price level increases in a and decreases in b thereby causing a higher house price-income ratio in a and a lower ratio in b.26 

A lower supply elasticity in a (column VI) would yield greater price-income changes in both cities and less movement from b to a. 

Appendix B. Panel data estimators and tests 

Panel OLS (POLS) 

In a panel dataset, yit is the dependent variable (house price in our empirical analysis) and xit is a vector of explanatory variables (one-dimensional 
vector including income), which are observed for cross-sections (MSAs) i = 1, …, N and time periods t = 1,…, T. OLS estimator of slope (β) of equation 

yit = α + βxit + εit (B1)  

is given by 

β̂OLS =

(
∑N

i=1

∑T

t=1
(xit − x̄i)

2

)−1
∑N

i=1

∑T

t=1
(xit − x̄i)(yit − ȳi) (B2)  

where ̄xi and ̄yi refer to the MSA-specific means. If the slope coefficients are heterogeneous across cross-sections, the estimator is asymptotically biased 
and its asymptotic distribution will be dependent on nuisance parameters associated with dynamics of the underlying process. Only for the special case 
in which the regressors are homogenous across members of the panel can valid inferences be made from the standardized distribution of β̂OLS or its 
associated t-statistic (Pedroni, 2000). 

Mean group estimator (MG) 

Unlike the POLS estimator, the Mean Group Estimator (MG) of Pesaran et al. (1999) allows for heterogeneity of slope coefficients across 
cross-sections. One can estimate separate equations for each group (MSA) and examine the distribution of the estimated coefficients across groups. Of 
particular interest is the mean of the estimates, i.e., MG estimator, which is defined by means of individual model parameters over panel subjects. For 
example, intercept and slope estimates are here defined by 

Table A1 
Numerical illustrations.  

Assumed supply elasticities and impacts of shocks 5% productivity increase in city a 5% productivity increase in both cities 5% increase in the value of amenities in city a 

City a I II III IV V VI 
Assumed supply elasticity 1.500 0.600 1.500 0.600 1.500 0.600 
Change in price-income ratio 0.060 0.084 –0.030 –0.026 0.080 0.122 
Population change 0.225 0.165 0.000 –0.011 0.200 0.195 
Price change 0.110 0.134 0.020 0.024 0.080 0.122 
City b       
Assumed supply elasticity 1.500 1.500 1.500 1.500 1.500 1.500 
Change in price-income ratio –0.090 –0.066 –0.030 –0.026 –0.080 –0.078 
Population change –0.225 –0.165 0.000 0.011 –0.200 –0.195 
Price change –0.090 –0.066 0.020 0.024 –0.080 –0.078 

Note: All examples are based on the following parameters before the shock: N = 1; Na = Nb = 0.5; γ = 0.25; Xa = Xb = 10; h = 0.5. An exception is that, in the cases 
with 0.6 supply elasticity in city a (columns II, IV and VI), the productivity shifter in a, Xa, is initially 10.63.  

26 Regulatory restrictiveness – and thus supply elasticity – could be correlated with amenities (Hilber and Robert-Nicoud, 2013): greater value of amenities can give 
rise to lower supply elasticity (through more regulation). This could add another channel from an amenity shock to the price-income ratios. Additionally, the quality 
of amenities may rise with income (Diamond, 2016), which could increase the influence of income growth on house prices. These potential effects do not alter the key 
conclusions of the model. 
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α̂MG = ᾱ = N−1
∑N

i=1
α̂i,OLS (B3)  

β̂MG = β̄ = N−1
∑N

i=1
β̂i,OLS. (B4) 

In earlier work, Pesaran and Smith (1995) showed that in heterogeneous panels the MG estimator will produce consistent estimates of the average 
of the parameters and thus is preferred over POLS. 

The fully-modified panel OLS (FMOLS) 

While the POLS and MG estimators are vulnerable to endogeneity bias, the fully-modified OLS (FMOLS) estimator of Pedroni (2000, 2001) that is 
aimed at cointegrating regressions is consistent in the presence of endogenous regressors and endogeneity due to possible omitted variables. The 
FMOLS estimators are also asymptotically unbiased and super-consistent in the presence of non-stationary but cointegrated data, which is not the case 
for the conventional OLS and MG estimators. (Pedroni, 2001, 2007.) 

For Pooled Fully-modified Panel OLS estimator (PFMOLS), consider the following system for a panel of i = 1, …, N members: 

yit = α + βxit + μit (B5)  

xit = xit−1 + εit. (B6) 

The slope estimator is given as 

β̂PFMOLS =
∑N

i=1
L̂

−2
22i

(
∑T

t=1
(xit − x̄i)

2

)−1
∑N

i=i
L̂

−1
11i L̂

−1
22i

(
∑T

t=1
(xit − x̄i)y*

it − Tγi

)

(B7)  

where L̂ and γi refer to components of long-run variance-covariance matrix of μit and εit (see Pedroni, 2000, for further details). The dependent values 
yit are transformed using variance-covariance matrix of (μit , εit) to y*

it. FMOLS mean-group (FMOLS-MG) estimator is given by Pedroni (2001) as 

β̂FMOLS−MG = N−1
∑N

i=1
β̂i,FMOLS (B8)  

where β̂i,FMOLS are the individual (MSA-specific) FMOLS estimates. An advantage of the group mean estimator over the pooled panel FMOLS estimator 
is that by allowing heterogenous coefficients this estimator allows for a more flexible hypothesis testing in the presence of heterogeneity in cointe-
grating vectors. This is because the group mean estimator is based on the so called ‘between dimension’ of the panel, while the pooled estimators are 
based on the ‘within dimension’ of the panel. 

An additional advantage of the between-dimension estimators is the more useful interpretation of the point estimates in the event that the true 
cointegrating vectors (slope coefficients) are heterogeneous: Point estimates for the between-dimension estimator can be interpreted as the mean 
value for the cointegrating vectors, which is not the case for the within-dimension estimators. (Pedroni, 2001.) Furthermore, as Pesaran and Smith 
(1995) argue in the context of OLS regressions, when the true slope coefficients are heterogeneous, group mean estimators provide consistent point 
estimates of the sample mean of the heterogeneous cointegrating vectors, while pooled within dimension estimators do not. 

Common correlated effects estimator (CCEMG) 

The Common Correlated Effects Estimator (CCE) of Pesaran (2006) includes the cross-sectional means of yit and xit as additional regressors to 
account for cross-section dependence in the data. The CCE method is robust to different types of error cross-sectional dependence. 

The CCEMG estimator is, similar to MG estimator, a simple average of the individual estimates of the model. Estimates are given by 

yit = α̂CCEMG + β̂CCEMGxit + δ̂i z̄t + εit (B9)  

β̂CCEMG = N−1
∑N

i=1
β̂i,CCEMG (B10)  

where ̄z refers to cross-sectional averages of individual-specific variables (both y and x) and ̂δi to a vector of coefficients on ̄z. The basic idea is to filter 
the individual-specific regressors by means of cross-section aggregates so that asymptotically the differential effects of unobserved common factors are 
eliminated. The estimation can be conducted with OLS. (Pesaran, 2006.) 

The Dynamic Common Correlated Effects estimator of Chudik and Pesaran (2015) additionally includes lags of ̄z and therefore performs well even 
in the case of dynamic models with weakly exogenous regressors. 

Panel unit root / cointegration testing: the CIPS test 

Pesaran (2007) proposes a CIPS panel unit root test in the presence of cross-section dependence. The test is based on individual augmented 
Dickey-Fuller (ADF) regressions augmented with cross-sectional means of lagged levels and first-differences of the series yit. The cross-sectionally 
augmented ADF (CADF) regression thus is: 
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Δyit = α̂i + ∅̂iyit−1 + ρ̂i ȳt−1 + θ̂ iΔ̄yt + κ̂i ▵yit−1 + ψ̂ i ▵̄yt−1 + εit (B11) 

This regression can be applied to individual time series in the usual manner, t-value for coefficient ∅̂ i being the CADF test statistic. Specification 
(B11) includes one lag of the dependent variable ▵ȳt, but there can be more lags and the number of lags can vary across cross-sections. 

The cross-sectionally augmented IPS panel unit root test then is based on the CIPS statistic: 

CIPS(N, T) = N−1
∑N

i=1
ti(N, T), (B12)  

where ti(N, T) is the t-ratio of the coefficient of ∅̂i in the CADF regression. Pesaran (2007) provides critical values for both CADF and CIPS test statistic 
under various cases. 

The null hypothesis (H0) and the alternative hypothesis (HA) in the CIPS test are: 

H0: Each of the individual-specific series is non-stationary (when testing for cointegration: none of the individual-specific equations is cointegrated, 
i.e., each of the residual series is non-stationary). 
HA: One or more individual-specific series are stationary (when testing for cointegration: one or more individual-specific equations are cointe-
grated, i.e., one or more individual-specific residual series are stationary). 

Tests of the null hypothesis of homogeneity 

The null hypothesis of homogeneity of slope coefficients across cross-sections in FMOLS-MG can be tested with F-test (Pedroni, 2007). The F-test is 
based on the residuals of the individual and group-mean FMOLS estimated regressions. Specifically, the test is constructed for the restrictions implied 
by the case in which the slope coefficients are assumed to be common across the cross-sections. The corresponding Wald statistic compares the sum of 
squared errors across all periods and cross-sections for the restricted case when βi = β for all i versus the case with unrestricted heterogeneous β 
values. 

Swamy (1970) bases his test of slope homogeneity on the dispersion of individual slope estimates from a suitable pooled estimator. Similar to the 
F-test, the null hypothesis in Swamy’s test is that of homogeneous slope coefficients. The test statistic S can be written as 

S =
∑N

i=1
(β̂i − β̂WFE)

′ X ′

i MtXi

σ2
i

(β̂i − β̂WFE) (B13)  

where 

σ2
i =

(yi − Xi β̂i)
′

Mt(yi − Xi β̂i)

T − k − 1
. (B14) 

In (13), X refers to vector of exogenous regressors, M is a construction matrix of the panel data, σ2
i denotes error variance, k is the number of 

regressors, and β̂WFE is the vector of weighted Fixed-Effects (WFE) pooled estimators of slope coefficients. 
Pesaran and Yamagata (2008) propose a standardized version of Swamy’s test. The test statistic is given by 

SPY =
̅̅̅̅
N

√
(

N−1S − k
̅̅̅̅̅
2k

√

)

. (B15)  

SPY approaches standard normal distribution under certain assumptions. 
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