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A B S T R A C T

Clumping is critical for quantifying the radiation regime of forest canopies, but challenging to measure. We
developed a method to measure clumping index (CI) of forest stands using voxel-based estimates of leaf area
density from terrestrial lidar data. Our method uses the principle of the silhouette to total area ratio (STAR),
a commonly used shoot clumping correction approach. We adapted the concept to forest stands, and derived
that STAR at canopy scale (STARf ) is no longer simply a clumping index, but a summary variable for forest
structure in general. CI can be calculated from STARf when leaf area index is known.

We measured CI and STARf of 38 forest stands in Finland, Estonia, and Czechia to study the natural range
of these variables, their relationships to other forest variables, and to Landsat 8 OLI surface reflectance. CI did
not include clumping below voxel scale (20 cm), and ranged from 0.6 to 0.9, with the lowest values (i.e., the
most clumped canopies) in conifer forests and temperate oak forests, and the highest CI values (i.e., the most
random canopies) in boreal broadleaved forests. CI was closely correlated with surface reflectance in conifer
forests, which may be explained by contradicting influence of clumping that decreases canopy reflectance, but
increases visibility of the forest floor.

From the viewpoint of forest reflectance modeling, STAR is a useful variable due to its close relationship
with the photon recollision probability, i.e., the probability that a photon will interact with a canopy element
after being scattered from another canopy element. The photon recollision probability is used to model the
influence of forest structure on reflectance. Our method provides a physically-based means of measuring
STARf , and thus the photon recollision probability, hence contributing to the development of new methods
for interpreting forest canopy structure from optical remote sensing data.

1. Introduction

Clumping and leaf area index are the most important canopy struc-
tural parameters that determine light interception, primary production,
albedo, and photosynthesis rates of forests (Parker, 2020). Also the
optical remote sensing signal of a forest is strongly influenced by
clumping (Chen et al., 2012). For example, clumping has been shown
to explain the difference in surface reflectance between coniferous and
broadleaved forests (Rautiainen and Stenberg, 2005). The recognition
of the role of clumping in remote sensing and vegetation ecology has
led to an interest in mapping clumping over large areas (e.g. He et al.,
2012; Jiao et al., 2018; Wei et al., 2019) and across time (He et al.,
2016).

Clumping quantifies the dispersion patterns of leaves in a canopy. If
leaf positions are random and independent of one another, the canopy
is said to exhibit no clumping, whereas if leaves in a canopy tend
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to be close to one another, the canopy is said to exhibit clumping.
An obvious example of clumping is the clumping of needles into
shoots in coniferous forests. Clumping is typically quantified by the
clumping index (CI), which modifies the leaf area index (LAI) in Beer’s
law (Nilson, 1999) into an effective LAI, that is, the equivalent LAI
of a canopy with randomly distributed elements (Chen and Black,
1992). The effective LAI is typically smaller than the true LAI, as forest
canopies are generally clumped (Fang, 2021).

Clumping can be defined at several different levels (Silva et al.,
2008). A common example is the above mentioned shoot clumping,
which is based on the silhouette to total area ratio (STAR) of conifer
shoots (e.g. Therezien et al., 2007; Oker-Blom and Smolander, 1988;
Smolander and Stenberg, 2003). The shoot clumping index 𝛺sh is
calculated from shoot STAR as 𝛺𝑠ℎ = 4STARsh. In other words, the
shoot CI is the ratio of spherically averaged shoot area to spherically
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averaged needle area (Stenberg et al., 1993). The factor 4 is used with
STARsh to transform the total needle area into spherically averaged
area. When accounting for shoot clumping in Beer’s law, the implicit
assumption becomes that the shoots, not the needles, are randomly
distributed in the canopy. One can combine the shoot CI with a canopy
element CI to quantify clumping at all scales.

In standard gap-fraction-based measurements of leaf area index
(LAI), using hemispherical photography, LAI-2200 Plant Canopy An-
alyzer, TRAC (Tracing Radiation and Architecture of Canopies) or
similar instruments, clumping is commonly corrected on two levels;
the shoot level and at the stand level (for a review, see Fang, 2021).
Stand level clumping is quantified based on logarithmic gap fraction
averaging (Lang and Xiang, 1986), gap size distribution (Chen and
Cihlar, 1995), a combination of the two (Leblanc et al., 2005), or using
a fractal approach (Li and Mu, 2021; Lai et al., 2022).

The increased availability of terrestrial laser scanning (TLS) data
and associated processing methods has enabled a new way of quanti-
fying canopy structure, moving away from gap fraction measurements
towards explicit three-dimensional models of forest canopies. For ex-
ample, TLS has been used for estimating leaf area density (e.g. Béland
et al., 2014; Pimont et al., 2018), but also clumping at branch scale (Bé-
land and Baldocchi, 2020), and crown scale (Schraik et al., 2021a).
In Schraik et al. (2021a) we used the concept of STAR to measure
clumping of tree crowns with TLS data.

In this paper, we continue to develop the STAR measurement ap-
proach, moving away from individual tree crowns to quantify clumping
of entire forest canopies. In adapting STAR to stand level, we need
to consider that, unlike a shoot or an individual tree, a forest canopy
has no concrete horizontal boundaries, and is usually described as if
it were horizontally infinite. Thus, it is convenient to define forest
stand STAR through canopy interceptance and leaf area index, as
will be explained next. Smolander and Stenberg (2003) derived the
relationship between STARsh and photon recollision probability for
shoots as 𝑝𝑠ℎ = 1−4STARsh. Stenberg (2007) showed that at stand level,
the photon recollision probability can be calculated from the diffuse
interceptance 𝑖𝐷 and the LAI 𝐿 as 𝑝 = 1 −

𝑖𝐷
𝐿
. Denoting the spherically

averaged silhouette area of a stand as SA = ∫ 𝜋∕2
0 [1− 𝑡(𝜃)]𝐴𝐶𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃𝑑𝜃,

and the diffuse interceptance as 𝑖𝐷 = 1−2 ∫ 𝜋∕2
0 𝑡(𝜃)𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃𝑑𝜃 (Stenberg,

2007), we get the relationship between the stand silhouette to total area
ratio STARf , 𝑖𝐷, and LAI at stand level as

STARf =
SA
𝐴𝐿

=
∫ 𝜋∕2
0 [1 − 𝑡(𝜃)]𝐴𝐶𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃𝑑𝜃

2𝐴𝐶𝐿

=
1 − 2 ∫ 𝜋∕2

0 𝑡(𝜃)𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃𝑑𝜃
4𝐿

=
𝑖𝐷
4𝐿

, (1)

with the spherically averaged silhouette area SA, total (i.e. two-sided)
leaf area 𝐴𝐿, and the stand area 𝐴𝐶 . Thus, we see that

𝑖𝐷
𝐿
is the stand

level equivalent to 4STARf . To avoid confusion, hereafter we write
STARsh for instances concerning specifically shoot STAR, STARf specif-
ically for stand or forest STAR, and STAR without a scale specification
when we mean the concept of silhouette to total area ratio in general.

The advantage of using STAR to quantify clumping lies in its direct
relationship to the photon recollision probability 𝑝 (Smolander and
Stenberg, 2003). The photon recollision probability originates from 𝑝-
theory, which states that only the structural parameter 𝑝 is needed,
together with canopy element spectra, to explain radiative transfer in a
vegetation canopy (Knyazikhin et al., 1998). Smolander and Stenberg
(2003) interpreted 𝑝 as the photon recollision probability, and Rauti-
ainen and Stenberg (2005) created the PARAS forest reflectance model
around 𝑝. PARAS models have since been used in different formu-
lations, and have been applied in several remote sensing studies at
different spatial scales (e.g. Yáñez Rausell et al., 2015; Majasalmi et al.,
2014; Hadi et al., 2017; Schraik et al., 2019; Hovi et al., 2020, 2022).
Most forest reflectance models require clumping as an input, since LAI
alone is insufficient to model the radiative transfer process in forest

vegetation. Since PARAS relies on the photon recollision probability 𝑝,
it is possible to directly use STAR to parameterize canopy scattering
properties. For accurate estimation of 𝑝, information on both shoot
STAR and a higher-level CI are needed. The method recently proposed
in Schraik et al. (2021a) enables direct measurement of STAR from
terrestrial laser scanning (TLS) data at levels above shoot scale. TLS
point clouds provide explicit three-dimensional spatial information.
This level of detail allows, for the first time, direct estimation of STAR
at stand level (STARf ) which has not been possible with passive optical
methods, as they lack three-dimensional explicit information, thus
requiring to make assumptions about the missing dimensions. STARf
is closely related to the photon recollision probability, and is thus of
particular interest for quantifying forest canopy structure in forest radi-
ation regime modeling. STARf summarizes the three canopy structure
variables that are critical drivers of the forest radiation regime; leaf
area index, clumping index, and leaf angle distribution. Our method
to quantify STARf relies on a spatially explicit quantification of leaf
area density. Thus, the method can be used to simultaneously estimate
clumping index, since it explicitly quantifies both the LAI and the di-
rectional interceptance. The latter can be used to calculate the effective
LAI, and the CI is simply the ratio of effective to true LAI. The analysis
of the CI is needed by a wider research community beyond photon
recollision probability modeling.

In this study, we quantify STARf and clumping index from TLS point
clouds across different European forests ranging from boreal to tem-
perate biomes. We examine the relationship of STARf with commonly
measured forest variables, and of both STARf and clumping index with
Landsat 8 OLI surface reflectance data. The relationship between STARf
and forest variables may provide insights for estimating STARf indi-
rectly, since current methods for measuring STARf are laborious and
difficult to scale over large areas. We further evaluate the reliability of
STARf measurements by comparing its leaf area component to indirect
measurements of leaf area.

2. Materials and methods

2.1. Study sites and stand description

We measured a total of about 2100 trees in 38 plots in four study
sites. The sites were located in Lanžhot (48°41’N, 16°57’E, 9 plots) and
Bílý Kříž (49°30’N, 18°32’E, 6 plots) in the Czech Republic, Järvselja in
Estonia (58°17’N, 27°19’E, 9 plots), and Hyytiälä in Finland (61°51’N,
24°18’E, 16 plots) (Fig. 1). The plots in Lanžhot (Fig. 1A) are diverse
temperate broadleaved floodplain forests, with several oak species, ash,
aspen, and hornbeam as stand-dominating species, field maple, linden
as occasionally abundant understory species, and occasional individuals
of alder, elm, and wild pear. Bílý Kříž (Fig. 1B) is a temperate mountain
forest dominated by Norway spruce, with a small portion of European
beech. Hyytiälä (Fig. 1C) is a boreal site dominated by Scots pine,
Norway spruce, and birch. Järvselja (Fig. 1D) is a hemi-boreal mixed
broadleaved and conifer site. The main species are alder, Norway
spruce, Scots pine, aspen, and birch. The terrain in all sites was mostly
flat, except for Bílý Kříž, which was moderately mountainous with
slopes in our plots reaching up to 10°. The measurements in Hyytiälä
were made in June and July 2019, in Lanžhot and Bílý Kříž in August
and September 2019, and in Järvselja during June and July 2020.
At the time of the field campaigns, all sites were in peak growing
season. In addition to the terrestrial laser scanning and hemispherical
photographic measurements described below (Sections 2.2 and 2.5),
we measured standard forest inventory variables in all plots. These
included diameter at breast height (DBH, 1.3 m above ground) for all
trees in a plot that exceeded a DBH limit (5 cm in young forest, 8 cm
in mature forest), and tree height for the two median trees among the
10% thickest trees in a plot. In a single young pine plot in Hyytiälä,
the DBH limit was reduced to 2.5 cm, as most trees had less than 5 cm
DBH. Basal area and stem number per hectare were calculated from the
above measurements. Table 1 contains a summary of forest inventory
variables for each site and species. Further description of the sites and
photographs of selected stands are available in Hovi et al. (2022).
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Fig. 1. Location of the study sites. The pink (B) and yellow (A) sites denote Bílý Kříž and Lanžhot in the Czech Republic, blue (C) denotes Hyytiälä in Finland, and red (D)
denotes Järvselja in Estonia.

Table 1
Summary of forest variables per site and dominant species. The values express the mean of the forest stand variable, and the full range is given in parentheses if applicable.
Site Species Plots Effective LAI [m2m−2] Mean DBH [cm] Stem number [ha−1] Basal area [m2ha−1] Tree height [m]

Hyytiälä Pinus sylvestris L. (Scots pine)
6 1.77 (0.45, 3.04) 18.4 (6.8, 30.3) 1266 (272, 2144) 21.5 (4.6, 33.0) 17.4 (6.8, 25.0)

Picea abies (L.) H. Karst. (Norway spruce)
6 2.88 (2.15, 3.4) 31.1 (21.9, 44.8) 498 (368, 672) 31.6 (22.0, 46.0) 27.4 (21.9, 34.3)

Betula sp. (birch; B. pendula Roth, B. pubescens Ehrh.)
4 2.08 (1.46, 2.33) 15.9 (12.0, 20.0) 1256 (416, 1904) 17.7 (11.5, 22.9) 20.1 (17.2, 23.2)

Järvselja Pinus sylvestris L. (Scots pine)
2 1.13 (0.8, 1.46) 33.3 (26.8, 39.9) 432 (112, 752) 23.9 (13.5, 34.3) 28.4 (26.8, 30.0)

Alnus glutinosa (L.) Gaertn. (European black alder)
2 4.68 (3.05, 6.32) 13.2 (13.1, 13.4) 1680 (1184, 2176) 19.4 (12.3, 26.6) 17.1 (16.5, 17.8)

Populus tremula L. (European aspen)
2 4.44 (3.93, 4.94) 24.8 (12.4, 37.1) 1584 (944, 2224) 35.9 (20.8, 51.1) 28.3 (17.9, 38.6)

Picea abies (L.) H. Karst. (Norway spruce)
1 4.05 21.6 1328 37.7 28.3

Betula sp. (birch; B. pendula Roth, B. pubescens Ehrh.)
2 1.99 (1.84, 2.13) 17.1 (11.6, 22.6) 928 (576, 1280) 15.3 (9.8, 20.9) 23.1 (15.8, 30.4)

Bílý Kříž Picea abies (L.) H. Karst. (Norway spruce)
4 3.35 (2.76, 4.11) 37.9 (21.5, 50.7) 576 (416, 768) 50.2 (24.0, 65.9) 32.8 (20.6, 42.7)

Lanžhot Quercus sp. (oak; Q. robur L., Q. petraea (Matt.) Liebl.)
6 3.45 (2.11, 5.04) 38.6 (14.8, 72.4) 592 (96, 1552) 27.2 (14.5, 42.2) 28.4 (18.5, 38.8)

Fraxinus sp. (ash; F. excelsior L., Fraxinus angustifolia Vahl)
1 4.78 61.6 544 60.1 40.0

Populus tremula L. (European aspen)
1 3.63 64.6 336 40.2 33.3

Carpinus betulus L. (European hornbeam)
1 5.33 30.4 560 29.4 32.4

2.2. Terrestrial laser scanning (TLS) measurements

In each plot, TLS scans were done at 16 grid points, forming a square
grid of 30 by 30 m (4 by 4 grid points with 10 m spacing, see Fig. 2). We
used a Leica P40 ScanStation, which has a vertical field of view of 305
degrees (centered at the zenith). The laser beam has a wavelength of
1550 nm, a diameter of 6 mm at the instrument, and a beam divergence
of 0.23 mrad. We used a scan resolution equal to the beam divergence
(0.23 mrad, or 2.3 mm at 10 m distance). The scans were taken only
during calm wind (less than 4 m/s) and dry conditions. The scans were
made at heights between 1.4 and 1.8 m above ground. Most scans in

Hyytiälä were carried out during the night until late morning because
during the daytime the wind conditions, despite occasionally having
low average wind speeds, frequently featured strong gusts, to which
our scans were sensitive due to the scan time of about 6 min per scan.
We used a total of 25 polystyrene sphere targets, mounted on 1.5 m
tall sticks, that were spread out regularly throughout the plot in a 5 by
5 grid with 10 m spacing so that the spheres were placed in between
the TLS measurement points, with additional spheres around the edge
of the TLS grid. The sphere positions were adapted in case that grid
points fell into a tree crown or other potentially occluding object.
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Fig. 2. Visualization of the TLS measurement setup in a plot. The 16 TLS scanning positions were spaced by 10 m. The magenta diagonal line, which runs between the SW and
NE corner TLS positions, was used to center the voxel grid’s bounding box (in black) in the plot.

2.3. TLS preprocessing

2.3.1. Co-registration in Cyclone
The co-registration of each plot’s 16 scans was carried out in Leica

Cyclone (version 9.4.0). The points belonging to the sphere targets
were selected manually from the point cloud, and we used Cyclone’s
sphere fitting algorithm to calculate the position of the sphere targets.
We ensured the error for individual targets was below 5 cm, and the
translation and rotation tolerance for co-registration of TLS scans was
0.9 cm and 1°. Only one plot (in Järvselja) had three scans for which
registration accuracy could not be calculated, because despite each of
these scans having four to five visible targets, the number of targets
shared with other stations was less than three, and hence it was not
possible to extract accuracy metrics from Cyclone. Visual inspection
of small objects (e.g. branches, small trees) indicated that the co-
registration for those scans had errors in the order of millimeters, hence
we did not discard those scans from our analysis. The co-registered
scans were exported at full resolution, with the individual scans intact
(using the e57 file format). In addition, we cropped the point clouds
approximately 5 m outside their plot boundaries and downsampled
them to an average point spacing of 2 cm using a proprietary method
in Cyclone. These cropped and downsampled point clouds were used in
tree segmentation and leaf–wood separation (Section 2.3.2). The lower
resolution point clouds were needed to reduce computational costs of
the leaf–wood separation to a manageable level, and the classification
was upscaled to full resolution as described in Section 2.3.2. For

estimating silhouette to total area ratio (Section 2.4), the full resolution
and uncropped point cloud data were used.

2.3.2. Tree segmentation and leaf–wood separation
Our method for estimating leaf area assumes that vegetation el-

ements are randomly distributed within voxels. While this assump-
tion can work reasonably well for leaves, it leads to bias for woody
elements (Pimont et al., 2019). Therefore, we separated leaf from
wood points and estimated leaf area only. The leaf–wood separation
algorithm, while capable of processing whole plots, required tree seg-
mentation because the plot point clouds were too large to process at
once.

The point cloud was first normalized by a Digital Terrain Model
(DTM) to estimate the point heights above ground. The DTM was
created by a hierarchical approach based on robust moving plane
interpolation in a coarse to fine fashion (Kraus and Pfeifer, 1998;
Wang et al., 2016). Individual tree segmentation was achieved by
using a newly developed graph pathing algorithm that operates on a
point cloud graph (Wang et al., 2021). This method first generated a
compact point cloud graph by merging a K-nearest neighbors (KNN)
graph with the Delaunay triangulation. Each point (i.e., a node in the
graph) is pathed to its lowest neighboring point first to locate root
nodes that represent potential tree lower stem positions. Such root
nodes were further pruned and merged so that the stems for individual
trees were identified. The pathing and root information in combination
resembled a clustering mechanism that segmented points into groups
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that represented individual trees. The readers are referred to Wang
et al. (2021) for a full description of the graph pathing method.

In this study, we used the well-established LeWoS tool (Wang et al.,
2020a,b) to accomplish the task of leaf–wood separation. LeWoS is
a fully unsupervised method based on the geometric characteristics
of points and their spatial distribution. This leaf–wood separation
method has been shown to be effective at classifying trunks and large
branches (Wang et al., 2020a), displaying rather balanced accuracies
for wood and leaf points (Wang et al., 2020a; Wu et al., 2020; Hui et al.,
2021). LeWoS first applied a recursive segmentation to consolidate
points into overly segmented clusters. Semantic information of each
cluster was exploited to estimate its probability of being leaf or wood
type. Such cluster level probability distributions were mapped back
to the point level and the leaf–wood labels were further smoothed
by a regularization step that takes into account spatial autocorrela-
tion, i.e. that points near each other have the same label. LeWoS
required one input parameter, feature threshold, that is crucial for
the processing. We used a value of 0.125 as recommended by the
original publication, as this value was the most robust based on the
comprehensive sensitivity analysis done in Wang et al. (2020a). The
leaf labels were upscaled to the original point cloud resolution using a
nearest neighbor search. Each point in the full-resolution point cloud
was classified as a leaf point if the nearest point in the downsampled
point cloud was a leaf point. If a point of the full-resolution point cloud
had a nearest neighbor that was a wood point, or if the distance to the
nearest neighbor was more than 5 cm, it was classified as a non-leaf
hit and did not contribute to the leaf area estimation in Section 2.4.
For points that have an equal probability for being classified as leaf or
wood, LeWoS takes into account spatial autocorrelation with nearby
points to assign a final, regularized label. After classifying leaf and
wood points, no manual intervention was done on the data.

2.3.3. Empty pulse recovery
By default, Leica Cyclone only exports non-empty points, i.e., pulses

that triggered a return. For accurate estimation of the attenuation
coefficient in a voxel grid, it is important to recover the direction of
pulses which did not trigger a return. In a nutshell, we did this by
arranging the pulses in a grid, calculating the horizontal and vertical
resolutions, and filling in the missing points in the grid. This procedure
was adapted for full-field-of-view scans from Schraik et al. (2021a).

The e57 file format, as Leica Cyclone exports it, contains informa-
tion on the row and column ID of each point in the point cloud. We
converted the point cloud from Cartesian to spherical coordinates, and
processed azimuth directions (columns) and zenith directions (rows)
in a similar way, but for azimuth angles we restricted the points to
near-horizontal directions (within 0.2 radians) to avoid the increasing
azimuth angle errors near the zenith. For each column ID number,
we calculated the mean azimuth angle of all points of that column ID
number. Then, we calculated the median difference between adjacent
columns, which is an estimate for the azimuth resolution that is robust
to outliers (i.e. empty columns). We calculated the azimuth angle for
any column ID number that did not contain any points by adding
the azimuth resolution to the neighboring column ID number. This
process was applied similarly to the zenith angles, but the instrument
design required us to calculate and assign empty pulses for the ‘‘left’’
and ‘‘right’’ sides of the scanner separately. These left and right sides
correspond to the two faces of the scanner, since a single rotation
of the scanner’s mirror scans the entire vertical field of view (one
entire column) before rotating horizontally to scan the next column.
The two opposite sides of the zenith are not perfectly aligned, and not
distinguishing the two would result in an error of several resolution
steps. Therefore, we estimated the zenith angles for each side of the
zenith separately. Finally, after having assigned a nominal azimuth and
zenith angle to every column and row ID number, respectively, we filled
in row–column ID combinations that were not present in the data with
empty pulses with an arbitrarily large range (200 m) and converted the
point cloud back to Cartesian coordinates.

2.4. Silhouette to total area estimation

2.4.1. Overview
The following section describes our new method to estimate the

silhouette to total area ratio at forest stand level (STARf ). We based
our method on already existing methods to estimate leaf area density
from TLS point clouds. STARf of each stand was estimated in two steps
(Fig. 3). First, we established a voxel grid on the plot and estimated
the attenuation coefficient for each voxel in the grid by ray tracing.
The leaf area density, and consequently the LAI of the forest stand,
was obtained from that attenuation coefficient. Then, the voxel-wise
attenuation coefficient was used for a second ray tracing step, which
we used to calculate the diffuse interceptance (𝑖𝐷), and finally STARf
was obtained as

STARf = 𝑖𝐷∕(4𝐿). (2)

The leaf area density estimation followed Pimont et al. (2018), and
in addition we applied our newly developed method to correct for
partial hits in the lidar data (Schraik et al., 2021b). The method of
leaf area density estimation is based on the assumption that leaves are
randomly distributed inside each voxel (i.e., the number of leaves in
a voxel is Poisson distributed). Therefore, leaf area estimates do not
account for clumping inside voxels, which concerns shoot clumping
in conifer stands, but also clumping at branch scale, which can be
significant for broadleaved tree species (Béland and Baldocchi, 2020)
and potentially also for conifer species. The computations were carried
out on the Puhti server of the Finnish IT Center for Science (CSC).

2.4.2. Leaf area estimation
We defined a voxel grid as a square cuboid with faces parallel to the

point clouds’ coordinate system axes, which in turn were approximately
aligned with geographic North (Fig. 2). Horizontally, the cuboid had
side length of 25 by 25 m, and vertically it extended from −10 m (w. r.
t. to the Z-coordinate from the ground below the first TLS scan) 50 m
upwards. The cuboid was centered between the first and thirteenth TLS
scan position, which marked the Southwestern (SW) and Northeastern
(NE) corners of the plots. The azimuth direction of the line between
the SW and NE corners of the plots was assumed to be exactly 45°.
This square cuboid formed the bounding box of the voxel grid, i.e., a
grid of cubic cells, with a voxel side length of 0.2 m. We chose the
voxel size of 0.2 m based on previous findings which showed that
within-voxel clumping increases significantly at voxel sizes larger than
20 cm (Schraik et al., 2021a). At 10 to 20 cm voxel size, voxels are
more likely to be either gaps or filled with leaves, as this matched the
typical gap size between branches of Norway spruce. At voxel sizes over
20 cm, most voxels contain a mixture of larger gaps and foliage, which
considerably increased within-voxel clumping (Schraik et al., 2021a).

The TLS point clouds, which included the recovered empty pulses,
were converted into rays, i.e., the TLS data from a plot were separated
into single scans, and the scanner location, or starting coordinates
of the rays, were noted. We estimated the attenuation coefficient for
each voxel and for each scan using the modified contact frequency
(MCF) method as described in Pimont et al. (2018). We used the voxel
traversal algorithm by Amanatides and Woo (1987) for ray tracing.
For each voxel, the MCF approximates the attenuation coefficient by
measuring the path length of each ray that traversed the voxel, and
noting whether or not the ray has been intercepted inside the voxel.
The basic principle of estimating attenuation from lidar point clouds
is to calculate the ratio of the fraction of hits in a voxel 𝐼 =

𝑁𝑖
𝑁

and
the mean path length 𝑧 that rays traveled within the voxel as (Pimont
et al., 2018)

𝜆 ≈ 𝐼
𝑧
=

∑

𝟏𝑧<𝛿
𝑧
∑

𝟏
=

∑

𝟏𝑧<𝛿
∑

𝑧
, (3)

where 𝟏𝑧<𝛿 is an indicator function that takes the value 1 when a pulse
is intercepted inside a voxel, and 0 otherwise. The subscript is denoted
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Fig. 3. Schematic of our proposed method to estimate STARf . The TLS point clouds are used to estimate leaf area density on a voxel grid. The leaf area index of a plot is the
sum of leaf area density, multiplied by the voxel volume and divided by the plot area. In a subsequent ray tracing step, directional interceptance is calculated based on the leaf
area density. The directional interceptance is averaged over the hemisphere to obtain diffuse interceptance. Finally, STARf is calculated as the ratio of diffuse interceptance to
four times the leaf area index.

by the free path length 𝑧 being smaller than the theoretical path length
to the end of the voxel 𝛿. The sum of 𝟏𝑧<𝛿 is the number of pulses that
are intercepted in a voxel, and similarly, the sum of 𝟏 is the number of
all pulses that enter the voxel.

Lidar data, however, has some properties that introduce theoretical
biases when applying the MCF method. First, laser beams decay after
the first contact and thus do not always explore the entire voxel. This
is typically considered by assuming that the unexplored volume of a
voxel is statistically represented by the explored volume of the voxel.
Secondly, the size of attenuating elements is finite in real vegetation,
which would lead to considerable bias because Eq. (3) assumes in-
finitesimal element size. Thirdly, the number of beams that traverse a
voxel is finite and sometimes even very small, which can cause biases.
Pimont et al. (2018, section 3.5 therein) addressed the second and third
mentioned biases by replacing the path length 𝑧 by the effective path
length 𝑧𝑒 (accounting for finite element size), and by introducing a term
to correct attenuation coefficient when the number of beams is small
as

𝜆 = 1
∑

𝑧𝑒

(

∑

𝟏𝑧<𝛿 −
∑

hits 𝑧𝑒
∑

𝑧𝑒

)

, and (4)

𝑧𝑒 = −
𝑙𝑜𝑔(1 − 𝜆1𝑧)

𝜆1
, (5)

where 𝟏𝑧<𝛿 is an indicator function that takes the value 1 if a ray
is intercepted in the voxel, and 0 otherwise, 𝑧𝑒 is the effective free
path length, calculated from the free path length 𝑧 and the attenuation
coefficient for a single scattering element 𝜆1, which is a constant factor
that depends on leaf and voxel size. We set 𝜆1 to 0.0382, which
corresponds to an expected leaf size of about 3 cm2 at 0.2 m voxel size.
This value of 3 cm2 is the average projection area of a Norway spruce
shoot, based on previous measurements (Schraik et al., 2021a), and we
assumed that 3 cm2 is reasonably close to the leaf area of all species in
our data, since to our understanding, 𝜆1 only causes significant changes
if its order of magnitude changes.

2.4.3. Partial hit correction
An additional bias source for MCF in TLS is the beam size effect,

that is, the fact that the laser beam has a finite size in the order of
several millimeters or centimeters, which causes targets not centered in
the beam to trigger a return. This violates the assumption in the MCF
that the probes have an infinitesimal size, and leads to overestimation
of attenuation coefficient and leaf area (Soma et al., 2018; Schraik
et al., 2021a). We used the partial hit correction method proposed
by Schraik et al. (2021b), which estimates the fraction of each TLS
return that is covered by vegetation targets, also called the per-pulse
cover fraction. This correction is based on applying a one-inflated beta

regression model to the return intensity, which estimates the per-pulse
cover fraction for each leaf or needle hit. Schraik et al. (2021b) reported
regression coefficients for Norway spruce, Scots pine, and silver birch.
We used the regression coefficients for silver birch in all broadleaved
plots in this study.

We applied the per-pulse cover fraction correction as a weight
in Eq. (4) to express that the path length of a pulse that partially
hit a target is the per-pulse cover fraction-weighted average of the
intercepted path length, and the theoretical path length to the edge of
the voxel. This correction assumes that a partial hit will travel up to the
boundary of the voxel without being intercepted by any other target,
which is below the longitudinal object separation threshold, since our
TLS instrument’s pulse is about 4 ns long, which corresponds to about
60 cm in scan range. Therefore, objects which are separated by less
than 60 cm become indistinguishable from each other. For simplicity,
we assumed that a fraction of the pulse (as indicated by the per-pulse
cover fraction) is intercepted in the voxel, and the remaining fraction
travels to the nearest edge of the voxel. Combining the per-pulse cover
fraction weight 𝑤𝑐𝑓 with Eqs. (4) and (5), we get

𝜆 = 1
∑

𝑧𝑒

(

∑

𝑤𝑐𝑓 𝟏𝑧<𝛿 −
∑

hits 𝑧𝑒
∑

𝑧𝑒

)

, and (6)

𝑧𝑒 = −
𝑙𝑜𝑔(1 − 𝜆1(𝑧𝑤𝑐𝑓 + 𝛿(1 −𝑤𝑐𝑓 )))

𝜆1
, (7)

where the number of hits is modified by the per-pulse cover fraction
to account for partial hits, and the effective free path length is an
interpolation between the free path length 𝑧 and the theoretical path
length 𝛿 that the ray would travel if it were not intercepted. The leaf
area density for each scan 𝑙 and voxel 𝑗 was calculated as

𝐿𝑗,𝑙 =
𝜆𝑗,𝑙

𝐺(𝜃𝑗,𝑙)
, (8)

with 𝐺, the projection area of unit leaf area at the zenith angle
𝜃𝑗,𝑙 between the scanner position and the voxel. We describe the
parameterization of 𝐺(𝜃𝑗,𝑙) in Section 2.4.4. Note that leaf area esti-
mates do not include clumping at scales below the voxel level, there-
fore the leaf area estimates are not corrected for shoot clumping in
conifers or branch scale clumping in all tree species. This was done to
maintain comparability with effective LAI in hemispheric photographs
(Section 2.5).

Finally, the leaf area density was averaged over all 16 scans per plot,
weighted by the number of rays per scan 𝑛𝑙 that traversed each voxel
as

𝐿𝑗 =
∑16

𝑙=1 𝐿𝑗,𝑙𝑛𝑙
∑16

𝑙=1 𝑛𝑙
. (9)
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Table 2
Leaf inclination angle statistics for parameterizing the G-function. St.D. stands for standard deviation. For Norway spruce and
Scots pine, we used leaf angle distribution functions from de Wit (1965), parameterized for the beta distribution by Weiss
et al. (2004) because no direct measurements were available. For other species, we directly used measured mean and standard
deviation.
Tree species Mean St.D. De Wit type (if used) Reference

Norway spruce 26.8 32.54 Planophile Janoutová et al. (2019), Weiss et al. (2004)
Scots pine 57.3 61.22 Spherical Stenberg et al. (1993), Weiss et al. (2004)
Birch 57.88 17.49 – Raabe et al. (2015)
Alder 51.07 21.05 – Pisek et al. (2013)
Aspen 41.75 23.13 – Pisek et al. (2013)
Ash 50.56 17.51 – Pisek et al. (2022)
Oak 35.80 19.44 – Pisek et al. (2013)
Hornbeam 38.19 16.88 – Pisek (unpublished data)

We calculated the LAI per plot as the sum of leaf area density over all
voxels in the plot, multiplied with the voxel volume 𝑉 , and divided by
the stand area 𝐴𝐶 = 25 × 25𝑚2 as

𝐿 =
𝑁
∑

𝑗=1
𝐿𝑗𝑉

1
𝐴𝐶

. (10)

2.4.4. G-function and leaf angle distribution
The directional projection area of unit leaf area (𝐺) was parame-

terized with the two-parameter beta distribution (Wang et al., 2007),
which required mean and standard deviation of leaf inclination angles.
We obtained those leaf angle statistics from the literature (Table 2), and
parameterized a single G-function for each plot based on the dominant
species. For each voxel and each TLS position, we calculated the zenith
angle 𝜃 between the TLS position and the voxel midpoint. Then, using
the beta distribution, we parameterized the probability density of leaf
inclination angles 𝑓 (𝜃𝐿). To obtain 𝐺(𝜃), we integrated the projection
area of all leaf inclination angles as (Wang et al., 2007)

𝐺(𝜃) = ∫

𝜋∕2

0
𝐴(𝜃, 𝜃𝐿)𝑓 (𝜃𝐿)d𝜃𝐿 (11)

𝐴(𝜃, 𝜃𝐿) =

⎧

⎪

⎨

⎪

⎩

cos(𝜃) cos(𝜃𝐿) if | cot(𝜃) cot(𝜃𝐿)| > 1, and

cos(𝜃) cos(𝜃𝐿)
(

1 + 2
𝜋
(tan(𝛹 ) − 𝛹 )

)

, otherwise,

(12)

with 𝛹 = arccos(cot(𝜃) cot(𝜃𝐿)). For all broadleaved species, leaf an-
gle statistics were available in the literature, and therefore we used
the species-specific parameters directly in the beta distribution. As of
writing, there were, to the best of our knowledge, no scientific studies
that published shoot angle distribution parameters on Norway spruce
and Scots pine. Janoutová et al. (2019, Fig. 2 therein) shows shoot
angle measurements of Norway spruce, which average at around 27°,
but there was no information available from which standard deviation
could be deduced. The mean shoot angle suggests a planophile shoot
angle distribution for spruce (Janoutová et al., 2019). Scots pine was
reported to exhibit a spherical shoot angle distribution (Stenberg et al.,
1993). Thus, for Scots pine and Norway spruce we used the spherical
and planophile leaf angle distribution types of de Wit (1965), which we
obtained by using the parameters from Weiss et al. (2004) (Table 2).
Note that for conifer species, we used the shoot angle distribution, as
the shoot can be considered the basic scattering element in conifer
canopies (Rautiainen and Stenberg, 2005).

2.4.5. Estimation of diffuse interceptance
The voxel grid containing the averaged leaf area density was used to

create synthetic orthogonal projection images, where each pixel corre-
sponded to a ray traversing through the voxel grid, and the pixel value
corresponded to the intercepted energy 𝑖 according to the Beer–Lambert
law in each voxel as

𝑖 = 1 −
𝑀
∏

𝑗=1
𝑒𝑥𝑝−𝜆𝑗𝛿𝑗 = 1 −

𝑀
∏

𝑗=1
𝑒𝑥𝑝−𝐺(𝜃)𝐿𝑗𝛿𝑗 , (13)

with the attenuation coefficient 𝜆𝑗 , path length 𝛿, leaf area density 𝐿
and leaf projection function 𝐺 for each voxel 𝑗 that a ray traversed at
zenith angle 𝜃, and 𝑀 denoting the total number of voxels that the ray
traversed. The rays entered the voxel grid from the top and were evenly
spaced in a grid with 9.9 cm spacing. On stand level, STARf must be
calculated from a horizontally infinite canopy, therefore, if rays would
exit the voxel grid at any horizontal boundary, they were set to re-enter
the voxel grid at the same position but on the opposite side of the voxel
grid. The pixel value (between 0 and 1) was interpreted as the fraction
of the pixel that is covered by vegetation targets, and the directional
interceptance was calculated as the mean of the pixel values.

We obtained the diffuse interceptance (𝑖𝐷) of each stand as the nu-
merical integral of the directional interceptance over the hemisphere,
calculated at 100 evenly spaced angles throughout the hemisphere (10
azimuth and zenith angle steps, respectively).

2.5. Comparison measurements of leaf area index

We obtained measurements of effective LAI using 16 hemispheric
photographs (HP) per plot. The HPs were thresholded using the method
by Nobis and Hunziker (2005), and divided into zenith angle rings,
from which the gap fractions 𝑇𝑘 were calculated as the sum of (white)
sky pixels to total number of pixels per ring. The effective LAI was
obtained as

𝐿𝑒 = −2
5
∑

𝑘=1
ln(𝑇𝑘) cos 𝜃𝑘𝑊𝑘, (14)

with the weights 𝑊𝑘 = sin 𝜃𝑘𝑑𝜃𝑘 (normalized to
∑5

𝑘=1 𝑊𝑘 = 1) for five
concentric zenith rings that had median (and range) of zenith angles 𝜃𝑘
as 10.7° (0-15°), 23.7° (15-30°), 38.1° (30-45°), 52.8° (45-60°), and 66.6°
(60-73°). These angles match closely those used by the LAI-2000 and
LAI-2200 instruments, and the calculations were done using weights
similar to the LAI-2200 instrument (LI-COR, Inc., 2012).

2.6. Forest variables

We examined the relationship of STARf with eight forest variables.
The tree height, mean DBH, basal area and number of trees per hectare
were described in Section 2.1, and effective LAI was described in
Section 2.5. In addition, we calculated crown length from the TLS data,
and diffuse non-interceptance and vertical canopy gap fraction from
hemispherical photographs. For the crown length, we first calculated
the vertical leaf area density profile, and then calculated the mean
crown length as the sum of voxel slices which contained more than
25% of the leaf area relative to the slice with the maximum leaf
area. 25% was chosen so that the estimate would be robust to noise
and the rare case that tree stems were not excluded by the leaf–
wood separation. The resulting crown length likely differs from crown
lengths measured in the field, but we expected it to nevertheless be a
suitable proxy for actual crown length. The vertical canopy gap fraction
was the uppermost zenith ring’s gap fraction from the hemispherical
photographs, which we used as a proxy for vertical canopy cover.
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Table 3
Observed STARf by dominant species and site, summarized by mean, standard devia-
tion, and number of plots (n). Species which occurred in multiple sites were summarized
altogether. Species with only one plot do not have a standard deviation.
Species Site Mean St.dev. n

Pinus sylvestris all 0.086 0.016 8
Hyytiälä 0.087 0.018 6
Järvselja 0.082 0.007 2

Picea abies all 0.082 0.013 11
Hyytiälä 0.072 0.007 6
Järvselja 0.095 – 1
Bílý Kříž 0.092 0.009 4

Betula sp. all 0.109 0.034 6
Hyytiälä 0.125 0.029 4
Järvselja 0.076 0.010 2

Alnus glutinosa Järvselja 0.071 0.007 2

Populus tremula all 0.081 0.014 3
Järvselja 0.088 0.010 2
Lanžhot 0.068 – 1

Quercus sp. Lanžhot 0.068 0.002 6

Fraxinus excelsior Lanžhot 0.054 – 1

Carpinus betulus Lanžhot 0.066 – 1

In addition, we calculated the diffuse non-interceptance (DIFN) from
hemispheric photographs as DIFN =

∑5
𝑘=1 𝑇𝑘𝑊 ′𝑘, with the weights

𝑊 ′𝑘 = sin 𝜃𝑘 cos 𝜃𝑘𝑑𝜃𝑘 (normalized to ∑5
𝑘=1 𝑊 ′𝑘 = 1). The data for

this analysis, containing values for STARf , the above mentioned forest
variables, and species shares, can be found in supplementary file S1.

2.7. Satellite data

For each of our study areas, we obtained a cloud-free Landsat 8 OLI
image that was temporally closest to the field campaign. The images
were acquired on 31th Aug 2019 for Bílý Kříž and Lanžhot, 28th Jun
2019 for Hyytiälä, and 25th Jun 2020 for Järvselja. We used Collection
2 Level-2 surface reflectance (Earth Resources Observation And Science
(EROS) Center, 2013) downloaded from U.S. Geological Survey (2000)
for each plot. We used spectral bands 2–7 of OLI, spanning the region
of 450–2290 nm. For each plot, we used the value from a 30 m
OLI pixel that intersected with the plot center. We compared single
pixels to the average of two by two pixels, and found only negligible
differences owing to the homogeneity of the stands and the fact that
plots were located at least 30 m away from the nearest stand border.
Accurate coordinates (sub-meter accuracy) for the plot centers were
found by matching treetops in TLS data with those found in airborne
laser scanning data collected from the study areas.

3. Results and discussion

3.1. Stand STAR

We calculated TLS-based STARf for 38 plots in four study areas in
Finland, Estonia and Czech Republic. Overall, STARf ranged between
0.054 and 0.143, with an average of 0.08 and a standard deviation
of 0.02 ( Table 3). On average, conifers had a higher STARf than
broadleaved trees, at stand level, however, these values do not include
shoot level clumping, and therefore the overall STAR of spruce and pine
may be similar or slightly lower than the broadleaved plot STAR values.
On the other hand, broadleaved trees have been shown to exhibit
branch scale clumping, which occurs below the voxel scale (Béland
and Baldocchi, 2020). Conifer species likely also exhibit branch scale
clumping to some degree. The lowest STARf values of around 0.054 to
0.069 were found throughout Lanžhot, where stands were dominated
mostly by oak, one pure ash plot, and two mixed plots dominated by
hornbeam and aspen, respectively.

Scots pine exhibited the highest STARf values, with slightly higher
values in Hyytiälä (0.087) than in Järvselja (0.082). In addition,
Hyytiälä pine plots exhibited the highest variation, with a relative
standard deviation (RSD) of 21%. The high variation is greatly influ-
enced by a single plot with mean tree height of about 8 m, which had
the exceptionally high STARf of 0.12. Without this plot, the mean of
Hyytiälä pine plots would have been 0.080, with a RSD of 6%. Mean
STARf for pine decreased to 0.048 when taking into account shoot
clumping, assuming a commonly used shoot clumping factor of 0.6.

Norway spruce exhibited considerably different STARf values in the
different study sites. The boreal Hyytiälä site had a mean STARf of
0.072 (0.043 with shoot clumping), while the Järvselja and Bílý Kříž
sites had 0.095 and 0.093 (0.057 and 0.056 with shoot clumping),
respectively. This difference could stem from the lower LAI but also
higher occlusion in the Estonian and Czech sites, as the spruce trees in
Bílý Kříž were taller on average than those in Hyytiälä, which would
lead to lower point cloud coverage, especially in the upper portions
of the canopy. Another possible explanation is that it may be due
to different crown morphology between boreal and temperate spruce
trees.

In birch plots, STARf ranged from 0.069 to 0.143, which was the
largest range in STARf values we observed. Among the four birch plots
in Hyytiälä, three had exceptionally high STARf values with an average
of 0.140. However, there was an exceptional birch plot in Hyytiälä that
had STARf of 0.083, and was in this regard closer to the birch plots
in Järvselja, which had a mean of 0.077 and 14% standard deviation.
This exceptional birch plot had a denser spruce understory than the
other birch plots in Hyytiälä, which contributed about 0.4 to the LAI,
according to the TLS leaf area estimates. Some spruce understory was
also present in other Hyytiälä birch plots, but there it only contributed
up to 0.16 to LAI. Another possible explanation is that the other three
birch plots were underestimated in their LAI compared to the LAI from
hemispherical photography (Fig. 5), which would cause an increase
in the STARf value. The reduced density of the birch plots with high
STARf can be seen simply from the point counts of the downsampled
point clouds (which were cropped to cover only the plot area), as they
had about 212 to 331 thousand points, compared to the about 530
thousand points in other plots.

The most homogeneous results were found in the Lanžhot site.
There, stands were dominated by oak, European ash, hornbeam, and as-
pen, with field maple or hornbeam mixed in. The most common species
was oak, for which we observed a mean STARf of 0.068, with only
2.0% RSD. The average for all Lanžhot plots is slightly lower, at 0.066,
with 7.1% RSD, which was mainly caused by the ash plot in the site,
which had a low STARf of 0.054. Without the ash plot, the mean STARf
for all Lanžhot plots was 0.067, with 2.5% RSD. Considering the tree
heights ranging from 18.5 m to 40 m (and height roughly representing
differences in stand age), STARf appeared to remain relatively constant
throughout the plots in Lanžhot regardless of species or height. The
younger oak stands had a rather shallow canopy with a high degree
of homogeneity, while canopies in the older stands were dominated by
few large and tall tree crowns. The Lanžhot plots with smaller LAI (to
an observed minimum of 2.8) also had smaller clumping index (min.
0.61), whereas the plots with relatively high LAI (max. 3.4) had higher
clumping indices (max. 0.91). The only exception was a clumped and
dense ash stand (LAI=4.0, CI=0.66), which also had an exceptionally
low STARf=0.05 for Lanžhot. The other eight plots showed that stands
with low LAI tended to also have lower clumping index in our data.
What the Lanžhot plots show us is that clumping can occur in young
broadleaved stands where the canopy is very shallow, where the canopy
elements may well be randomly distributed horizontally, but vertically
they are highly clumped.
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Fig. 4. Relationship between stand STARf and different forest variables which were measured in the field. Triangle symbols represent conifer plots (Norway spruce and Scots
pine), and circle symbols are broadleaved plots. The colors refer to the study sites.

3.2. Forest variables and STAR𝑓

We examined the relationship between STARf and eight easily mea-
surable forest variables to determine whether STARf may be estimated
indirectly. Since STARf is determined by the LAI, clumping index, and
leaf angle distribution, which are in turn usually species-specific vari-
ables and closely related to other forest descriptors such as stand age or
biomass, we expected to potentially find relationships that would allow
regression of STARf using forest variables that are more commonly
measured or do not require expensive equipment or data collection and
processing. Such an indirect estimate would ease applying knowledge
about STARf to new study sites, or to map STARf over large areas. The
relationship between STARf and forest variables in our data indicates
that conifers have a seemingly distinct trend towards decreasing STARf
values with increasing tree height, crown length, mean stem diameter,
basal area and decreasing number of trees per hectare (Fig. 4). This is
contrary to broadleaved plots, which, especially in Lanžhot, indicate
a STARf that is nearly independent from stand characteristics and
has generally little variability. STARf in broadleaved plots in Järvselja
and Hyytiälä exhibited more variability, but also showed no clear
relationship with other forest variables. However, the broadleaved plots
in our data were diverse, spreading over six major tree species, with
several species only represented in one or two plots.

The clearest candidate for estimating STARf would be LAI, since
it is itself a factor in calculating STARf . However, to obtain LAI
from optical measurements made in the field, one would require an
accurate measurement of the clumping index, which can be difficult
to obtain directly (Fang, 2021). We found the highest absolute Pearson
correlation coefficients in mean DBH (−0.40), diffuse non-interceptance
(0.38), effective LAI (−0.36), tree height (−0.34), and vertical gap
fraction (0.33). Crown length, basal area, and stem number had slightly
lower absolute correlation coefficients, which ranged from 0.22 to
0.31. Given our limited sample size, and the plot selection criteria
(which imposed an upper limit to canopy density to avoid excessive
occlusion in TLS point clouds), we note that more field measurements
are required to accurately examine the relationship between STARf
and forest variables, especially for broadleaved-dominated forests. The
fact that the effective LAI is not the single most correlated forest

variable, as we would have expected, is likely because it was measured
using a different technology, i.e., hemispherical photography rather
than TLS. We conclude that although it seems possible to indirectly
estimate STARf using variables commonly measured in forest inventory
or hemispherical photography, our results indicate that forest structure
may be best quantified using lidar point clouds.

3.3. Comparison to hemispherical photography

We compared the TLS-derived LAI to the effective LAI we obtained
through hemispherical photography because neither LAI accounts for
shoot clumping, and thus, in principle, should be similar if there
were no higher level clumping. Although TLS and other active sens-
ing techniques provide new ways to explicitly and potentially more
accurately quantify forest structure in 3D, hemispheric photography
remains one of the best established and most efficient and accessible
means of measuring canopy structure (Chianucci, 2019). In the absence
of destructive measurements, hemispherical photography provided a
valuable means of validating our TLS-based leaf area estimates.

In Hyytiälä, LAI of Scots pine stands showed good agreement be-
tween TLS and HP, with a mean difference (MD) of −0.13 and a root
mean square deviation (RMSD) of 0.45. In contrast, the LAI of pine
stands in Järvselja were slightly overestimated by TLS (MD=-0.53),
which may be due to the sparser pine stands in this site. The Norway
spruce plots showed a contrasting trend between Hyytiälä and the other
sites, with the Hyytiälä LAI being only slightly underestimated by the
TLS (MD=0.09), whereas in the Czech Republic and Estonia the TLS
considerable underestimated LAI (MD=1.29 and 2.02, respectively).
The TLS-derived LAI in Lanžhot appeared to be overestimated in plots
with low LAI, whereas plots with average and high LAI were underesti-
mated. This may partially explain the low variation in STARf in Lanžhot
plots. Although we cannot exclude a possible influence of occlusion in
these plots, only two plots in Lanžhot showed non-negligible percentage
(0.1%–1%) of voxels which were traversed by less than five rays, a limit
which has been shown to result in sufficiently unbiased estimates of
leaf area density (Pimont et al., 2019). Possible reasons for the TLS-
leaf area estimates’ lack of agreement with hemispherical photography
estimates could be the partial hit correction using the per-pulse cover
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Fig. 5. Comparison between TLS-derived leaf area index (LAI) and HP-derived effective
plant area index. The TLS-derived values represent leaf area index, i.e. they do not
contain woody elements, and they account for clumping at scales above 20 cm. The
HP-derived values contain woody elements, as it was not possible to separate them
from leaves, and they do not account for clumping.

fraction, for which coefficients were only available for birch (Schraik
et al., 2021b). Since the per-pulse cover fraction correction incorporates
both structural and spectral properties of the lidar measurement into
a regression model, it is possible that the different shoot structure
and leaf optical properties of oak and other species in Lanžhot were
not very suitable for this correction without separate measurements
of the regression coefficients for those species. In addition, the leaf
angle distribution may have influenced the LAI estimates in some of
the Lanžhot plots. We relied on leaf angle parameters published in
the literature, however, for some species it was not possible to obtain
parameters that match the region as well as the season, as is the case
with hornbeam, for which we relied on measurements that were done
on site, but early in the vegetation period, whereas TLS measurements
were done late in the vegetation period. In Järvselja, the TLS-derived
LAI reached an apparent maximum at a value around 3, possibly due
to occlusion, and did not increase anymore, while the HP-derived LAI
indicated higher values (Fig. 5).

One likely factor explaining differences between LAI from hemi-
spheric photographs and TLS is the exclusion of woody components
in the TLS-based estimates, whereas the hemispheric photograph-LAI
includes wood area, and is thus actually a plant area index. Separating
leaf and wood was not possible from hemispherical photos because
most of the stands were too dense, rendering the vegetation pixels
very dark (pixel values close to zero), and thus there was insufficient
dynamic range for separating leaf and wood pixels based on their color.
We excluded wood points from our TLS data because the presence of
wood points in a voxel can cause considerable bias to LAI estimates (Pi-
mont et al., 2019). A solution to this would be to model the wood
area separately using quantitative structure models (e.g. Raumonen
et al., 2013), and including the tree surface area in both the estimation
of total leaf area while accounting for the wood volume reduction
of voxels (Pimont et al., 2019) as well as in the ray tracing step
for calculating diffuse interceptance. We expect STARf values would
decrease if wood area were taken into account, since the contribution
of wood area to the total plant area is greater than to the diffuse
interceptance, as woody parts tend to be shaded by leaves. The woody

components can make up between 5% and 35% of the total plant
area (Gower et al., 1999). Considering this range of wood fraction,
the leaf area index estimates from hemispheric photography would be
even smaller than the TLS estimates. Such an increased difference could
indicate that the TLS method to estimate leaf area is closer to the true
leaf area index than hemispheric photography because the TLS method
is robust against clumping at scales above the voxel size.

3.4. Limitations and uncertainty of the proposed method

Our method is not limited to voxel-based quantification of leaf
area. Any three-dimensional reconstruction would be suitable for our
method, provided it retains the spatial distribution of canopy elements.
The use of TLS data in our study, similarly, was a matter of pragmatic
choice that was done because TLS provides extremely high accuracy
data and resolution. However, lidar scanning from unoccupied aerial
vehicles or mobile lidar systems, may, in principle, provide sufficient
accuracy to produce a good estimate of leaf area density, and thus
STARf . We hypothesize that a key factor influencing the potential
of close range aerial and mobile lidar systems is the noise in point
coordinates, and whether a negative effect of increased positional noise
on leaf area density estimation can be mitigated by scanning at high
resolution. Additionally, one needs to consider the beam footprint of
any lidar system and account for effects of beam size in leaf area den-
sity estimation. Future research should investigate suitable acquisition
parameters and partial hit correction for these lidar systems and their
effects on leaf area density, STARf and CI estimation.

The estimates of leaf area density do not include clumping below
the voxel scale (20 cm). This limitation is inherent to current lidar
measurement and processing methods, as leaves and needles cannot, to
date, be reconstructed from point cloud data. The relatively large size of
terrestrial lidar beams, which are the most accurate and small footprint
available, compared to many broad leaves, and virtually all conifer
needle-leaves, make geometrically explicit reconstruction impossible.
An alternative to using voxel-based leaf area density estimates could
be indirect reconstruction. With this approach, one could avoid relying
on the Beer–Lambert law for within voxel attenuation to calculate
directional transmittance, and thus relax the assumptions of random
distribution of infinitely small foliage within voxels. Several attempts
at simulation, for example, based on point density (Janoutová et al.,
2019) or position within a tree quantitative structure model (Åkerblom
et al., 2018), could be combined with a voxel-based leaf area density
method to achieve an indirect reconstruction method.

Another weakness of TLS point clouds is the potential of occlusion
in the upper parts of the canopy (Schneider et al., 2019). In our data,
less than 1% of voxels were occluded, that is, traversed by less than 5
rays (Pimont et al., 2018). This may partly be due the exceptionally
high scan resolution of 0.23 mrad that we used. However, uneven
sampling of the upper canopy or the inner volume of large tree crowns,
could have introduced estimation errors in our data.

Separating leaf and wood points was necessary for estimating leaf
area density, as the distribution of woody elements in voxels cannot be
considered random and therefore using wood points would introduce a
significant bias (Pimont et al., 2019), as was mentioned in Section 3.3.
The leaf–wood separation algorithm LeWoS has been shown to accu-
rately classify trunks and large branches (Wang et al., 2020a), and
overall providing balanced estimates of leaf and wood points (Wu et al.,
2020; Hui et al., 2021). Locally, however, some random errors may
have occurred within tree canopies, as our visual inspection indicated
the occurrence of minor errors in less than 5% of trees.

Bias in the leaf area density estimates would propagate further into
STARf and clumping index. However, STARf and clumping index may
be somewhat less biased than the leaf area density estimates, as the
former describe the spatial distribution of leaf area. Thus, a global bias
in leaf area density may lead to only a small bias in clumping index
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Fig. 6. Theoretical relationship between leaf area index, STAR, and clumping index
(CI). The lines denote the theoretical STAR at different clumping index values, which
were calculated from LAI using Beer’s law with a fixed G-value of 0.5.

and STAR, as a bias in leaf area density and the propagated bias in
directional interceptance partially cancel each other out.

3.5. Relationship between STAR𝑓 , LAI and clumping index

Most plots had stand-level STARf values between about 0.06 and
0.10. This, however, does not directly mean that they all exhibit similar
levels of clumping, as STARf is a summary variable of canopy structure
and depends on leaf area index, clumping index, and the leaf angle
distribution. At increasing leaf area index, STARf will decrease at
constant clumping index. This is due to the relationship between STARf

and the leaf area index STARf =
𝑖𝐷
4𝐿

=
𝑖𝐷𝛺
4𝐿𝑒

, and the fact that 𝑖𝐷 cannot
exceed one, hence there is a theoretical maximum value of STARf at a
given LAI. At constant STARf , a stand with small LAI exhibits a higher
degree of clumping than a stand with large LAI. For illustration, we
analyzed the relationship between LAI, clumping index, and STARf . We
calculated the theoretical diffuse interceptance as a function of CI, LAI,
and leaf angle distribution (Eqs. (1), and (12)) to obtain the relationship
between CI, LAI and STARf . Inverting this relationship numerically
with CIs calculated in 0.01 increments, and LAI in 0.1 increments, and
using k-nearest neighbor interpolation (k=4), we found CIs between
0.53 and 0.96 in our plots (Fig. 6, with lines indicating the theoretical
STARf of a spherical leaf angle distribution).

The lowest average clumping indices were found in pine stands
in Järvselja and spruce stands in Hyytiälä, with an average CI of
0.60 (range 0.54 to 0.67) and 0.63 (range 0.57 to 0.75), respectively.
In broadleaved species, the Lanžhot plots were most clumped, with
CIs ranging from 0.53 to 0.76, with oak exhibiting CIs throughout
the range, while other species’ plots had CIs over 0.64. In Järvselja,
broadleaved stands were moderately clumped, at CIs between 0.70 and
0.79, while the spruce plot had a relatively high CI of 0.82. The spruce
plots in Bílý Kříž were also moderately clumped with CIs between 0.7
and 0.77. The most random canopy was observed in birch plots in
Hyytiälä, where the plots had CIs of 0.78, 0.85, 0.89, and 0.96. The
plots with the high clumping indices over 0.8 correspond to the three
birch plots discussed in Section 3.1.

Overall, we observed considerable levels of clumping throughout
the sites in the Czech Republic, Estonia and Finland. The clumping
indices reported here quantify clumping exclusively at levels above
the voxel scale (i.e., 20 cm). Therefore, real clumping indices are
likely even smaller, if one takes into account shoot level clumping for
conifers, and branch level clumping (Béland and Baldocchi, 2020) for
all species.

3.6. Influence of stand STAR and clumping index on forest reflectance

Forest structure has a considerable influence on the radiation regime
by governing light interception and transmission through a canopy.
STARf should indicate at least some degree of correlation with forest
surface reflectance, as it quantifies forest structure in a single value
per stand that depends on the LAI, clumping index, and the leaf angle
distribution. Besides STAR, we also analyzed the correlation between
clumping and reflectance, since the influence of stand scale clumping
on reflectance has not yet been widely studied.

STARf decreases with increasing LAI and decreasing clumping in-
dex. Therefore, at a given LAI, a more clumped canopy will have the
smaller STARf value, and at a given clumping index, the stand with
higher LAI will have the smaller STARf value. With increasing LAI, the
optical signal is increasingly dominated by the canopy relative to the
forest floor (Hovi et al., 2022). Clumping influences the directional gap
fractions as well as the photon recollision probability of a canopy at a
given LAI. Even though a clumped canopy tends to be darker due to an
increased photon recollision probability, it also tends to have higher
transmittance compared to a canopy with randomly distributed ele-
ments (Pisek et al., 2010). This increasingly open canopy exposes more
of the often bright forest floor to sunlight and the sensor, which might
increase the overall surface reflectance despite the darker clumped
canopy (Spanner et al., 1990).

STARf showed varying relationships with surface reflectance for
different species and sites; Pearson correlation coefficients 𝑟 ranged
from −0.82 to 0.78. The wide range of 𝑟 likely indicates the variable
effect of the forest floor in more clumped stands. We can analyze the
underlying cause for these fluctuating relationships in terms of the
PARAS model (Rautiainen and Stenberg, 2005). This model is based
on the photon recollision probability, which was used to derive STARf
in this study. The PARAS model uses the gap fractions in illumination
and view directions to quantify the contribution of the forest floor to
reflectance. The canopy contribution is quantified by the interceptance
in illumination direction and another term that depends only on the
photon recollision probability as a structural variable. In this context,
STARf is closely related to the photon recollision probability, i.e., it
quantifies what happens to a photon once it has been intercepted
by the canopy. In order to explain the influence of forest structure
on reflectance, both STARf and directional gap fractions are needed.
Clumping index, on the other hand, plays an important role for both
STARf and directional gap fractions, and can therefore be expected to
strongly influence forest reflectance.

As stated above, a clumped canopy becomes darker, but also trans-
mits more light to the forest floor. We observed a clear relationship
between clumping index and reflectance (Fig. 7). In conifer stands,
the reflectance increased with decreasing clumping index, with most
𝑟 values ranging from −0.75 to −0.79 (except 𝑟 = −0.52 in the NIR
band). In other words, clumped stands appear brighter than stands
with randomly distributed elements. This is likely due to the above-
mentioned two effects of clumping. The increased gaps in clumped
stands, and the subsequently increased transmittance of forest floor-
reflected radiation appear to outweigh the darkening of the canopy
with increasing clumping. These results confirm earlier hypotheses on
the effect of clumping on forest reflectance (Spanner et al., 1990; Rauti-
ainen and Stenberg, 2005). On the other hand, a similar effect could
not be found in broadleaved stands, where clumping index was slightly
positively correlated with reflectance (with 𝑟 of 0.1 to 0.28 in visible
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Fig. 7. Relationship between clumping index and Landsat 8 OLI surface reflectance observations by spectral bands. Triangle symbols represent conifer plots (Norway spruce and
Scots pine), and circle symbols are broadleaved plots. The colors refer to the study sites.

and NIR bands, and 0.41 to 0.43 in SWIR). This correlation could be
caused by differences in leaf optical properties, as different broadleaved
species exhibited different ranges of clumping index. Another possible
explanation is related to the connection between tree layer and un-
derstory vegetation: forest canopy leaf area index and the fractional
cover of understory have been shown to be strongly related (Ma-
jasalmi and Rautiainen, 2020), and furthermore, variation in optical
properties of forest floor and understory vegetation depend on canopy
transmittance (Forsström et al., 2023). If the difference in reflectance
between the broadleaved plots was purely due to canopy structure,
and considering that broadleaved plots had higher average LAI than
conifer plots, we would conclude that at a certain LAI (or canopy
density), more clumping leads to lower reflectance, i.e. the clumping-
induced increase in transmittance is smaller than the clumping-induced
darkening of the canopy. However, further data on species-specific
variation would be needed to confirm these results.

4. Conclusions

We developed, applied and assessed a method to estimate the sil-
houette to total area ratio of forest stands (STARf ) and clumping index
on an extensive point cloud dataset covering 38 plots in four study
sites across the boreal, hemiboreal and temperate biomes in Europe. We
showed that STARf can range between values of 0.05 and 0.15 in four
sites comprising temperate, hemiboreal and boreal biomes in the Czech
Republic, Estonia and Finland. Contrary to the previous use of STAR as
a clumping correction factor for shoots in conifer forests, stand level
STAR quantifies the entire canopy structure, that is, leaf area index,
clumping index, and leaf angle distribution. We found that the leaf area
index is the strongest driver of STARf variation, next to clumping index
and leaf angle distribution, and explored the theoretical relationships
between LAI, clumping, and STARf . As a canopy structure quantifier,
STAR is closely related to the photon recollision probability.

This direct relationship between STARf and the photon recolli-
sion probability makes STARf a uniquely important forest structural
variable whose influence on the forest radiation regime should be

studied further. The connection between STAR and photon recollision
probability manifests in the relationship observed between STARf and
surface reflectance in the Landsat 8 OLI bands. However, we found
that clumping index, as a stand-alone quantifier of canopy structure,
is more closely correlated to surface reflectance than STARf , with a
lower clumping index generally resulting in higher surface reflectance.

We conclude that (1) the method we proposed can quantify both
STARf and clumping index, (2) the relationships between STARf and
forest variables indicate that regression using easier-to-measure for-
est variables is likely of limited accuracy, and (3) both STARf and
clumping index showed considerable correlation with Landsat 8 OLI
surface reflectance, indicating that these variables are valuable for
forest radiation regime modeling. We showed that forests throughout
Europe exhibit considerable levels of clumping at stand scale, and our
results suggest that this spatial heterogeneity is likely best quantified
with close-range laser scanning to retain as fine scale information about
clumping as possible.
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