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Abstract – Ambisonics is a scene-based spatial audio format that has several useful features compared to
object-based formats, such as efficient whole scene rotation and versatility. However, it does not provide direct
access to the individual source signals, so that these have to be separated from the mixture when required. Typ-
ically, this is done with linear spherical harmonics (SH) beamforming. In this paper, we explore deep-learning-
based source separation on static Ambisonics mixtures. In contrast to most source separation approaches,
which separate a fixed number of sources of specific sound types, we focus on separating arbitrary sound from
specific directions. Specifically, we propose three operating modes that combine a source separation neural net-
work with SH beamforming: refinement, implicit, and mixed mode. We show that a neural network can implic-
itly associate conditioning directions with the spatial information contained in the Ambisonics scene to extract
specific sources. We evaluate the performance of the three proposed approaches and compare them to SH beam-
forming on musical mixtures generated with the musdb18 dataset, as well as with mixtures generated with the
FUSS dataset for universal source separation, under both anechoic and room conditions. Results show that the
proposed approaches offer improved separation performance and spatial selectivity compared to conventional
SH beamforming.

Keywords: Source separation, Ambisonics, Deep learning, Spatial audio

1 Introduction

Ambisonics is a scene-based spatial audio format [1]
that is widely adopted in immersive and virtual reality
audio applications. It is based on representing the audio
scene in the spherical harmonics (SH) domain, where each
Ambisonics channel represents one SH component out of
an order-limited set. This offers a universal framework for
recording, transmitting and reproducing spatial audio
material, with several useful features such as efficient whole
scene rotation that does not depend on the number of
sources in the scene, and independence between capturing
and reproduction setup. This versatility comes at the cost
of not having access to isolated signals of individual sound
sources in the scene, as is the case in object-based spatial
audio formats. Yet, access to individual sound sources or
the ability to extract sound from specific directions is often
required, for example, to apply modifications to the scene,
or to perform analysis or further processing on individual
sources. Apart from post-processing of Ambisonics music
or natural scene recordings, source separation algorithms
can be used for enhancing certain sound sources like human

speakers from a complete scene captured with head-worn
arrays [2]. The presented algorithm would be applied after
converting such a capture to the Ambisonics domain [3, 4].

The most conventional approach for extracting individ-
ual sources from an Ambisonics scene is to exploit the spa-
tial information by applying SH beamforming. To do so,
sound from a target direction is extracted by linear combi-
nation of the Ambisonics channels. Through the years, dif-
ferent beamformer designs have been presented [5–7],
including both signal-independent and signal-dependent
variants.

A completely different family of methods for extracting
sound sources from a mixture is based on source separation
techniques, which operate in the time-frequency domain.
Source separation has been extensively studied for single-
channel mixtures, but approaches have been proposed to
separate sources from multichannel recordings as well, for
example [8, 9]. Although using specifically Ambisonics mix-
tures for multichannel source separation is still relatively
rare, some methods have been presented. Epain et al. [10]
applied independent component analysis and Hafsati
et al. [11] used local Gaussian modelling to perform source
separation on Ambisonics signals. Also, several authors
have proposed the use of multichannel non-negative matrix*Corresponding author: lluis-salvado@mdw.ac.at
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factorization [12], and non-negative tensor factorization in
several variants [13–15], operating on Ambisonics signals.
In comparison to beamforming where a target direction is
selected, all these source separation techniques extract
sound sources of a certain type from the mixture, the num-
ber of sources needs to be known, and the complete scene is
decomposed into all components. In addition, the separa-
tion stage is computationally expensive and time
demanding.

Concurrently, advances in deep learning have led to
large improvements in audio source separation in compar-
ison to other methods [16, 17]. As a logical development,
some approaches that combine deep learning methods
and spatial processing through beamforming have already
been proposed. For example, in [18, 19] a neural network
is used to inform a beamformer that predicts frequency-
dependent signal and noise covariance matrices to perform
spatial filtering. Although encouraging results are obtained
with such learning-based approaches, they are trained and
tested assuming a deterministic number of sources in the
mixture and closed domain sound types, such as speech sig-
nals. In contrast, our approach aims to separate any desired
number of sources and type of signals. A related approach
uses multichannel audio recordings and a neural network
to separate speech signals in the horizontal plane [20], but
it operates on microphone array data instead of Ambisonics
signals and localizes sound sources itself, rather than sepa-
rating sound from a specified direction.

In this paper, we adopt a data-driven approach to the
task of extracting signals from specific directions given an
Ambisonics mixture (as illustrated in Fig. 1). Specifically,
we explore three operating modes that involve end-to-end
deep learning, i.e. from waveform to waveform, and SH
beamforming: (1) refinement mode, (2) implicit mode,
and (3) mixed mode. In refinement mode, the deep neural
network is used solely for the refinement of the single chan-
nel SH beamformer output, pointing to a target direction.
In implicit mode, the Ambisonics mixture is directly pro-
vided to the network and the target direction is used to con-
dition the network output. In mixed mode, both the
Ambisonics mixture and the beamformer output are pro-
vided to the network, while the target direction is also used
to condition the network output. The aim of the study is
then to analyze the performance of the three modes and
to compare them to conventional SH beamforming, for dif-
ferent Ambisonics orders. To do so, we assess the source
separation performance in the direction of the sources and
the capability of the methods to predict silence in regions
where no source is placed, i.e. the spatial selectivity. These
evaluations are performed for anechoic and room condi-
tions, and considering musical mixtures and universal mix-
tures, composed by unknown number of sources from an
open domain of sound types. The performance is reported
considering Ambisonics mixtures with order between one
and four. The code1 and listening examples [21] accompany-
ing the paper are available online.

The paper is organized as follows. Section 2 provides
background on Ambisonics and SH beamforming, which
serves as a baseline in our experiments. Section 3 details
the neural network architecture and the training procedure.
The datasets used in the experiments are described in
Section 4. Section 5 presents the evaluation metrics and
the obtained results. Section 6 discusses the results and
Section 7 concludes the paper.

2 Background
2.1 Ambisonics

In an ideal, instantaneous Ambisonics mixture, K far-
field sound sources sk(t) for k 2 [1, . . ., K], placed at direc-
tions hk are represented as,

vN ðtÞ ¼
XK
k¼1

skðtÞyN ðhkÞ; ð1Þ

where yN ðhÞ ¼ Y 0
0ðhÞ Y�1

1 ðhÞ Y 0
1ðhÞ . . .YN

N ðhÞ
� �>

is a
vector of real-valued spherical harmonics, defined as,

Y m
n ðhÞ ¼ NnmPm

n ðsin#Þ
sinðjmj/Þ m < 0

1 m ¼ 0

cosðm/Þ m > 0

8><
>: ; ð2Þ

Nnm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2nþ 1Þðn� mÞ!

4pðnþ mÞ!

s
; ð3Þ

evaluated at the direction h = [/, #], where 0 � / < 2p is
the azimuth and 0 � # � p is the zenith angle. N is the
maximal Ambisonics order and Pm

n are the associated
Legendre polynomials. In acoustics, it is common to call
the index 0 � n � N the order and –n � m � n the degree

Figure 1. Illustration of an algorithm separating the sound
sources from a raw Ambisonics mixture given the directions of
interest. In this case, two sources (blue and green dots) located
at directions h1 and h2 are emitting sound, while no sound is
coming from direction h3.

1 https://github.com/francesclluis/direction-ambisonics-
source-separation
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of each SH component. In the full set of (N + 1)2 signals,
each channel of vN represents one spherical harmonic.

A convolutive mixture can be represented using SH
domain directional room impulse reponses (DRIR), some-
times also called Ambisonics room impulse responses
(ARIR), �hkðtÞ 2 RðNþ1Þ2 , which describe the transfer path
between each source and an ideal SH receiver,

vN ðtÞ ¼
XK
k¼1

sk tð Þ � �hkðtÞ: ð4Þ

2.2 SH beamforming

To spatially separate sound from an Ambisonics mix-
ture, SH beamforming uses a linear combination of the
Ambisonics channels. Ideally, a beam pattern that is con-
stant over frequency can be achieved with a real, fre-
quency-independent weight vector d 2 RðNþ1Þ2 such that,

ŝBFðtÞ ¼ d>vN ðtÞ; ð5Þ
where ŝBF is the output of the beamformer, [�]> is the
transpose operator, and vN is the Ambisonics mixture of
order N. Note that the weights d can be chosen arbitrarily
and their choice determines the direction and shape of the
implied beam-pattern.

In this work, we use two common frequency- and signal-
independent SH beamformers as baselines: the beamformer
with maximal directivity index (max-DI) [6, 7], which is
sometimes also referred to as plane-wave decomposition,
and the beamformer with maximal energy vector (max-rE)
[1]. As signal-independent beamformers, they extract sound
from a specified target direction ht, and the shape of the
beam is derived from the global optimizatin criteria, DI,
and rE vector length. The two objectives are given by,

DI ¼ 10 log
4pg2ðhtÞZ
h

g2ðhÞdh
; rE ¼

Z
h

g2ðhÞhdhZ
h

g2ðhÞdh
; ð6Þ

respectively, where g(h) is the pattern of the beamformer
evaluated at the direction h. It is obtained by evaluating,

gðhÞ ¼ d>yN ðhÞ: ð7Þ
Weights that optimize these global criteria are given by,

dmax�DI ¼ yN ðhtÞ; dmax�rE ¼ diagN ðwnÞyN ðhtÞ; ð8Þ
with the max-rE order weights, which can be approxi-
mated by ([1], p. 188),

wn � Pn
cosð137:9�Þ
N þ 1:51

� �
; ð9Þ

in which Pn is the Legendre function of n-th order [1], and
diagN(wn) denotes expanding the order weights wn to a
diagonal matrix, with one weight for all the elements cor-
responding to one order n. See Figure 2 for the corre-
sponding beam patterns. While the max-DI pattern has
a narrow main lobe at the cost of significant side lobes,
the max-rE pattern offers a compromise between main
lobe width and side lobe strength.

In addition, we use another SH beamformer for compar-
ison, which we refer to as the max-SDR beamformer. Given
a particular ground truth signal of length T, now written as
a vector s = [s(0), s(1), . . ., s(T� 1)]> , the max-SDR beam
represents the beam pattern that extracts the signal s with
the maximum possible source -to-distortion (SDR) [22]
ratio through SH beamforming. The SDR between a refer-
ence signal s and an estimated signal ŝ is defined as:

SDRðs; ŝÞ ¼ 10log10
sk k2

s� ŝk k2
 !

: ð10Þ

The maximal SDR is achieved by finding the minimum
squared error between ground truth and estimated sources.
This is equivalent to finding the minimum mean squared
error (MMSE) beamformer ([23], p. 446), given full knowl-
edge of the source signal. The coefficients are found as,

dmax�SDR ¼ C�1X>
Ns; ð11Þ

where C ¼ ðX>
NXN Þ is the spatial covariance matrix of

the input signal of length T, which is stacked into a
matrix XN = [vN(0), vN(1), . . ., vN(T � 1)]>.

As opposed to the other beamformers, the max-SDR
pattern is signal-dependent. The approach is not directly

Figure 2. Signal-independent max-DI and max-rE, and signal-dependent max-SDR Beamformer pointing to a source at (0�, 0�) for a
maximal order of N = 3. The black cross symbolizes the source and the red crosses symbolize interferers. 30 dB dynamics are shown.
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applicable in practical situations, as the ground truth signal
s is obviously not available. Also, some channels might be
amplified excessively, which would introduce noise. In our
investigation, the use of the max-SDR beamformer is of the-
oretical interest. It serves as an upper bound, to see which
separation is maximum possible by frequency-independent
spatial processing alone, assuming that the ground truth
source signal is known. As seen in Figure 2, the max-SDR
beamformer will tend to place zeros in the directions of
interfering sources, if possible.

3 Proposed approach

We propose the use of deep learning to estimate the sig-
nal s from a specific target direction ht, given the raw
Ambisonics mixture XN as input signal. To this end, we
explore three different operating modes which involve a
deep neural network and SH beamforming.

The first is refinement mode, where the goal is to find a
function f1 with the structure of a neural network such that
f1ðŝBFÞ ¼ s. In this case, the neural network is used solely
to refine the single channel beamformer output, which
points to the target direction. Note that the neural network
is not informed about the target direction and only relies on
the beamformer output to enhance the beamforming oper-
ation. In addition, the beamformer output is normalized
before entering the neural network as we want the proposed
method to be independent of the beamformer output gain.

For the second mode, implicit mode, the goal is to find a
function f2 such that f2(XN, ht) = s. In this case, the raw
Ambisonics signal and the target direction are directly
passed to the neural network. The training objective then
forces the neural network to implicitly perform the whole
beamforming operation, by learning the correspondence
between the spatial information contained in the Ambison-
ics mixture and the conditioning direction to then perform
source separation.

The third one is mixed mode, where the goal is to find a
function f3 such that f3ðX1; ht; ŝBFÞ ¼ s. In this case, the
output of the SH beamforming is concatenated to the first
order Ambisonics mixture as an extra channel. Note that
the output of the SH beamforming is computed with the
corresponding order but the Ambisonics mixture given to
the neural network is always fixed to first order. This deci-
sion was made based on preliminary observations, similar to
[24], where an increase in order of the Ambisonics input, did
not substantially improve the overall performance, whereas
an increase of the beamforming order did.

For all operating modes, ŝBF corresponds to the output
of amax-rE beamformer at the target direction and the func-
tion f is an adapted version of the Demucs neural network
architecture [25]. Specifically, Demucs input channels are
modified according to the Ambisonics order and for implicit
and mixed mode a global conditioning approach [20] is used
to guide the separation according to the target direction.
Demucs was originally designed to separate four well defined
instrument types from single-channel mixture signals.
Hence, the original Demucs architecture outputs as many

channels as known sources where each output corresponds
to an instrument. In the present work, the output of the
Demucs network is always a single channel corresponding
to the audio at the target direction regardless of the number
of sources in the mixture or the type of sound sources.

3.1 Demucs architecture

Demucs [25] is a convolutional neural network that
operates in the waveform domain with a U-net-like archi-
tecture [26], i.e. an encoder-decoder architecture with skip
connections (see Fig. 3). The encoder-decoder structure
can learn multi-resolution features of the Ambisonics mix-
ture in the time-space domain which enables to capture
the Ambisonics channel variations at different scales in
both domains. The skip connections allow to propagate
low level information through the network which otherwise
may be lost. In this case, information related to level and
phase differences between the raw Ambisonics channels
can be accessed in later decoding blocks for further source
separation. Each Demucs encoding block consists of an ini-
tial convolution operation that downsamples the input fea-
ture maps by applying kernels with a size of 8 and a stride
of 4, while also increasing the number of channels by a fac-
tor of 2. Note that the first block is an exception as it has a
fixed number of output channels set to 64. Then, a Rectified
Linear Unit (ReLU) activation function is applied follwed
by a 1� 1 convolution with a Gated Linear Unit Activation
[27] (GLU). At the bottleneck of the network, i.e. between
the encoder and decoder parts, a Bidirectional Long-Short
Term Memory (BiLSTM) followed by a linear operation
is applied to provide long range context. The decoder part
reverses the encoder process. Each decoding block first adds
the skip connections from the encoder at the same level of
hierarchy. Then, a 1 � 1 convolution with a Gated Linear
Unit Activation (GLU) is applied. Next, a transposed con-
volution upsamples the feature maps by applying kernels
with a size of 8 and a stride of 4, while also halving the num-
ber of channels. Finally, a ReLU activation is used. Note
that the last decoding block is an exception, which neither
halves the number of channels nor applies the ReLU
activation.

3.2 Conditioning

In implicit and mixed mode, we use a global condition-
ing approach to inform Demucs about the target direction.
Similarly to [20], the conditioning information is inserted at
each block of the Demucs network after being multiplied by
a learnable linear projection V�,q,�. Specifically, in this case
we scale the target direction ht = [/t, #t] with azimuth
angle /t 2 [�p, p] and zenith angle #t 2 [0, p], such that
the scaled target direction �ht ¼ ½�/t; �#t	 is defined as
�/t 2 ½�1; 1	 and �#t 2 ½�1; 1	. Then the Demucs encoder
and decoder takes the following expression:

Encoderqþ1 ¼ GLUðWencoder;q;2�ReLUðWencoder;q;1�
Encoderq þVencoder;q;1

�htÞ þVencoder;q;2
�htÞ;
ð12Þ
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Decoderq�1 ¼ ReLUðWdecoder;q;2�>GLUðWdecoder;q;1�
ðEncoderq þ DecoderqÞ þVdecoder;q;1

�htÞ
þVdecoder;q;2

�htÞ;
ð13Þ

where Encoderq+1 and Decoderq�1 are the outputs
from the q-th level encoder and decoder blocks respec-
tively. W�,q,� are the 1-D kernel weights at the q-th block.
ReLU and GLU are the corresponding activation func-
tions. The operator * corresponds to the 1-D convolution
while * > denotes a transposed convolution operation, as
commonly defined in the deep learning frameworks [28].

3.3 Supervised training

For all operating modes, the network is trained in a
supervised manner. The parameters of the network are opti-
mized to reduce the l1 loss between the estimated signal
and the ground truth signal at the target direction. During
training, as target direction, we randomly select one of the
source directions and uniformly perturb it within a 2.5� win-
dow. This perturbation determines the spatial selectivity of
the network at the inference stage. The network is trained
for 200 epochs using the Adam optimizer. The learning rate
is set to 1 � 10�4 and it is reduced by a factor 0.1 after 10
epochs with no improvement in the validation set loss. The
batch size is set to 16. After the training process, we select
the weights with the lowest validation loss for testing pur-
poses. Both training and testing are conducted on a single

Titan RTXGPU. The training stage takes about 18 h while
the inference takes 47 milliseconds for a single data sample
(value averaged from 300 different separation predictions).

4 Datasets

We study the performance of the proposed methods
using two different datasets: the Musdb18 [29], which con-
tains music signals, and the Free Universal Sound Separa-
tion (FUSS) dataset [30], which contains a wide range of
signals from open domain sound types. In addition, for each
dataset we create an anechoic and a room version.

4.1 Data generation

4.1.1 Musdb18

We use musical signals from the Musdb18 dataset to
create training, validation, and testing data. The Musdb18
dataset contains a “train” folder with 100 songs and a “test”
folder with 50 songs. For each song, the dataset provides
the isolated signals of the drums, bass and vocals sound
sources at 44.1 kHz. We use signals from 90 songs in the
“train” folder to generate training data and the remaining
10 songs are used to generate validation data. For training
and validation, a single example is created by first selecting
six-second long audio segments from the isolated signals at
a random time. Therefore, every isolated signal is taken
from a random song for each source, so they do not neces-
sarily come from the same piece. Then, to create an
Ambisonics mixture, a random direction is assigned to each

Figure 3. Left: Input data for the following operating modes: (a) refinement, (b) implicit, (c) mixed. Right: Overview diagram of the
neural network. XN refers to the n-th order Ambisonics mixture, X1 is the first order Ambisonics mixture, �ht is the scaled target
direction, ŝBF corresponds to the output of a max-rE beamformer at the target direction, and ŝ is the estimated separated signal.
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of the sources, and the audio segments are encoded to up to
fourth order Ambisonics and mixed using Equation (1). For
the generated mixtures, it is assured that all pairs of sources
are at least 5� great circle distance apart from each other.
The great circle distance is the angle between two points
on a sphere, defined as,

\ðhi; hjÞ ¼ arctan x>
i xj; ð14Þ

where xi = [cos/i sin#i, sin/i sin#i, cos#i]
> is a normalized

direction vector. In this work, we only consider mixtures
with static sources.

Furthermore, in 30% of all created mixtures we force
one source to be silent while we verify that the remaining
mixtures contain active sources. The application of this pre-
processing allows the data-driven approaches to learn to
provide silent output when no source is present at a given
direction. This is important to assure silent output when
specifying directions with no active sources during infer-
ence. For training and validation we generate 10,000 and
1000 mixtures respectively. Regarding test data generation,
the same encoding is applied to generate a total of 1000
mixtures using the “test” folder. In this case, single examples
are created using six-second long audio segments coming
from the same song at the same time and no sources are
silenced.

4.1.2 FUSS

The FUSS dataset was created for universal sound
separation. Universal sound separation algorithms aim to
separate unknown number of sources from an open domain
of sound types. To this end, FUSS contains 23 hours of
single-source audio data at 16 kHz drawn from 357 classes,
which are used to create mixtures of one to four sources.
The type of audio contained in FUSS includes natural
sounds such as wind and rain, sounds of objects such as
engine and alarm, and human sounds such as whistling
and human voice. FUSS provides splits for train ing, valida-
tion, and test ing with a total of 20 000, 1000, and 1000
examples respectively. We use the same partition and cre-
ate six-second long Ambisonics mixtures. As previously
done, for each example we assign a random direction to
each of the sources, and the audio segments are encoded
up to fourth order Ambisonics and mixed using Equation
(1). In this case, it is assured that all pairs of sources are
active and at least 5� great circle distance apart from each
other. Note that during testing, we only consider generated
mixtures that contain two or more sources.

4.2 Room simulation

The anechoic Ambisonics mixtures according to (1) are
a good test case, but they are far from an actual application,
as usually sound sources of interest are within an enclosed
room. Therefore, performance is also studied under room
conditions by incorporating directional room impulse
responses (DRIR) of a small room to create a convolutional
mixture, as defined in (4). To create the DRIRs, sound
sources are placed in a simulated room of dimensions in

the range (x, y, z) = (3 ± 2 m, 4 ± 2 m, 3 ± 1 m). Early
reflections are simulated using the image source method
with a maximal image source order of six. Wall absorption
coefficients are set in octave bands, where the reflection
coefficient is determined from random octave band rever-
beration times RTf = 0.3 ± 0.2 s using Eyring’s formula
[31]. For late reverberation, the response is faded over the
isotropic diffuse noise at tmix =

ffiffiffiffi
V

p
/500 s/m3. The decay

of the noise is exponentially shaped in octave bands accord-
ing to the random reverberation times. Finally, although
the Ambisonics mixtures contain a simulated room, we
use the anechoic signals of the sound sources as ground
truth for evaluating the separation performance.

5 Results
5.1 Evaluation metrics

We use two different measures of performance for eval-
uating the proposed methods. First, we measure the separa-
tion performance using the scale-invariant source – to –

distortion ratio (SI-SDR) [32]. SI-SDR between a signal s
and its estimate ŝ is defined as,

SI� SDR s; ŝð Þ ¼ 10log10
ask k2

as� ŝk k2
 !

; ð15Þ

where a = argmina as � ŝk k2 = ŝ>s/ sk k2. Specifically, for
each mixture on the test set we use the ground truth
direction of each active source hk as the target direction
for all methods. Then, the separation performance is com-
puted between the ground truth source signal sk and the
estimated signal ŝ(hk). The SI-SDR is a metric used to
evaluate the quality of separated audio sources by mea-
suring the signal-to-noise ratio between the ground truth
signal and the estimated signal, which may have an arbi-
trary scaling factor. An SI-SDR of 0 dB signifies that the
power of the distortion is equal to the power of the ground
truth signal. A positive SI-SDR value indicates that the
ground truth signal has more power than the distortion,
while a negative SI-SDR signifies that the power of the
distortion is greater than that of the ground truth signal.
Hence, higher SI-SDR values are desired.

Furthermore, we assess the performance of the models
to predict silent regions in the directions where no sources
are placed, i.e., its spatial selectivity. To this end, we intro-
duce the sources-to-silence ratio (SSR). This measure is also
independent of the scaling of the predicted signals. SSR is
defined as,

SSRkðŝÞ ¼ 10log10

1
K

P
k

ŝðhkÞk k2

1
I

P
t

ŝðhtÞk k2

0
B@

1
CA; ð16Þ

where {ht 2 Hk\(ht, hk) > 2.5�} are I directions from a set
of 36 quasi-uniformly arranged directions on the sphere in
a t-design (t = 8), H [33], excluding those that are within
2.5� of the target direction s . Note that ŝ(ht) and ŝ(hk) are
the signals predicted for the target directions ht and the
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ground truth source directions hk respectively. Note that a
SSR of 0 dB means no spatial selectivity, as it is the case
for an omnidirectional receiver. A SSR of 1 dB would be
achieved if silence was predicted at all directions that are
at least 2.5� away from the sources.

5.2 Evaluation

We are interested in evaluating the source separation
and spatial selectivity performance of all methods depend-
ing on the Ambisonics order. To this end, we compare the
SI-SDR and the SSR performance considering Ambisonics
mixtures with an order between one and four. In addition,
we assess the performance of all methods considering the
type of acoustic conditions (anechoic or room) and the type
of signals in the Ambisonics mixture (music or universal).
All variants are used like a traditional signal-independent
beamformer, in that a target direction is provided from
which sound shall be extracted, while sound from other
directions shall be suppressed. Here, we provide the ground
truth direction of the source to all the approaches. In the
following, we report the results and behavior of the evalu-
ated methods considering all conditions. Apart from dis-
cussing the numerical values, we also provide visualization
of one example, see Figure 4. Therein, the first maps show
the root mean square (RMS) output of the methods, when
specifying different target directions. The SI-SDR maps
show the SI-SDR for the three sources present in the mix,
again, when pointing to different target directions.

5.2.1 SH beamformer baseline

As expected, SH domain beamformers show improved
performance in separation and spatial selectivity as the
Ambisonics encoding-order increases, with particularly high
values for high orders under anechoic conditions. For exam-
ple in the case of anechoic music signals, the max-rE beam-
former achieves the best separation performance for third
and fourth order with a SI-SDR of 20.27 dB and 25.40 dB
respectively (see Table 1). However, under room conditions,
the performance of the beamformer is lower. The difference
in performance of SH beamformers between anechoic and
room conditions is clearly observed by the max-SDR beam-
former performance in both scenarios. Very high values in
the anechoic cases are due to the fact that the max-SDR
approach typically places zeros in the direction of the other
sources, thus cancelling them completely. Note that the
max-SDR beamformer performance corresponds to the
maximum possible separation by spatial processing, i.e. SH
domain beamforming, alone. As discussed in detail below,
the network approaches show the largest benefits over SH
beamforming under the room condition. This is to be
expected because deep learning based approaches can learn
to remove sound reflections through non-linear operations.
In contrast, the SH beamformer is strictly limited by its
spatial processing resolution, only forming weighted linear
combinations of the SH signals, see Equation (5). For low
orders, linear spatial processing alone does not provide high
selectivity which can be seen in the metrics, and also in

Figure 4, where the output of a first order beamformer is
shown in the upper right. The output power does not change
strongly depending on the target direction.

5.2.2 Refinement mode

In refinement mode, the deep neural network is used
solely for the refinement of the single channel max-rE beam-
former output, pointing to the target direction. As one
would expect, the refinement mode separation performance
is closely related to the one achieved by the max-rE beam-
former. Nevertheless, the refinement mode often improves
the max-rE beamformer separation. In the cases where
the max-rE beamformer separation is already high, the
refinement mode achieves the best separation performance
compared to other operating modes. This is the case for
anechoic conditions and universal signals (see Table 2),
where the refinement mode achieves a SI-SDR of
15.76 dB for third order and 21.46 dB for fourth order.
However, it underperforms compared to the other methods
under room conditions because the initial separation of the
max-rE beamformer is not as good. Regarding spatial selec-
tivity, the refinement mode fails to predict silence in source-
free regions. The neural network cannot determine if the
input sound coming from the max-rE beamformer output
should be silenced or enhanced without the target direction
information. The bad spatial selectivity performance is
especially notable in anechoic conditions where, for exam-
ple, it achieves a SSR of �0.28 dB for fourth order when
using music signals.

5.2.3 Implicit mode

In the anechoic case, the implicit mode achieves similar
separation and spatial selectivity independent of the encod-
ing order it has been trained and tested on. For music sig-
nals, it achieves a SI-SDR of 15.66 dB and a SSR of 10.70
dB for first order mixtures while it achieves a SI-SDR of
16.16 dB and a SSR of 10.08 dB for fourth order mixtures.
Hence, low orders are enough for the implicit mode to learn
the correspondence between the spatial information con-
tained in the Ambisonics signal and the conditioning direc-
tion, and higher order input channels do not have large
benefits. The same behaviour is observed when the implicit
mode is trained using universal signals. When the implicit
mode is trained and tested under room conditions, results
show improved performance in separation and spatial selec-
tivity as the encoding order is increased. For instance with
music signals, it achieves a SI-SDR of 0.57 dB and a SSR of
4.90 dB for first order mixtures as opposed to 6.32 dB and
7.43 dB achieved for fourth order mixtures (see Table 1).
Overall, the implicit mode is the operating mode that
achieves the best SSR results out of all other operating
modes for every Ambisonics order and type of signals. This
behaviour can also be seen in Figure 4. The network man-
ages to strongly suppress the signal in directions that are
not close to sources. In addition, it achieves competitive
separation performance, especially for music signals under
room conditions (see Table 1).
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5.2.4 Mixed mode

In the mixed mode, both the first order Ambisonics sig-
nal and the beamformer output are provided to the net-
work, while the target direction is also used to condition
the network output. Overall, the mixed mode achieves com-
petitive SI-SDR results compared to all other operating
modes. For the more realistic case, i.e. with universal signals
and room conditions, the mixed mode achieves the best
separation performance compared to all other methods for
any Ambisonics order (see Table 2). For first order musical
mixtures in the room, the mixed mode achieves a SI-SDR
of 0.76 dB while the max-SDR beamformer achieves a
SI-SDR of 0.58 dB. This means that the mixed mode sepa-
ration performance is similar to the maximum possible

achieved by spatial processing alone. Regarding spatial
selectivity under room conditions, the mixed mode offers
a similar performance independently of the encoding order.
For example using universal signals, it achieves a SSR of
4.65 dB for first order and 4.91 dB for fourth order. For ane-
choic conditions, the SSR values show a n unexpected beha-
viour of the model, which performs competitively for lower
orders while it fails for higher orders. This can be seen using
universal signals in Table 2, where it achieves a SSR of 6.61
dB for the first order and a SSR of �0.13 dB for the fourth
order. We suspect that this network behaviour is caused by
not learning the correspondence between the target angle
and the mixture, and just basing the predictions on the
provided max-rE beamformer output. This leads to good
separation only in anechoic and high-order scenarios, where

Figure 4. Visualization of (a) RMS and (b), (c), (d) SI-SDR for audio predicted in a discrete set of equiangularly distributed
directions (100� � 50�) by several methods. The predictions are made using a first order Ambisonics mixture from the Musdb18 test
set in anechoic conditions. The red dots correspond to the location of the sources. Corresponding listening examples can be found
online [21].
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the max-rE beamformer output already provides a mean-
ingful solution according to the training loss function.

5.2.5 Number of sources in the mixture

We are also interested in studying the source separation
performance depending on the number of sources in the
mixture. Based on the results in Table 2, we report the
performance considering the best learning – based and SH
beamformer methods for universal signals under room con-
ditions, i.e. the mixed mode and the max-DI beamformer.

Figure 5 shows that for a given encoding order, the dif-
ference between the SI-SDR achieved by the mixed mode
compared to the max-DI beamformer increases with the
number of sources in the mixture. For a given number of
sources, the improvement of SI-SDR, between the mixed
mode and the max-DI beamformer, is more or less constant
independently of the encoding order. This analysis indicates
that as the number of sources within the mixture increases,
the utilization of deep learning for source separation
becomes more beneficial in comparison to the beamformer
approach. However, it should be noted that the increment

Table 1. SI-SDR and SSR median scores in dB, along with their 95% confidence interval within braces, calculated for the test set
using music signals for both anechoic and room conditions. The highest performances are highlighted using bold font.

Ambi.
order

Demucs
(refinement)

Demucs
(implicit)

Demucs
(mixed)

max-DI BF max-rE BF max-SDR
BF

SI-SDR SSR SI-SDR SSR SI-SDR SSR SI-SDR SSR SI-SDR SSR SI-SDR

Musdb18
Anechoic

1 7.50
(0.47)

�0.30
(0.08)

15.66
(0.25)

10.70
(0.21)

16.45
(0.28)

8.79
(0.18)

4.48
(0.22)

2.71
(0.08)

4.40
(0.22)

2.48
(0.08)

53.83
(0.20)

2 14.89
(0.51)

0.01
(0.07)

15.44
(0.24)

10.91
(0.17)

20.62
(0.40)

8.13
(0.15)

10.69
(0.22)

5.09
(0.06)

12.20
(0.23)

4.69
(0.08)

57.73
(0.19)

3 20.16
(0.54)

0.16
(0.08)

11.85
(0.12)

14.94
(0.27)

18.95
(0.47)

0.94
(0.04)

14.76
(0.22)

7.29
(0.04)

20.27
(0.22)

6.52
(0.06)

59.33
(0.20)

4 24.39
(0.54)

�0.28
(0.04)

16.16
(0.26)

10.08
(0.13)

23.00
(0.49)

�0.12
(0.04)

17.80
(0.22)

9.17
(0.03)

25.40
(0.23)

8.31
(0.04)

60.29
(0.21)

Musdb18
Room

1 �1.16
(0.33)

0.20
(0.08)

0.57
(0.25)

4.90
(0.15)

0.76
(0.26)

3.85
(0.16)

�1.36
(0.22)

2.03
(0.07)

�1.33
(0.22)

1.76
(0.07)

0.58
(0.20)

2 2.94
(0.38)

1.14
(0.09)

3.57
(0.19)

6.14
(0.13)

2.97
(0.34)

0.86
(0.10)

1.83
(0.22)

3.73
(0.07)

1.50
(0.23)

3.38
(0.08)

4.95
(0.19)

3 4.79
(0.36)

1.81
(0.10)

5.31
(0.19)

6.88
(0.11)

5.03
(0.25)

1.98
(0.12)

4.04
(0.22)

5.23
(0.06)

3.51
(0.23)

4.77
(0.07)

8.39
(0.20)

4 3.87
(0.37)

1.89
(0.09)

6.32
(0.18)

7.43
(0.13)

6.43
(0.21)

1.43
(0.11)

5.53
(0.22)

6.45
(0.07)

5.07
(0.23)

5.93
(0.07)

11.05
(0.21)

Table 2. SI-SDR and SSR median scores in dB, along with their 95% confidence interval within braces, calculated for the free
universal sound separation test set (2–4 sources) for both anechoic and room conditions. The highest performances are highlighted
using bold font.

Ambi.
order

Demucs
(refinement)

Demucs
(implicit)

Demucs
(mixed)

max-DI BF max-rE B max-SDR
BF

SI-SDR SSR SI-SDR SSR SI-SDR SSR SI-SDR SSR SI-SDR SSR SI-SDR

FUSS
Anechoic

1 2.73
(0.70)

�0.01
(0.14)

9.93
(0.48)

8.26
(0.26)

10.20
(0.54)

6.61
(0.27)

2.47
(0.66)

3.39
(0.19)

2.61
(0.67)

2.99
(0.20)

40.94
(0.43)

2 10.99
(0.83)

�0.01
(0.15)

12.27
(0.47)

7.89
(0.27)

15.88
(0.58)

7.80
(0.28)

7.49
(0.64)

6.53
(0.22)

9.58
(0.73)

5.95
(0.23)

42.44
(0.44)

3 15.76
(0.82)

�0.08
(0.14)

13.15
(0.45)

7.86
(0.26)

15.37
(0.77)

�0.06
(0.14)

11.27
(0.67)

8.83
(0.21)

15.28
(0.81)

8.19
(0.22)

43.39
(0.45)

4 21.46
(0.76)

�0.10
(0.16)

12.98
(0.43)

8.94
(0.25)

20.22
(0.70)

�0.13
(0.15)

14.91
(0.66)

10.70
(0.23)

20.25
(0.78)

10.01
(0.22)

44.17
(0.45)

FUSS
Room

1 �4.22
(0.60)

2.01
(0.19)

�1.50
(0.44)

5.08
(0.23)

�1.27
(0.48)

4.65
(0.23)

�4.08
(0.46)

2.36
(0.17)

�4.17
(0.46)

2.08
(0.16)

�1.75
(0.41)

2 �0.98
(0.63)

2.80
(0.22)

1.62
(0.36)

7.16
(0.20)

2.22
(0.39)

3.22
(0.21)

�0.91
(0.44)

4.25
(0.19)

�1.22
(0.44)

3.95
(0.19)

2.88
(0.35)

3 1.54
(0.53)

3.72
(0.23)

3.00
(0.33)

7.47
(0.22)

3.75
(0.37)

4.01
(0.19)

1.59
(0.43)

5.76
(0.20)

0.99
(0.42)

5.37
(0.19)

6.40
(0.34)

4 3.61
(0.50)

4.43
(0.24)

3.59
(0.37)

7.62
(0.23)

5.47
(0.34)

4.91
(0.21)

2.84
(0.41)

6.77
(0.20)

2.65
(0.40)

6.46
(0.20)

9.04
(0.34)
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in performance remains consistent across the Ambisonics
encoding orders evaluated.

6 Discussion

The results in Section 5 indicate that each of the pre-
sented operating modes has its own benefits, depending
on the application scenario.

The refinement mode is adequate when the separation
achieved by the SH beamformer, which is provided as input
to the network, is already high. For low orders, the refine-
ment mode performs poorly because the SH beamformer
does not strongly cancel interfering sources. In this case,
the network can not determine which source to refine, as
it does not have access to any information concerning which
part of the signal is the target, besides level differences. The
low SSR values achieved by the refinement mode show that
the network is not able to predict silence. It will refine any
source at the output of the SH beamformer, even when it is
pointing into a source-free region.

The results achieved by the implicit mode show that the
neural network can implicitly learn the correspondence
between the spatial information contained in the Ambison-
ics mixture and the target direction. It correctly interprets
the target direction and extracts the sound from that direc-
tion. This also becomes evident in the SI-SDR maps shown
in Figure 4, where, for the same input mixture, the neural
network predictions are different for each of the condition-
ing target directions and correlate better with the ground
truth signals in the vicinity of the source location.

Under room conditions, the implicit mode also performs
better separation than common SH beamformers. This is
also true for low orders in anechoic conditions. Interest-
ingly, the implicit mode does not benefit from higher orders
in anechoic mixtures. The largest advantage of the implicit
mode over conventional SH beamforming lies in the higher

spatial selectivity. Pointing to a target direction where no
source is present yields very low outputs. This can be seen
in the RMS map shown in Figure 4. Note that this capabil-
ity could potentially be used for source localization as well,
in an algorithm more similar to [20], where separation and
localization are combined. It also means that the separation
stage is more sensitive to direction of arrival mismatches
than the SH approaches, i.e., if a sound source is too far
away from the provided target direction, the network would
output silence. Note that the angular range in which the
network outputs signal can be controlled in the training
stage, by changing the perturbation applied to the target
direction and the minimal distance between sources.

Overall, this shows that a source separation network
conditioned only on the target direction can perform the
whole beamforming operation, i.e. extract sound from speci-
fic directions, with mixtures containing an unknown num-
ber of sources and arbitrary sound type.

If the goal is to perform source separation where spatial
selectivity is less important, the mixed mode might be the
most useful. It provides best separation performance for
first and second order in the anechoic music dataset and
for all orders in the the FUSS dataset under room condi-
tions. Testing the mixed mode with the FUSS dataset
under room conditions shows the largest improvements
over SH beamforming for relatively complex scenes with
four sources. The increase in SI-SDR over the implicit mode
comes at the cost of lower SSR, which can also be seen in
Figure 4, where the RMS at directions different from the
sources is higher.

Interestingly, neither the implicit mode, nor the mixed
mode, which has the max-rE beamformer as input, achieves
higher SI-SDR in the anechoic cases than the conventional
max-rE. We see this mainly as evidence for the fact that SH
beamforming under anechoic conditions is very effective,
and any impairment caused by the network will be enough
to result in a lower SI-SDR. The high separation perfor-
mance of high order conventional SH beamforming is
quickly lost in the more realistic case, when room reflections
are present. For the first order room condition, the mixed
mode achieves higher separation than SH beamformers. It
is in a similar range as the max-SDR beamformer, which
represents the maximal SDR achievable by frequency-inde-
pendent SH beamforming given knowledge of the ground
truth signal.

In the future, the evaluation of deep learning based
methods may be extended to recordings with real micro-
phone arrays. There, the maximal Ambisonics order is not
obtained at low frequencies, due to necessary regularization
[1]. This might have more impact on the performance of
conventional approaches compared to deep learning ones,
given that the performance of conventional SH beamform-
ing strongly depends on the order. However, it should be
tested if a model trained with the data from one micro-
phone array can generalize to data from a different array.

Furthermore, when comparing the objective metrics for
the three modes against the SH beamformer, it is important
to note that higher separation may come at the cost of time-
frequency artifacts, that can occur in the neural network

Figure 5. FUSS room SI-SDR median results reported for the
different number of sources (2, 3, 4) in the Ambisonics mixture
for both mixed mode and max-DI beamformer target direction.
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output, but not in SH beamformers. Ideally, a formal listen-
ing experiment should be conducted in the future. For now,
listening examples are provided online that can give an
impression of the perceptual quality [21]. Although the
results are promising, the above artifacts could become
audible in a post-processing application. Nevertheless,
increasing the level of a particular signal might be feasible,
without significantly reducing its quality.

7 Conclusions

In this paper we proposed the use of end-to-end deep
learning as an alternative to conventional SH beamforming.
We have shown and analyzed three different operation
modes: (1) refinement, (2) implicit and (3) mixed. Specifi-
cally, the implicit and mixed mode show that a source sep-
aration network can learn associations between a target
direction and the information contained in an Ambisonics
scene. This allows for using such a network as one would
use a beamformer, specifying a target direction and separat-
ing arbitrary sounds without adapting the training to a
specific number or type of source.

The results show that, under anechoic conditions, the
largest separation improvement of the proposed approaches
with respect to SH beamforming is achieved for lower
Ambisonics orders. In addition, better spatial selectivity is
provided for all orders. Under room conditions, the applica-
tion of deep learning increases both separation and spatial
selectivity for all orders. Generally, the behaviour of each
operating mode is similar when trained and tested using
musical signals or arbitrary signals from a dataset for uni-
versal source separation.
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