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Abstract—Current sound-based practices and systems
developed in both academia and industry point to convergent
research trends that bring together the field of sound and music
Computing with that of the Internet of Things. This article
proposes a vision for the emerging field of the Internet of
Sounds (IoS), which stems from such disciplines. The IoS relates
to the network of Sound Things, i.e., devices capable of sensing,
acquiring, processing, actuating, and exchanging data serving
the purpose of communicating sound-related information.
In the IoS paradigm, which merges under a unique umbrella
the emerging fields of the Internet of Musical Things and the
Internet of Audio Things, heterogeneous devices dedicated to
musical and nonmusical tasks can interact and cooperate with
one another and with other things connected to the Internet to
facilitate sound-based services and applications that are globally
available to the users. We survey the state-of-the-art in this
space, discuss the technological and nontechnological challenges
ahead of us and propose a comprehensive research agenda for
the field.

Index Terms—Audio, embedded systems, Internet of Audio
Things (IoAuT), Internet of Musical Things (IoMusT), Internet
of Things (IoT), machine listening, music information retrieval
(MIR), music, semantic audio.

I. INTRODUCTION

RECENT developments in networking infrastructures,
embedded systems,s and sound processing algorithms

have opened opportunities for the integration of a variety of
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musical and nonmusical practices within the new contexts pro-
vided by computing and networking research. In the last two
decades the Internet of Things (IoT) has made its inroads in the
field of sound and music computing, leading to the emergence
of novel paradigms, such as the Internet of Musical Things
(IoMusT) [1] and the Internet of Audio Things (IoAuT) [2].

From a computer science perspective, IoMusT refers to
the networks of computing devices embedded in physical
objects (Musical Things) dedicated to the production and/or
reception of musical content. Musical Things, such as smart
musical instruments [3], [4] or wearables serving a musical
purpose (such as smart watches, smart bracelets, or head-
sets for virtual/augmented reality) [5], [6], [7], are connected
by an infrastructure that enables multidirectional communica-
tion, both locally and remotely. Similarly, the IoAuT refers
to the networks of computing devices embedded in physical
objects (Audio Things) dedicated to the production, reception,
analysis, and understanding of audio in distributed environ-
ments. Networked Audio Things, such as nodes of wireless
acoustic sensor networks (WASNs) [8] or networked systems
for interactive sonification [9], can communicate both locally
and remotely in order to, for example, gather meaningful
information about the environment.

Both the IoMusT and IoAuT fields intersect the domains
of embedded audio [10], networks [11], acoustic sen-
sor networks [8], [12], ubiquitous and pervasive comput-
ing [13], [14], machine listening [15], and human–computer
interaction [16]. Along the same lines, both fields lead to the
emergence of novel ecosystems that form around sound-based
technologies and that impact a large variety of stakeholders.
In addition, IoMusT and IoAuT share common challenges
related to privacy, security, interoperability, and standardiza-
tion. Furthermore, several systems, discussed in this article,
signal trends toward the convergence of approaches in system
design, implementation and usage, in both the musical and
nonmusical domains.

A parallel development is the rapid rise of voice-operated
devices, such as smart speakers, televisions, mobile phones,
and even microwave ovens. For example, in 2019, the sales
of smart speakers rose to 146.9 Million.1 Such devices offer
hands-free operation of information services and physical
actuators, such as home automation. Many smart speaker

1https://www.forbes.com/sites/ilkerkoksal/2020/03/10/the-sales-of-smart-
speakers-skyrocketed/
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manufacturers already offer systems with a network of
interacting devices, which could be called voice operated
IoT devices. A recent project, the Open Voice Network,
generalizes this concept and attempts to develop a standard
for communicating between interoperable voice operated IoT
devices.2

All the trends reported above are converging toward a novel
research area that we coin as the Internet of Sounds (IoS).
The emergence of the IoS field as a discipline in its own
right is not only witnessed by an increasing corpus of litera-
ture on the several and diverse underlying topics, but also by
the creation of a community of academics, practitioners, and
industrial representatives who are gathering around a dedi-
cated annual event, the “International Symposium on the IoS”
(arrived in 2023 to the fourth edition)3. In November 2022
the IoS community, with the aim of sharing knowledge about
and foster research on IoS topics, launched the “IoS Research
Network” initiative,4 which at the time of this writing gath-
ers more than 90 partner institutions worldwide and more
than 200 researchers have subscribed to the mailing list. In
March 2023, the IEEE Communication Society accepted the
proposal of the IoS community to form an “IEEE Emerging
Technology Initiative on the IoS.”5 Moreover, the Journal of
the Audio Engineering Society has promoted the field with
a dedicated special issue published in 2021.6 Furthermore, in
recent years, funding bodies have supported a variety of IoS
projects in both the musical7 and nonmusical8 domain, which
indicates the timeliness and importance of this field. Following
these trends, IoS courses at master degree and Ph.D. levels are
taught in different universities.9

In this article, we present a survey of the IoS field aiming at
organizing the knowledge accumulated in previous studies to
build a foundation for future IoS works. To this end, we offer
a review of studies related to the analysis, representation, and
interconnection of sound-related information, in both musi-
cal and nonmusical domains. We also provide an overview
of hardware and software-enabling technologies for the IoS,
with a particular emphasis on system architecture paradigms
and applications to realistic use cases. Based on the review
of tools and applicative results, we identify and discuss open
challenges of this field. Our aim is not only to bridge existing
research areas and communities and foster cross-domain col-
laborations, but also to ensure that IoS-related challenges are
tackled within a shared, pluralist, and system-level perspective.

We believe that the IoS has the potential to foster new
opportunities for the IoT industry, paving the way to novel
services and applications that are capable of exploiting the
interconnection of the digital and physical realms, especially in

2https://openvoicenetwork.org/
3https://internetofsounds.net/is2_2023/
4https://internetofsounds.net/
5https://www.comsoc.org/about/committees/emerging-technologies-

initiatives/internet-of-sounds
6https://www.aes.org/journal/online/JAES_V69/10/JAES_V69_10_

PG706.pdf
7E.g., https://cordis.europa.eu/project/id/749561
8E.g., https://cordis.europa.eu/project/id/956369
9E.g., https://www.audiolabs-erlangen.de/fau/professor/peters/teaching/

2021s_AIoT

the Smart Home and Smart City contexts. Nevertheless, for IoS
technologies to emerge and be widely adopted by end users, a
number of computational and human-related challenges need
to be addressed.

While we are aware that in other contexts the term “audio”
refers to a macro-category for musical, speech, and environ-
mental sounds, it is worth noticing that in the specific context
of this article, we highlight the difference between the terms
“music,” “audio,” and “sound.” With “music,” we exclusively
refer to musical data, with “audio” we refer solely to the
domain of nonmusical auditory data, whereas with “sounds”
we mean the union of both music and audio. Though speech,
audio, sound, and music are all closely related, speech, and
speech interfaces are such large areas of study on their own
(e.g., [17], [18], [19], [20], and [21]) that we choose to mostly
exclude them from this work and focus on music, audio, and
sound.

The remainder of this article is organized as follows.
Section II introduces the conceptual basis of the IoS field.
Section III surveys works and technologies related to the
IoS. Section IV discusses the main research challenges ahead
of us on the IoS landscape. Finally, Section V outlines a
research agenda for this area, while in Section VI we provide
summarizing conclusions and final remarks.

II. SCIENTIFIC FIELD OF THE INTERNET OF SOUNDS

The IoS field addresses musical and nonmusical domains
in networked contexts. We see the IoS as the union of the
two paradigms of the IoMusT and the IoAuT. As described
in [2], these two fields are intersecting. Both fields have been
envisioned in [1] and [2] as subfields of the general IoT field.
Therefore, the IoS is a specialization of the IoT, where one of
the prime objectives is to enable processing and transmission
of musical and nonmusical data and information.

In the proposed vision, the IoS enables the connection
of digital and physical domains by means of appropriate
information and communication technologies, fostering novel
applications and services based on musical and nonmusical
information. The IoS enables the integration and cooperation
among heterogeneous devices with different sensing, com-
putational, and communication capabilities and resources, in
musical and nonmusical contexts as well as in co-located and
remote settings.

The IoS has strong connections with and could be seen as a
subfield of the Internet of Media Things (IoMT), which in turn
is a subfield of the IoT. The IoMT is defined as a network of
Things capable of sensing, acquiring, actuating, or processing
media or metadata [22]. The IoS differentiates from the IoMT
for its focus on sound-based applications, whereas the IoMT
also deals with other multimedia aspects, such as video. Fig. 1
illustrates the positioning of the field IoS with respect to its
composing subfields of the IoAuT and IoMusT, and to the IoT
and IoMT fields.

The most critical difference between IoS and IoT is the
nature of the acquired, processed, and transmitted information,
which in the case of the IoS is sound and other sound-related
content. Moreover, the IoS requires dedicated devices able to
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Fig. 1. Schematic representation of the relation between the IoS, the com-
posing fields of IoAuT and IoMusT, and the parent fields of the IoMT and
IoT.

sample, process, and/or synthesize sound (especially in real-
time contexts) as well as specific network architectures (for
instance to support a multidirectional stream of audio packets
from/to nodes that is continuous and periodic). In contrast to
IoT and IoMT, the IoS may pose stringent requirements and
challenges related to the collection, analysis, and communi-
cation of sound-related information. For instance, to enable
geographically distant musicians to play together in real time,
the network infrastructure must ensure latencies at the order
of milliseconds, to ensure no perceptible delays. Similarly,
a distributed array of microphones in a WASN deployed in
an open environment might need to be synchronized tightly
with low-latency communications to detect audio events in real
time. Current IoT hardware, protocols, and systems are insuf-
ficient to tackle those challenges. Moreover, the IoS demands
a new set of analytic tools specific to the sound processing
domain, which should be able to process large amounts of
sound-related data and extract meaningful information given
tight latency and energy constraints. This entails specific chal-
lenges in the areas of real-time signal processing and machine
learning (ML). Furthermore, current data models (e.g., ontolo-
gies) devised for the representation of the IoT and IoMT
domains are not adequate to describe the knowledge related
to IoS ecosystems. This hampers the creation of ecosystems
where heterogeneous IoS devices can communicate through a
common, interoperable framework [23].

A. IoS Definitions

Following the definitions of the IoMusT and the IoAuT
reported In [1] and [2], respectively, we provide a defini-
tion of a Sound Thing as “a networked computing device,
equipped with sensors and/or actuators, with the capabilities
to acquire, process, exchange, or generate sound or sound-
related information”. With “sound-related information” we
refer to “data sensed and processed by a Sound Thing, and/or
exchanged with a human or with another Sound Thing”. We

define the IoS as “the ensemble of Sound Things, network
infrastructures, protocols, and representations of sound-related
information that enable services and applications for the com-
munication of sound-related information in physical and/or
digital realms”.

Furthermore, similarly to what the Web of Things10 repre-
sents for the IoT [24], we use the term “Web of Sound Things”
to refer to approaches taken to provide an Application Layer
that supports the creation of IoS applications.

Just like the general IoT domain [25], [26], the IoS may
be structured into ecosystems. An IoS ecosystem consists of
IoS technologies (hardware and software platforms as well
as standards) and communities of stakeholders utilizing them.
From the technological perspective, the four core components
of an IoS ecosystem are listed.

1) Sound Things: As defined above, Sound Things are net-
worked devices utilized to control, generate, or track
responses to sonic content. Sound Things are entities
that can be used in a musical or nonmusical context to
produce sound-related content or to observe phenom-
ena associated to sound-based experiences. They can
be connected to a local and/or remote network and
act as sender and/or receiver. At the hardware level,
they may be equipped with sensors (in particular micro-
phones), actuators (in particular loudspeakers), and a
variety of wireless and wired connectivity options. At
the software level, they encompass programs that not
only enable the collection, analysis, reception, and trans-
mission of sound-related information, but also provide
context-awareness and proactive capabilities. Key fac-
tors are interoperability and synchronization. The IoS
vision predicts that in the future, several and new kind
of musical and nonmusical devices will be connected to
the Internet for the users to free themselves from several
constraints, such as geographical locations and syn-
chronous presence of every stakeholder. This could have
a transformative effect on how humans conduct sound-
based activities and interact with sound-based devices to
better comprehend the environment or perform creative
tasks in a more convenient way.

2) Network: The IoS network infrastructure supports mul-
tidirectional wireless or wired communication between
Sound Things. The interconnection of Sound Things
may happen over local and/or remote networks and
is achieved by means of dedicated hardware and soft-
ware technologies, as well as standards and protocols
that regulate the communication. Some IoS applications
focusing on real time, such as music live performance
or synchronized WASNs, put particular constraints on
communications. In such use cases, the connectivity
infrastructure should ensure communications with low
latency, high reliability, high perceptual quality, and
tight synchronization between the nodes. Typically, these
requirements are not present in the vast majority of IoT
applications.

10https://www.w3.org/WoT/
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Fig. 2. Schematic representation of a general architecture supporting IoS ecosystems.

3) Storage and Data Sets: Most IoS ecosystems strongly rely
on online storage of sound-related information, which is
one of the main differentiating aspects with respect to IoT.
This storage, centralized or distributed, can be of different
types and refers to musical and nonmusical information.
One type is represented by online sound repositories,
which are entities in evolution: users can update the
repository by changing its content, e.g., uploading new
sounds or deleting existing records. Examples of this
category are Freesound11 or Jamendo.12 A second type
consists of sound corpora. These are essentially static
databases that users can download and that typically
contain audio files together with pre-extracted audio
features and metadata annotations. This is the case of
the MTG-Jamendo data set [27] for automatic music
tagging, or FSD50K [28], a data set for tagging of
sound events. In music data sets, however, it is very
common that copyright limitations do not allow the audio
to be shared as part of a data set. In that case, links
to sound files are normally provided together with pre-
extracted audio features. An example of this category
is AcousticBrainz.13 The third type is represented by
test beds, i.e., platforms to facilitate diverse research
through providing collections of data sets with meta-level
annotations. The Open Multitrack Testbed14 [29], for
example, can be used to search multitrack recordings with
a specific set of instrumentation or stems, and provides
a browsing and searching interface with metadata filters
related to specific devices used in music production.

11https://freesound.org/
12https://www.jamendo.com/
13https://acousticbrainz.org/
14http://multitrack.eecs.qmul.ac.uk/

4) Applications and Services: Different kinds of applica-
tions and services can be created on top of the connectiv-
ity infrastructure, which target a variety of stakeholders.
Such applications and services may have an interactive
or a noninteractive nature. To establish interactive appli-
cations, real-time computations have a particular impor-
tance. Analogously to the IoT field, the IoS can leverage
Web application programming interfaces (APIs) and
Web of Things architectures devised to serve sonic pur-
poses. Services can be exposed by Sound Things via
Web APIs. Applications are part of a higher layer in the
Web of Sound Things architecture letting users interact
with content or Sound Things directly.

Fig. 2 depicts the main technological components of an
architecture supporting a generic IoS ecosystem. The data
flow exchanged via wireless and/or wired links between such
components can be grouped into the following.

1) Captured Sound Streams: Some Sound Things are
equipped with microphones to collect data from the
user (e.g., a networked music performance (NMP)
system [30]) or from the environment (e.g., nodes of
WASNs [31]).

2) Features Computed on Analyzed Sounds: Some Sound
Things have the capability of performing real-time or
offline analysis of the sounds captured from micro-
phones (e.g., a smart musical instrument [32]), while
online storage and data sets can provide the features
upon queries.

3) Control Messages: Beyond sound or sound-related
information, the components of an IoS ecosystem may
exchange messages to control the behaviors of each
other (e.g., data sent to control sonic shoes used in
rehabilitation applications [9] or used to query online
sound repositories [3]).
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TABLE I
POTENTIAL BENEFITS FOR DIFFERENT STAKEHOLDERS BROUGHT ABOUT THE IMPLEMENTATION OF THE IOS PARADIGM

4) Sound Streams for Reproduction: Some Sound Things
encompass loudspeakers which enable to reproduce
sound that is synthesized (e.g., by smart speakers [33] or
smart musical instruments [34]), played back (e.g., from
online sound repositories [35]), or received from other
Sound Things as a real-time flow (e.g., in NMPs [36]).

B. IoS Stakeholders

The IoS field impacts a large variety of stakeholders,
which has important implications at societal and economical
levels. As far as the IoMusT is concerned, the stakehold-
ers include amateur and professional musicians, performers,
composers, conductors, studio producers, live sound engi-
neers, audience members, students, teachers, schools of music,
record labels, publishers, musical instruments manufacturers,
concert venues, and musical services providers. Regarding
the IoAuT, stakeholders may include all actors involved in
ecoacoustics [37], smart city [31], or smart homes contexts
who are using audio-based services. In addition, relevant
stakeholders are Audio Things manufactures and audio-based
service providers. Furthermore, common to both fields there

are stakeholders, such as telecommunication companies, insti-
tutions, and regulatory bodies.

All such stakeholders will form ecosystems around IoS
technologies, which will allow them to interact and avail
themselves of innovative services. Sound Things will be
able to support the activities of such stakeholders, thanks
to their embedded intelligent capabilities (such as context-
awareness and proactivity [38], [39]). Table I summarizes the
potential benefits for different stakeholders brought about the
implementation of the IoS paradigm.

C. Types of Interactions

Different kinds of interaction can occur within IoS ecosys-
tems, which depend on the following aspects.

Entities: Sounds and sound-related information can be
exchanged between: 1) machines (e.g., nodes of WASNs);
2) humans (e.g., collaborative music making using an NMP
system); and 3) machines and humans (e.g., queries from a
smart musical instrument to an online sound repository).

Temporal Aspects: Interactions between the entities above
can be: 1) real time (e.g., via NMP systems or via smart
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Fig. 3. Diagram of a 5G architecture supporting low-latency, highly-reliable musical interactions between two geographically displaced musicians.

Fig. 4. Diagram of a 5G architecture supporting the use case of a smart guitar performing queries by playing to a server on the edge-cloud continuum.

instruments that repurpose the results of the analysis of sounds
at the moment in which they are generated) or nonreal time
(e.g., offline analysis of sounds in online repositories) and
2) synchronized (e.g., nodes of a WASNs sharing the same
clock or musical devices sharing the same tempo) or asyn-
chronized (e.g., musical performances not needed of tight
synchronizations).

Spatial Aspects: Interactions may be: 1) co-located, when
entities share the same physical location or 2) remote, when
entities are geographically displaced.

Content: Sound and sound-related information in the IoS
may be: 1) musical or 2) nonmusical, which lead to radically
different interactions between the entities.

Directionality: Interactions between entities may be: 1) one-
to-one; 2) one-to-many; 3) many-to-one; or 4) many-to-many.

III. RELATED WORK

In this section, we review the state-of-the-art in relation
to both the musical and nonmusical domains, with a focus
on the most recent studies. The review is not meant to be
exhaustive, rather we aim to describe the results of various
application domains that lead to the emergence of the IoS
field. We first review studies specific to the IoMusT, second
those specific to the IoAuT, and then those that are rele-
vant to both fields. We survey both hardware and software
systems, along with application and services. In Figs. 3–7, we
provide schematic diagrams of IoS architectures supporting
various applications and services, detailing the main software
and hardware components and their integration.

A. Relevant Works in the IoMusT

The IoMusT research field originates from the integration of
many lines of existing research, including NMP systems [36],
[40], ubiquitous music [14], new interfaces for musical expres-
sion [41], music information retrieval (MIR) [42], human–
computer interaction [43], Musical XR [44], participatory
art [45], IoT [46], and aspects of semantic audio [47] combin-
ing Web and audio technologies [48], [49]. In the following
we survey the essential IoMusT components and underlying
technologies.

1) Networked Music Performances: In essence, NMPs
systems are real-time audio/video streaming applications
aimed at supporting remote musical interactions among per-
formers placed in different physical locations. Nowadays,
several experimental and commercial NMP solutions are avail-
able (see [30], [50], [51], [52], [53], [54], [55]). The ongoing
Sars-CoV-2 pandemic has significantly fostered their develop-
ment, due to the sudden need to support the daily activities
of musicians and music schools while adhering to social dis-
tancing rules enforced during lockdowns. Literature from the
past two decades also reports a wide range of demonstrations
of networked musical performances (some recent examples
include [56], [57], [58]).

To achieve performative conditions as similar as possible
to those experienced by musicians in traditional in-presence
settings, the mouth-to-ear latency perceived by the perform-
ers must be extremely low: according to several studies
appeared in the last decade [59], [60], [61], [62], [63], [64]
it should not exceed 20–30 ms. This is the amount of time
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Fig. 5. Diagram of an architecture supporting remotely controlled sound-based therapies for gait rehabilitation via smart sonic shoes providing interactive
sonification of the gait.

Fig. 6. Diagram of a WASN for wildlife monitoring.

taken by a sound wave to propagate in air 8–10 m (which
is usually considered the maximum physical displacement
tolerated by a musical ensemble to synchronously perform
together in absence of additional reference tempo cues).
Above 30 ms, latency becomes clearly perceivable and typ-
ically has a negative impact on the performance quality, as it
makes the maintenance of tempo stability and of the desired
musical interplay progressively harder, due to the fact that
perceiving the counterpart as “late” generates a tendency
toward tempo deceleration. For this reason, research efforts
have recently been devoted to the integration of artificial
metronomes capable of providing adaptive audio cues to the
remote musicians [65], [66].

The overall mouth-to-ear latency includes multiple contri-
butions introduced by different stages of the audio acquisition,
processing, transmission, and reproduction processes. Due

to the packet-switching approach adopted in Internet-based
networks, audio data are subdivided in chunks and packetized,
then each packet is routed individually from source to desti-
nation through the telecommunication network infrastructure.
It follows that consecutive packets may experience different
delays, as some latency components (e.g., the queueing time
in intermediate routers) exhibits variations along time. The
variation of the interarrival times between consecutive pack-
ets is named “jitter.” Jitter excursions and packet losses may
cause audio portions to arrive too late (or not arrive at all) to
be reproduced at the receiver side, thus causing audio artifacts
(note that conventional packet retransmission mechanisms can-
not be adopted in NMP applications, as they would further
increase the mouth-to-ear latency). By introducing a delay,
the variance of the jitter can be reduced through a combina-
tion of jitter buffers and forward error correction codes [67].
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Fig. 7. Diagram of a networked, sound-based anomaly detection system for the monitoring of manufacturing machines.

Another source of audio impairments is the drifting effect
caused by the imperfect synchronization of local clock oscilla-
tors, which leads to buffer over/underruns due to the deviation
between the number of audio samples generated by the sender
and the number of those reproduced by the receiver dur-
ing a given time period [68], [69]. To mitigate the impact
of such artifacts without introducing a delay, robust audio
codecs designed for ultralow-latency streaming applications
over imperfect networks can be used. These include audio
coders where packet loss concealment is integrated (such as
OPUS [70], [71]) or multiple-description audio coders, where
audio frames are encoded into several redundant packets which
individually yield a desired quality, and where any combina-
tion of packets improves the quality [72], [73], [74], [75],
[76], [77].

2) Musical Things: Various types of Musical Things have
been proposed by the IoMusT research community (e.g., [3],
[6], [34], [78], [79], and [324]), along with frameworks to
connect them (e.g., [80], [81], and [82]).

The so-called Smart Musical Instruments are one of the
most prominent instances of Musical Things [4]. This is
an emerging class of musical instruments characterized by
sensors, actuators, wireless connectivity, and embedded intel-
ligence. Such instruments are the result of the integration of
various technologies, including IoT, sensor- and actuator-based
augmented instruments, embedded acoustic and electronic
instruments, NMP systems, as well as methods for sensor
fusion, audio pattern recognition, and semantic audio. Smart
musical instruments are envisioned to have advanced intel-
ligence capabilities, such as context-awareness, adaptation,
and proactivity. Nevertheless, up to now, only a few musi-
cal instruments exist in both industry and academia which
encompass such features. Examples from industrial research
are Smart Acoustic Guitar by HyVibe and the Sensus Smart
Guitar developed by Elk [79]. Examples in academic research
are the Smart Cajón reported in [32], the SOURCE sampler
detailed in [3], or the Smart Mandolin described in [83].

A number of innovative applications associated to such
instruments are also emerging. Turchet and Barthet [84]
proposed a smart guitar system that uses the instrument as
a hub for collaborative music making over a local wireless

network. Thanks to this system, performers using musical
apps on mobile devices produce sounds by wirelessly con-
trolling the instrument’s sound engine. At the same time, the
player can not only actually play and control other parts of
the instrument’s sound engine, but can also send messages
to the connected mobile devices changing the configuration
of the app. In a different vein, the system described in [85]
reports a smart guitar application enabling the use of dis-
tributed intelligence, via cloud computing, and edge computing
paradigms, for recreational music making and learning con-
texts. Thanks to direct Internet connectivity and embedded
processing, the instrument sends requests of desired musi-
cal pieces to online music repositories and reproduces the
downloaded music. In particular, the search is performed
using musical features, such as tempo and chords, which are
extracted by the instrument’s capabilities, rather than utilizing
conventional text-based search, such as the title of the song or
the artist’s name.

Wearable devices utilized for musical purposes are another
category of Musical Things [6], [35]. For instance, headsets
for virtual or augmented reality can be considered as Musical
Things if used in networked musical applications and in con-
junction with other Musical Things (see [79], [86]). However,
this line of research has thus far received remarkably little
attention, despite its great potential for performance, compo-
sition, and education [44], [87]. On the one hand, Musical
Haptic Wearables, are an emerging class of wearable devices
embedding haptic stimulation, tracking of gestures and/or
physiological parameters, and wireless connectivity features.
On the other hand, such devices were devised to enhance com-
munication between performers, as well as between performers
and audience members by leveraging the sense of touch in
both co-located and remote settings [88], [89]. They were
devised to enrich musical experiences of audiences of music
performances by integrating haptic stimulations, as well as
provide novel capabilities for creative participation thanks to
embedded sensor interfaces [7].

3) IoMusT Connectivity Systems: Recent endeavors in
IoMusT research have explored the creation of dedicated
systems to interconnect Musical Things, paving the way
to the creation of IoMusT ecosystems. Some scholars have
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proposed frameworks that allow one to exchange information
within artistic installations [81], [90] or performance settings
leveraging the real-time dimension [91], [92], [93].

Other authors have proposed preliminary architectures based
on Semantic Web technologies to foster interoperability across
heterogeneous Musical Things. The semantically senriched
IoMusT architecture reported in [94] relies on a semantic
audio server, embedded audio systems, and edge computing
techniques. In particular, the SPARQL15 (SPARQL Protocol
and RDF Query Language) Event Processing Architecture
described in [95] was used as an interoperability enabler
allowing multiple prototypes of Musical Things to coop-
erate. However, Semantic Web technologies are typically
not suitable for dealing with real-time aspects of IoMusT
applications, as the Semantic Web stack is oriented toward
scenarios where information evolves at a low rate. To cope
with this issue, Viola et al. [96] improved the architecture
reported in [94] by using CoAp, a lightweight IoT protocol
for machine-to-machine communication.

Such architecture has been further improved and extended,
leading to the musical semantic event processing architec-
ture (MUSEPA), a semantically based architecture designed to
meet the IoMusT requirements of low-latency communication,
discoverability, interoperability, and automatic inference [97].
MUSEPA uses at its core the IoMusT Ontology, an ontology
dedicated to the representation of knowledge related to the
IoMusT domain [98].

4) Music Information Retrieval: The wider fields of Music
Informatics and Semantic Audio are both concerned in part
with the extraction of information from audio signals, signi-
fying the relevance of these fields to both IoAuT and IoMusT
and the broader IoS and IoMT domains. Semantic Audio goes
beyond typical concerns of Music Informatics in its use of
explicitly structured data and applications outside the music
domain as discussed in Section IV-C. As a field related to
both, MIR has seen an increase in its multidisciplinarity, and
it is now commonly thought to cover research and techniques
for music understanding and modeling that use information
processing methodologies [99]. This includes music genera-
tion as well as cognitive or musicological analyses of different
representations of music.

Core research in MIR, however, still focuses on tasks, such
as key and chord recognition [100], [101], tempo and beat
tracking [102], the detection of musical note onsets [103],
[104], automatic music transcription (AMT) [105], classifica-
tion [106], and description (also known as captioning) [107],
[108] as well as music emotion recognition (MER) [109],
[110], [111]. A large body of research considers musical audio
in these tasks to support search, retrieval, and interaction use
cases. This makes MIR especially relevant for the increasing
number of interconnected IoS devices, such as smart speak-
ers, networked media players, set-top boxes, general purpose
intelligent assistants [112], as well as more specific devices
such as smart instruments [4].

Conventional key and chord estimation techniques typically
share a similar signal-processing pipeline. A time-frequency

15http://www.w3.org/TR/sparql11-query/

representation, such as a spectrogram or constant-q-transform
is obtained first from the audio followed by aggregation steps,
e.g., a pitch class profile or chroma feature calculation for
every time frame. The objective is to fold energies from dif-
ferent octaves into a feature that is robust to timbre variations.
The features are finally pooled over time and compared with
templates for each chord or key. The best matching tem-
plate determines the label. ML techniques, such as a hidden
Markov model [113] may be used to smooth transitions or
impose a musicological model to improve accuracy over raw
labels extracted from the signal directly. More recently, end-
to-end feature learning approaches have been proposed for
these tasks [114], [115], where typically a convolutional neural
network frontend is applied to process a time-frequency sig-
nal representation into increasingly higher level features [116].
This is followed by dense layers and softmax classifica-
tion to determine the label. A comprehensive survey of the
development of chord recognition is provided in [117].

Typical approaches to determine the onset of musical notes
involve the calculation of an onset detection function (ODF),
e.g., using time-domain energy fluctuation or zero crossing
rate and frequency-domain techniques, such as spectral differ-
ence or phase deviation [103]. The ODF is then smoothed and
its peaks are picked to find note onsets. The time-frequency
representation of the signal may be preprocessed to reduce the
effects of instrument playing techniques such as vibrato [118],
while different acoustical features may be fused in order
to emphasize less salient notes in the signal [119]. Neural
networks have also been employed in this task [120], where
a convolutional frontend followed by dense layers is used to
compute an ODF. While deep learning represents the state-
of-the-art in terms of accuracy, in IoS applications with hard
real time and energy constraints, signal processing methods
are still relevant [104].

AMT is concerned with analyzing an acoustic signal
to extract parameters of the sound corresponding to tradi-
tional music notation or other symbolic representation that
allows reproducing the piece using musical instruments or
synthesizers [105]. This is relevant to IoS as this allows
advanced search, for instance, by matching melodic patterns,
or advanced interaction through altered resynthesis. AMT is
often divided into subproblems, such as note onset detection
and multipitch estimation, however, nonnegative matrix factor-
ization (NMF) and Neural Networks have been predominant in
the field in recent years [121]. These aim to jointly estimate the
spectro-temporal characteristics of musical notes. NMF con-
siders a nonnegative time-frequency signal representation as
the product of a dictionary and an activation matrix which are
iteratively updated to minimize the divergence between, e.g.,
a spectrogram and the matrix product. Neural networks for
AMT use one or more time-frequency representations as input
and aim to estimate note onsets, pitch, and duration. A notable
example is Google Brain’s Onsets and Frames Network [122].
State-of-the-art approaches aim to capture short and long-term
characteristics of the signal, e.g., the temporal evolution of
note spectra as well as dependencies between musical notes.
For example, the model proposed in [123] represents audio
features and language-like dependencies jointly.
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The association of semantic labels, such as genre or mood
with audio signals is also very prominent in MIR. Instrument,
genre, or emotion recognition may be considered separate
tasks, or part of a multilabel classification problem known as
automatic music tagging. In the IoS domain, these labels facil-
itate retrieval. MER is conventionally treated as a supervised
ML problem. Acoustic features corresponding to cognitive or
psychological factors may be selected, then models are trained
to predict either categorical mood labels (e.g., happy versus
sad) or a continuous representation of moods (e.g., arousal
and valence). Features may also be selected adaptively [124]
or using a data-driven approach [125], [126]. A comprehensive
survey of MER can be found in [109]. Similar pipelines have
been dominant in instrument and genre recognition too [106],
but state-of-the-art results are now obtained using end-to-end
deep learning models. These tasks are increasingly consid-
ered part of a broader music tagging problem [127], [128].
Convolutional and recurrent networks are combined in [129]
for predicting labels corresponding to genre, mood, instrument,
and musical era. A musically motivated front-end focusing
on timbral and temporal features simultaneously is proposed
in [130], while features extracted from a convolutional network
trained on tags are shown to perform well across a range of
MIR tasks in [127]. Generating full-sentence descriptions of
a music piece may be considered an extension of the tagging
problem. This involves the use of an acoustic model and a
large language model [108].

In the broader context of interconnected IoS devices, MIR
can facilitate new mechanisms for search and retrieval as
well as new interactions with large music collections on the
Web. Processing audio queries can be handled for instance
by extracting features locally in the IoS device using MIR
techniques, and using these features in the retrieval process.
A relevant application is demonstrated in [85] in the con-
text of a smart guitar, comparing keyword search with both
cloud and edge computing approach to retrieve content using
tempo, chords, key, and tuning features. Earlier applications
for hand-held IoS devices (e.g., tablets) demonstrate how
MIR facilitates music learning in an IoS context [131], [132],
while both retrieval and repurposing of sounds are exemplified
in [133].

B. Relevant Works in the IoAuT

Similarly to the IoMusT, the IoAuT research field is posi-
tioned at the confluence of different disciplines. Beside the
IoT and networking, these include WASNs, sound and music
computing, sonic interaction design, semantic audio, artificial
intelligence, and human–computer interaction.

1) Acoustic Sensor Networks: As the impact of human
activities on the health of humans and the natural environ-
ment is getting more and more important, there is an urge
to reliably gather information about our environment that
allows us to take action. To tackle this issue, one approach
is to foster on the advent of low-cost microphones based
for example on the MEMS technology [134] to monitor our
environment. In order to produce reliable, interpretative, and
privacy-preserving information using this kind of technology,

it has to be done at scale, on the edge, and in a efficient
manner. The audio modality has many advantages. Its is
contactless, noninvasive, omnidirectional, provides features of
relatively low bandwidth and can operate without light. Those
advantages lead to the widespread of application scenarios in
the recent years, mostly for surveillance and monitoring.

Gathering information about our environment using the
acoustic modality requires a complex processing chain. The
pipeline usually consists in a microphone, a processing unit for
computing low-rate features, and another processing unit that,
from those features, predicts high-level attributes such as the
presence of sources of interest. Finally, the audio, the features,
and the high-level attributes may be consumed via gateways
or stored using storage facilities. Some constraints have to be
met when placing key components over the graph that con-
stitutes the network of sensors and servers. For example, the
microphone must obviously be located in the sensor. For the
others, the design choices leading to the correct network archi-
tecture is task-specific [135] depending on the correct balance
between privacy, energy harvesting, security, and reliability
for the project at hand. Traditional acoustic array processing
allows for spatio-temporal processing of the surrounding sound
field, and is frequently used for detection and localization
of sources, analyses of signals, enhancement, noise reduc-
tion, etc. In acoustical sensor networks (ASNs), the wireless
microphone sensors can be placed at arbitrary locations and is
not restricted to a fixed grid. This provides a high degree of
flexibility but also introduces challenges, such as synchroniza-
tion issues between the sensors, artefacts due to audio coding
and transmission errors, potentially unknown and time-varying
network topology and quality, and energy restrictions in the
case that the sensors are battery driven.

Predicting high-level attributes from those sensors is done
using machine-listening software components that detect
sound events and classify them into application-specific
ontologies. The now well-established DCASE challenge16 pro-
vides a unique venue fostering academic and industrial efforts
toward effective detection or classification models [136], [137]
for standardized tasks that can serve as reference when con-
sidering real application scenarios. The challenge allows the
community to compare different inference techniques in a
standardized setting geared toward replicability and fairness
of comparison. A companion workshop is held that allows
the challenge participants to describe and discuss their design
choices. Besides striving for more and more powerful infer-
ence models, there is a number of important issues to address
in order to ensure that the society takes full profit of the
technology at hand. This section describes some of these
challenges and discusses recent approaches taken to improve
them.

a) Urban audio: Urban environments are designed by
humans for humans but their acoustic quality are most of the
time neglected. IoS technologies are envisioned to play a role
in improving the quality of the urban environment by many
means [138]. Passive monitoring to allow better enaction is
under research in many major cities in the world [31], [139].

16http://dcase.community
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Active solutions where sound displays are played at specific
places are also investigated [140]. At the scale of housing,
similar potentials are also envisioned.

The urban environment, as designed by humans, should
provide security and safety to its citizen. In order to do so,
urban planners needs to balance many factors. Noise miti-
gation and urban soundscape quality improvement are now
recognized as important, but citizens and policy-makers cur-
rently lack quantitative and qualitative information about it.
European regulations request that large cities publicly display
a noise emission map to allow citizens to have quantitative
information about their exposure to noise. As of today, these
maps are built using sound propagation techniques similar to
ray-tracing in image synthesis and are only based on some esti-
mates of the number and the speed of emitting sources (e.g.,
cars, trains, and planes) [141]. While those noise maps have
their interests, they typically lack time resolution, display only
sound pressure levels, and are by essence, only predictive and
not tied to direct measurements. In order to better describe the
acoustic environment and its potential impact on the quality
of life of the citizens, it is necessary to characterize it in terms
of presence of sources.

For those reasons, in several countries around the world,
innovative projects, such as SONYC in New York City [142],
DYNAMAP in Rome [143], SONORUS in Antwerp [144],
StadtLärm in Jena [145], or CENSE in Lorient [139] have
deployed acoustic sensor networks with various designs.
Measuring the sound environment in urban areas is far from
trivial because of the diversity of sound sources but the use of
sensors opens a wide range of improvements. First, continuous
monitoring allows citizens to interact with regulations adminis-
tration more efficiently [31]. Second, noise maps produced by
sound propagation techniques and ASNs have different biases.
Considering both source of information helps reduce estima-
tion biases in order to produce more reliable estimates [146].
Third, information about sources of interest, vehicle, humans,
and animals are very useful for prediction high-level attributes
of the sound environment such as its pleasantness [147].

Despite the potential of acoustic sensor networks for
urban sound monitoring, these technologies currently face
multiple challenges. In particular, meeting citizen’s privacy
constraints [135], designing reliable networks, efficiently
adapting source detectors to new monitoring areas without
requiring a significant amount of human labor [148], [149],
all those challenges are now under active research.

b) Ecoacoustics: Along the study of vocalizing animals
at an individual level, a field of research called bioacoustics,
a new field have recently emerged that is termed ecoacous-
tics [37]. The purpose of ecoacoustics is to gather high-level
information about given species living in an ecological niche
through the use of passive network of microphones. The quan-
tities of interest here are typically the number of animal calls
in order to monitor for example the impact of human activities
or climate change on the behavior of a specific species.

Most of those applications require the acquisition of some
metrics at an hour rate, often for very long periods of time, ide-
ally up to several years. For example, the study of the impact of
light pollution on bird vocalizations [150] requires a high level

of precision in time. Those requirements, along the fact that
most ecosystem under study are rather remote with low access
to power and wireless networking, brings strong constraints on
the design of the network of sensors. Among the most drastic
is the autonomy of the sensors, autonomy meaning here low
dependence to energy harvesting and maintenance [151].

In more densely populated areas with cell phone cov-
erage, citizen science approaches, such as Merlin BirdId17

Warblr18 or birdnet19 allows, based on advanced machine
listening techniques [152], [153], the citizen to easily geo-
tag bird calls. Indeed, the cell phones are equipped with the
necessary hardware needed to record, identify, and send bird
species identification reports. While this kind of approach has
numerous benefits socially speaking [154], it has strong lim-
itations for scientific investigations due to the sampling bias
induced by considering only voluntary contributions. As such,
remote places such as off-shore underwater areas require spe-
cific, reliable dedicated hardware [155] to perform long-term
studies [156].

2) Audio Things: Various IoT devices designed to pro-
vide or collect sonic information to/from users have been
proposed while others are currently under study [151]. An
illustrative example is represented by sonic shoes devised for
clinical or sport training applications [9], [157]. Another exam-
ple of Audio Things concerns the analysis of environmental
sounds. Various embedded systems have been utilized for this
purpose, using both real-time and nonreal-time architectures.
Relevant examples concern environmental monitoring [158],
ecoacoustics (e.g., birds monitoring) [159], [160], [161] and
urban sounds [31]. Smartphones are also increasingly used for
similar purposes [162] along with drones [163], [164].

In addition, Audio Things with real-time sound analysis
capabilities have been employed for remote anomaly detection
in manufacturing or machine operation contexts [165], [166].
Moreover, voice-based interfaces such as smart speakers have
been utilized to access cloud-based repositories of nonmusical
sounds [33].

Hearing aids are another prominent category of Audio
Things. Next-generation AI-powered wireless hearings aids
will be connected to computing IoS devices and thereby
enabling functionalities, such as audio streaming from your
smart TV, hands-free communications via the smart phone,
and real-time translation of the received speech signal into
any desired language [167]. In addition, hearing aids will be
equipped with nonacoustic sensors, such as cameras [168],
EEG sensors [169], bone conduction and skin vibration sen-
sors [170], etc., in order to obtain enhanced speech quality
and intelligibility in noisy environments [171].

C. Relevant Works Common to Both IoMusT and IoAuT

The IoAuT and IoMusT may share some technologies
enabling their applications. The following surveys some
among the most prominent of them.

17https://merlin.allaboutbirds.org
18https://www.warblr.co.uk
19https://birdnet.cornell.edu
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1) Embedded Systems for Sound-Based Applications:
Researchers have proposed a number of operating systems for
the IoT (such as RIOT [172]). However, these are not specifi-
cally conceived bottom-up to handle sound and are insufficient
for most IoS applications, which usually have requirements in
terms of low-latency of sensor and sound signal processing.

Finally, there has been an increasing attention toward
the development of embedded systems dedicated to digital
sound processing, where a variety of audio software runs
on single-board computers, such as the Raspberry Pi or the
Beaglebone [173]. This endeavor is usually referred to as
“embedded audio.” Notable examples, conceived for the mak-
ers community, are Axoloti20 and Prynth [174]. According to
the results reported in [175], the state-of-the-art in this space
is represented by Bela [176]. This platform is based on the
BeagleBone Black single-board computer, which is extended
with a custom expansion board featuring inputs and outputs
for audio, sensors, and actuators.

In industrial contexts, the state-of-the-art in embedded
audio today is arguably represented by the Elk Audio OS, a
Linux-based, open-source operating system developed by the
company Elk [50]. Elk Audio OS is optimized for ultralow-
latency and high-performance sound and sensor processing on
embedded hardware, as well as for handling wireless connec-
tivity to local and remote networks. Differently from other
systems, it supports a variety of single-board computers. To
achieve latencies below 1-ms Elk Audio OS (as well as Bela)
uses the Xenomai real-time kernel extension, which according
to different studies [10], [177] is the best-performing of the
hard real-time Linux environments.

2) Semantic Audio: Semantic Audio is an interdisciplinary
field providing techniques to extract meaningful and structured
information from audio. The field is situated in the intersection
of semantic technologies concerned with helping machines
understand data through structured knowledge representations
that facilitate automated information processing [178], and
information extraction from audio through the use of sig-
nal processing and ML techniques. The objective of semantic
audio is often to facilitate interaction with audio in human
terms. This is achieved by providing high-level meaningful
control in complex scenarios such as audio production [47].

Semantic audio methods find application in several IoS-
related scenarios, from intelligent audio and music processing
and production [39], [179], [180], [181], [182], [183], [184],
to online music distribution [48], [49], to auditory scenes
classification tasks [136], to ecoacoustics [185] as well as
speech technology, including speaker, gender, or language
identification [186], [187].

An important endeavor in the Semantic Audio field has been
that of defining a variety of ontologies to represent knowledge
related to the musical and nonmusical domains. Regarding
musical contexts, examples include the music ontology21

(MO) [188], [189], a high-level ontology for representing the
music domain, in particular modeling the music value-chain
from production to consumption [49]. Since MO is arguably

20http://www.axoloti.com/
21http://musicontology.com/

the most comprehensive ontology frameworks for the music
domain [190], several extensions have been proposed for spe-
cific subdomains. These include the Studio Ontology [191], a
framework comprising of a set of modular ontologies that rep-
resent artefacts and technical workflows in music production.
The Audio Effect Ontology22 represents audio effects [192]
and their applications [193] in music production workflows.
The Audio Features Ontology23 is concerned with providing
a structures schema for information extracted from audio sig-
nals, i.e., descriptors representing specific characteristics of
sound signals [194] linked to information extraction tools.
Broader extensions of these ontologies encompass music
theoretical domains [195], ethno-musicology [196], musical
archives [197], [198], as well as musical instruments [199],
[200] and mobile devices for music making [201]. This and the
following extensions are particularly relevant in the IoS con-
text. The IoMusT Ontology24 represents knowledge related to
IoMusT ecosystems, including network connectivity and types
of Musical Things [98], while the Smart Musical Instruments
Ontology represents knowledge associated to the family of
smart musical instruments [202]. Various applications have
been devised which leverage these ontologies at their core
(see [203], [204], [205], [206]).

Concerning the nonmusical domain, relevant ontologies
include the Audio Set Ontology, which represents knowl-
edge related to general auditory events [207]. The Audio
Commons Ontology25 is a high-level ontology binding sev-
eral audio-related ontologies together, which was designed to
facilitate the integration of audio content repositories on the
Web as well as content consumption by software agents [208].
Ontologies in the broader sound-related domains include EBU
Core26 [209] and the MPEG-21 media contract ontology [210],
while specifically for the sound domain, an early ontology has
been proposed in [211], with similar structures incorporated
into later works [207], [208], [212]. Ontology-aware models
for sound classification have been proposed in [213] and [214],
while an instrument recognition model using hierarchical
structures is presented in [215].

3) Sound-Based Repositories: Several online repositories
exist which feature APIs that allow the integration of their
content with IoAuT and IoMusT applications. Specially rel-
evant are those that feature content under open licenses that
allow their reuse. On the audio side, Freesound [216] is the
biggest repository with Creative Commons licensed audio. On
the music side, Jamendo and the Free Music Archive27 repre-
sent the most important sources containing Creative Commons
music tracks. Other repositories with a broader purpose but
also incorporating significant amounts of open sound content
accessible through an API include the Internet Archive28 and
Europeana.29 Of relevance is also the recent Audio Commons

22https://w3id.org/aufx/ontology/1.0
23https://w3id.org/afo/onto/1.1
24http://purl.org/ontology/iomust/internet_of_things/0.1
25https://w3id.org/ac-ontology/aco
26https://www.ebu.ch/metadata/ontologies/ebucore/
27https://freemusicarchive.org
28https://archive.org
29https://www.europeana.eu
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Initiative [217], which focused on development of technologies
and tools to improve reusability of Creative Commons sound
content, including sound and music analyzers and ontologies
for a uniform conceptualization of sound repositories.

A slightly different type of sound repositories which are also
relevant for IoAuT and IoMusT applications are those featur-
ing static content that can be downloaded and used offline.
These include scientific research data sets, such as the MTG-
Jamendo and FSD50k mentioned above [27], [28], and other
collections of reusable sound content available online. While
these resources do not allow online interaction such as that
offered by online APIs, they are very relevant for research
purposes while developing applications in the IoS domain. For
example, the MIR community (see Section III-A4) maintains
a broad range of public data sets30,31 that come with audio.

4) Web-Based Digital Sound Applications: One of the most
recent and widely adopted among the technologies for musical
and nonmusical sound applications on the Web is repre-
sented by the Web Audio API [218]. Such a technology
enables real-time sound synthesis and processing on Web
browsers simply by writing JavaScript code. It is a World
Wide Web Consortium (W3C) proposed standard32 and rep-
resents a promising basis for the creation of distributed audio
applications such as those envisioned in the IoS.

Several projects have demonstrated how sound-based appli-
cations can be integrated into the Web browser via the Web
Audio API. A large amount of these projects have a musical
nature (e.g., [219], [220], [221], and [222]), even including the
implementation of MIR audio analysis techniques in the Web
browser [223], and a full DAW.33 Another strand of projects
have focused on both musical and nonmusical sounds, such as
the Freesound Explorer.34 Conversely, other projects have only
focused on nonmusical sounds, such as the online real-time
sound effects synthesis platform described in [224].

In recent years, Web Audio technologies have been
employed in embedded systems, thus bridging the realm of
audio applications leveraging the Web with that of smart
objects. For instance, Matuszewski and Bevilacqua [225]
described a system comprising Raspberry Pi platforms, each
running a Web Audio application. Such an application could
exploit various libraries previously built for mobile-based
applications (e.g., for synchronization purposes [226]), with
the purpose of implementing a distributed architecture for
musical performances.

Another example of system integrating Web-based digital
audio technologies and embedded audio was proposed in [35]
for body-centric sonic performances. The system consisted of
sensor- and actuator-equipped jacket and trousers enabling the
interactive manipulation of musical and nonmusical sounds
retrieved from online sound repositories.

5) Networking: In Section II, we have seen that the
real-time communication of audio-related information poses
stringent requirements in terms of latency (delay from the

30https://www.ismir.net/resources/datasets/
31http://www.audiocontentanalysis.org/data-sets/
32https://www.w3.org/TR/webaudio/
33https://www.soundtrap.com
34http://labs.freesound.org/fse/

transmission to the reception of packets), jitter (sudden varia-
tions of the latency) and reliability (probability of successful
packet reception) [227], [228], [229]. Moreover, in some use
cases the data rate is low, such as to detect crashes from acci-
dents or simple acoustic signals, whereas in other use cases,
the data rates are very high, such as when the acoustic sig-
nals carry complex information and need to be quantized at
very high sampling rates. Communication protocols, such as
those used in cellular wireless communications, local area
network communications (e.g., Wi-Fi), and Internet connec-
tivity have not been traditionally designed or intended for
the use cases of Internet in IoS. However, in the recent year,
there have been significant research efforts to design and intro-
duce general-purpose protocols that can potentially support
these “low-latency and high-reliability applications.” These
protocols work both at the network core level (Internet con-
nectivity), and at the wireless access level (wireless local area
and cellular wireless networks), as we briefly survey below.
For a deeper discussion, see [230].

At the network core level, the Internet protocol (IP) includes
lower layers protocols which greatly determine the delay, jit-
ter, and reliability performance. One of the most prominent set
of layers in this regard is Ethernet, and within Ethernet, the
time-sensitive networking (TSN) [231]. TSN is a set of proto-
cols that has been introduced to support applications, such as
professional audio and video. TSN aims at supporting packet
(level 2 frames) loss ratios from 10−9 to 10−12. TSN divides
the traffic in two main categories: 1) Class A and 2) Class
B. In Class A, the end-to-end latency that can be supported
is up to 2 ms, but for packets with limited bandwidth and
very few hops in the path source-to-destination. In Class B,
the end-to-end latency that can be supported is up to 2 ms, but
for packets with relatively limited bandwidth and up to seven
hops in the path source-to-destination. TSN requests to set
up a contract between the source of traffic and the network
operator, which ensures zero queueing loss and high packet
synchronization. One issue with the adoption of TSN is that it
is a service that will have to be required by the packet source
when installing or maintaining the Internet service, usually at
additional costs on top of the Internet connectivity. When the
TSN cannot be used, we can resort to fall-back options, such as
using user datagram protocol (UDP) protocols without bother-
ing which lower lever protocol is implemented. However, this
fall back options greatly limits the bit rates, and introduces
higher packet loss probabilities, and higher jitter compared to
TSNs.

At the wireless access level, we have two main technolo-
gies to meet the requirements of the IoS: 1) wireless local area
networks (WLANs) and 2) cellular networks. For WLANs, we
can use TSN to achieve the communication requirements that
are suitable for audio services. Here, TSN offers the same
pros and cons as in Ethernet for Internet. For the cellular
networks technologies, in the recent years there have been
major efforts to define the 5G standards. 5G is already being
implemented and offers very good communication services
for audio applications. This is possible, among others, thanks
to three features: 1) at the physical layer; 2) the network
architectural level; and 3) at the network management level.
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1) At the physical layer, one of the major novelty is
the introduction of the millimeter waves communica-
tions [232], which make it possible to transit very high
data rates from the audio source at some wireless devices
up to the base station and back, with rates of the order
of Giga bits per second and latency below 1 ms.

2) At the network architectural level, one major novelty is
the concept of edge computing [233], where the idea
is to place computational resources near the wireless
access points (base stations) so that wireless devices
that need to perform complex computations can devolve
them to near located edge computing nodes [multiac-
cess edge computing (MEC)], with major delay gains as
compared to sending these computations to the cloud.
Moreover, the edge nodes can store content near the
wireless devices, so that the delay to fetch such content
may be limited.

3) Finally, the third major novelty of 5G at the network
management level is the concept of network slic-
ing [234], which allows to transmit simultaneously on
the physical wireless network several classes of traf-
fic each having quite different requirements in terms
of latency and reliability. In practice, network slicing
allows to use sets of communication protocols that are
tailored to the specific uses cases, such as audio or other
real-time services.

The future composition of TSN and 5G protocols (when
the source is a wireless device that needs to be connected to
the Internet) will therefore allow to arguably meet most of the
communication requirements of the IoS. Recent research in
this space has proposed dedicated architectures to interconnect
distributed musicians over wireless links along with analysis
of simulations under different conditions as well as real-world
applications of such architectures [82], [229], [235], [236].

6) Synchronization: In several IoS applications the dis-
tributed nodes need to be synchronized in time. Nevertheless,
the accuracy of such a synchronization shall depend on the
application at hand. To keep a satisfactory level of synchro-
nization between the nodes, developers focus shall be devoted
to the control of two quantities: 1) the local time of each
node and 2) the delay, i.e., the amount of time needed by the
node to record, synthesize or playback an audio signal once
the request to do so have been received. A complicating fac-
tor is that IoS nodes could slightly differ even in presence
of the same hardware and software, and even minimal dif-
ferences in parameters, such as sampling rates in the long
run can result in clock drifts and therefore cause synchro-
nization issues [237]. Moreover, even if different devices in
the network would initially share the same clock, they need a
resynchronization procedure from time to time.

In general, Quality of Service (QoS) is ensured minimizing
the two quantities: 1) σt the variance of the difference between
the local time of each node and 2) σd the variance of the differ-
ence between the delays of each node. To show the importance
of such quantities, in the following we describe three use
cases with growing requirements in terms of synchronization
accuracy.

1) In WASN, synchronization is typically needed to
interpret some high-level behaviors happening across

different nodes. In this case, σt and σd shall remain
below the second.

2) On contrary, distributed playback systems that operate
over IP [238], such as RAVENNA [239] or Dante [240],
reducing σt below the millisecond is critical as the
human auditory system is highly sensitive to phase
delays. In this case, σd is not a strong issue since the
nodes are simple playback systems that are not in charge
of audio processing or synthesis.

3) Smartphone [241] orchestras, laptop [242], [243] orches-
tras, or any NMP systems involving synchronization [5]
represent a much more challenging case. They have the
same requirements as distributed playback systems but
have to face much more stress on σd as the nodes of the
network have to process and synthesize audio before
rendering using a wide diversity of hardware platform.
The latter calls for software-based solutions [244] which,
however, are known to be inherently limited in terms of
precision [245].

Different systems and protocols have been developed by
the IoT community to minimize σd as well as to address
the issue of establishing an accurate, network-wide notion of
time, which is crucial for scenarios demanding precise tempo-
ral coordination [246], [247]. Various systems have attempted
to improve the weakness of the Network Time Protocol,
which is widely used in sensor networks [248]. A particular
focus has been placed on minimizing synchronization errors
between nodes of wireless sensor networks (see the Flooding
Time-Synchronization Protocol [249], PulseSync [250], and
variations of it [251]).

Synchronization issues are particularly relevant to NMPs
occurring in both wide and local area networks and in both
wired and wireless networks [36], [40], [62]. Several NMP
systems have been devised for WLANs, typically leverag-
ing Wi-Fi and using protocols to exchange musical messages
between devices, such as MIDI or Open Sound Control [98],
[252], [253], [254]. Synchronization aspects in WLANs have
been addressed by various studies in [1], [36], [255], [256],
and [257]. An example is represented by the approach based
on HTML5 proposed in [226] to synchronize mobile-based
applications leveraging the Web Audio framework. To date,
the most widely adopted synchronization protocol for musical
applications within Wi-Fi-based WLANs is Link, a de-facto
standard developed by the company Ableton [258]. However,
recent research has assessed the limits of such a protocol in
supporting a large number of nodes [245].

Moreover, a significant body of research has investigated
at the technical and perceptual level the use of metronomes
in NMPs distributed over the Internet. For instance, dedicated
hardware that broadcast GPS reference time over the network
has been proposed in [66], [259], and [260], while adaptive
metronomes have been proposed in [65] and [261].

IV. CHALLENGES

In this section, we discuss open questions that currently
hinder the development of the IoS. In particular, we describe
the challenges that are common to both the IoMusT and the
IoAuT, as well as those that are specific to such fields.
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A. Embedded Audio

As the IoS emerges, sound-specific operating systems are
required on embedded hardware to ease development and
portability of IoS applications. Most of current embedded
systems specific to sound processing offer a little range of
connectivity options and scarce hardware-software methods
supporting advanced ML algorithms. In the IoS vision, the
connectivity component of embedded systems is crucial to
devise advanced applications leveraging edge computing tech-
niques while seamless accounting for privacy and security
aspects.

Current challenges in this area include: 1) platform inde-
pendence (i.e., the operating system should support a number
of hardware platforms as great as possible, to foster soft-
ware portability); 2) low-latency audio and sensor processing
(especially for IoMusT applications); 3) support wireless con-
nectivity options, in particular the latest generation of cellular
network; 4) development of methods able to optimize the con-
sumption of resources (e.g., memory, processing, and power);
and 5) enabling ML (primarily inference, but also adapta-
tion procedures or retraining) on edge devices by dedicated
hardware accelerators.

B. Machine Listening

The recent availability of large amounts of audio recordings
has fostered research on the use of ML methods to gather
both low and high-level information about various aspects of
musical and nonmusical contexts. These endeavors fall within
the remits of the so-called field of “Machine Listening.”

Concerning musical contexts, the field of MIR investigates
computational methods to extract information from musical
content [42], [262]. One of the major branches of this area
deals with the analysis of audio signals captured by micro-
phones, from recordings of single musical instruments to
recordings of large ensembles. One of the challenges con-
cerning MIR in the context of the IoS paradigm regards the
real-time aspect and the use of embedded systems to perform
the computations. To date, the majority of MIR research has
focused on offline methods analyzing large data sets of audio
recordings [263]. The availability of good MIR techniques for
real-time contexts, especially on embedded systems, is scarce.
This is due not only to the stringent requirement on the pro-
cessing time to report the wanted information, but also to the
fact that pre- and post-processing of the audio signal, typi-
cally involved in offline methods, cannot be performed. An
area of application of embedded real-time MIR is interactive
systems for musical performance [264] such as smart musical
instruments [4], where the extracted information is repurposed,
with unperceivable latency for the human player, into digi-
tal sounds. Current real-time MIR methods and related data
sets are severely affected by temporal inaccuracies. Therefore,
novel temporally accurate data sets are needed to advance the
state-of-the-art in this space, along with innovative information
retrieval algorithms conceived for real-time usage.

Along the same lines, the development of ML approaches
to predict the future evolution of an audio signal in real-
time, based on past audio samples, would find application in

NMP scenarios as an alternative approach for packet loss con-
cealment [265]. Nowadays, recovery mechanisms included in
audio codec implementations are adopted when a packet carry-
ing audio data gets lost or is received too late to be reproduced
in due time, but they introduce additional processing delays
which add up to the overall perceived mouth-to-ear latency.
Moreover, in a long term and more “visionary” scenario, ML
algorithms could even become capable of learning to antici-
pate what the musician will play ahead of time, thus being
able to reproduce a predicted version of the audio stream
before the real audio data generated by a remote performer
is received. Such advanced artificial intelligence capabili-
ties would definitively eliminate any delay-induced usability
limitation.

Regarding nonmusical contexts, as described in
Section III-B1 several efforts have been conducted to
extract meaning from soundscapes (i.e., sonic environments),
particularly in urban areas [173] and wildlife monitoring.
While those two application areas are now well established,
one recent and promising field of application for ASNs is the
surveillance of industrial processes for security and quality
control. The main scientific challenge here is that, due to the
complexity of the production chain, all possible abnormal
behaviors can hardly be modeled. Alternatively, one has
to numerically define what is a normal behavior and raise
an issue when the recorded behavior significantly departs
from it. Quantifying and thresholding this level of difference
between the observed data the model of normality the
system have in memory is, at this time, a very open research
question.

New tasks have been proposed in the DCASE challenge to
foster research on this topic [266] and the body of knowl-
edge is gaining momentum, as demonstrated by a systematic
research study done by considering seven journals and 16 con-
ferences relevant to the field [267]. Within those publication
venues, the study shows that the number of publications on
this topic is approximately doubling each year since 2015.

C. Semantic Audio

With the proliferation of “smart” devices featuring advanced
information interaction capabilities and access to large
amounts of data, there is increasing demand for such fea-
tures in the context of IoS. This calls for the use of
state-of-the-art audio and music analysis and processing tech-
niques in IoS devices provided by Semantic Audio and
MIR (see Sections III-A4 and III-C2). These fields, how-
ever, are increasingly dominated by deep learning solu-
tions [116], [268], [269].

Although the available computing power is fast increas-
ing in IoS and edge computing devices, with more and more
innovative AI accelerators proposed [270], decoding large
neural networks still presents a problem in certain applica-
tions, particularly where computational, bandwidth, or energy
resources are limited, or where hard real-time criteria need
to be observed, e.g., for efficient interaction between human
and machine [104]. There are currently no clear guidelines
and established methodologies for optimizing applications
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given specific technical criteria and user requirements. For
example, in [85] edge and cloud computing solutions for
semantic audio analysis are painstakingly compared with tradi-
tional keyword-based search to determine the tradeoff between
these techniques with respect to user requirements. Similar
experiments would be needed to establish the optimal solu-
tion for most applications involving MIR or Semantic Audio
techniques in IoS applications.

Test-beds providing diverse annotated data and platforms to
easily test algorithms in different application contexts would
help breaking the barriers in applying advanced audio analy-
sis and processing techniques in IoS. Advanced methodologies
for optimizing neural networks for specific hardware would
also be beneficial to overcome these barriers. Particularly in
the context of IoAuT, model compression [271], and quantiza-
tion [272] have been noted as a promising way forward in [2].
Further challenges in edge computing in IoS are discussed in
Section IV-D.

Data interoperability is another substantial barrier in cre-
ating complex IoS applications. The ontologies discussed in
Section III-C2 provide a mechanism for shared conceptual-
izations that alleviate the problem of matching the “meaning”
of data and metadata items in complex networked applica-
tions with multiple stakeholders and solution providers. There
are ontologies ripe for use in the audio and music domains,
and their utilities have been demonstrated across diverse IoS
relevant applications [48], [49], [198], [203], [204], [205],
[206], [273]. However, it can be observed that no ontology
is optimal for any given application, since tradeoffs are neces-
sary for viable shared conceptualization [190]. As a solution
to this problem, the development of flexible ontology frame-
works that allow solution-specific components to be plugged
into higher-level models that include only foundational classes
and relations is proposed in [190], while a layered approach
to information modeling is proposed in [197] in the music and
audio domains.

A further related challenge is the efficiency of ontology-
based solutions. This can be divided into efficiency chal-
lenges related to data exchange, and challenges related to
storage, querying, and inference. In the context of data
exchange, i.e., the syntax used for representing semantically
enhanced information, verbose XML-based formats such as
RDF/XML35 have been criticized, with Turtle36 and later
JSON-LD37 emerging as broadly supported solutions. In
the context of IoS, a further consideration is the optimal
granularity at which semantics should be embedded in an
application. While binary and very concise exchange formats
such as Open Sound Control [274] with weak underlying
semantic models are popular and necessary in some IoS con-
texts, data-efficient semantic information exchange formats are
also emerging. This includes binary serialization formats for
semantically enhanced data such as Header Dictionary Triples
(HDT/RDF)38 [275].

35http://www.w3.org/TR/rdf-syntax-grammar/
36https://www.w3.org/TR/turtle/
37https://json-ld.org/
38https://www.rdfhdt.org/

Regarding querying and complex machine-to-machine com-
munication, the Constrained Application Protocol [276] have
been proposed as a lightweight IoT protocol using semantic
technologies [95]. This has been demonstrated to cope with
efficiency constraints in a musical context in [96] and [97].

Inference remains an ongoing challenge since reasoning
with very large knowledge bases is known to be computation-
ally expensive. Solutions to this problem include restricting
the expressivity of knowledge representation, e.g., through the
use of a specific profile of an ontology language such as
OWL EL39 which allows reasoning in polynomial time. Deep
learning-based solutions for reasoning with ontologies are also
emerging [277]. The granularity at which semantic represen-
tation is used is another important consideration in the IoS.
For example, using an ontology to annotate large blobs of
homogeneous data, instead of individual data items, may be
a good tradeoff in some IoS applications. Further semantic
audio-related challenges in the context of interoperability and
storage are discussed in Sections IV-I and IV-H.

D. Audio Detection on the Edge

Edge computing is a distributed computing paradigm that
brings computation and data storage closer to the sources of
data. In ASNs, there are numerous advantages in concentrating
most of the processing on the sensors. Computational inference
of quantities of interest on the edge reduces the bandwidth
required to transmit the data, and most of the time reduces pri-
vacy issues. The latter arises because a greater level of control
can be performed since the data transferred is usually more
compact.

To do so, the sensor has to embed computational com-
ponents which must be carefully chosen to wisely balance
energy consumption and processing capabilities. While sens-
ing and features computation are relatively low consumption
processes, powerful state-of-the-art machine listening detec-
tors based on deep learning models have to be simplified
to fit memory and energy consumption requirements [278].
Even with such compact embedded software systems, sensors
are heavily dependent on a reliable and continuous source of
energy. That means that the sensor has to be wired or has to
carry powerful batteries to overcome the nonavoidable down
times of energy harvesting components like solar panels.

Resorting to embedded power storage reduces the ease
of maintenance and increases the dependency on polluting
materials. Those issues call for innovative solutions such as
batteryless designs [151]. While this kind of hardware poten-
tially allows simpler and more reliable networks designs,
it also opens an interesting challenges in sparse network
management to be able to produce reliable estimates of quan-
tities of interest from sources of information that are only
intermittently able to record, process, and transmit.

E. Networking Architectures

To date, actual IoS deployments over 5G networks remain
scarce, and very limited statistical results are available on the

39http://www.w3.org/TR/owl-profiles
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actual latency and reliability of 5G networks for IoS scenar-
ios [82], [236]. There is the need to design, implement, and
evaluate novel networking architectures exploiting the new
capabilities offered by 5G to support IoS services and appli-
cations. Research should address fundamental questions, such
as how to design 5G slices dedicated to low-latency and high-
reliable transmissions, which computations can be offloaded
from local devices to MEC servers, what is the interplay
between MEC and cloud servers, and how to optimize the
position of MEC servers even in a dynamic fashion.

Furthermore, IoS research could address emerging comput-
ing paradigms such as in-network computing. To date only a
handful of IoS studies have investigated such avenue [279].

F. Networked Music Performances

For what concerns NMP solutions, the adoption of 5G wire-
less transmission technologies would ensure access delay to
the backbone telecommunication infrastructure below 10 ms.
Such figure is compliant to the typical latency requirements
of NMP while fostering flexibility and portability of NMP
setups, which are nowadays constrained by the need of lever-
aging cabled Ethernet connections for local area network
connectivity (note that Wi-Fi wireless connections are typi-
cally avoided for NMP purposes, as they introduce too high
jitter). As further step, involving Internet service providers and
network operators in the development of commercial NMP
services would allow the adoption of prioritization criteria
for NMP-generated audio/video data (e.g., in the context of
software-defined networking design approaches), thus provid-
ing to the users adequate QoS guarantees in terms of latency
and jitter.

Video conferencing has advanced dramatically with the
introduction of ultrareliable low-latency communication (UR-
LLC) in 5G and Nvidia’s radical new idea, where only key
points in the video are transmitted and then deep neural
networks (DNNs) reconstruct artificial video representations,
which have very high similarity with the original video [280].
The challenge would be to exploit similar tricks for the
audio content, where key points in the acoustic scenes are
transmitted, and then DNNs would be constructing artificial
representations of the significant parts of the original acoustic
scenes.

A challenge is to change the current paradigm where users
interact with their Sound Things via individual interfaces and
networks, into a more sound service-oriented and network-
driven paradigm, where any sound technology can be seam-
lessly accessed via a common IoS software layer. In principle,
users only see the sound services and not the underlying Sound
Things that automatically organize themselves, analyze the
acoustic scenes, and exchange information with each other.

G. Distributed Machine Learning Over Networks

ML is a research area that is increasingly gaining atten-
tion to design, optimize, and manage sound-related systems.
Although ML is well established within computer vision and
speech and text analysis, ML faces new major challenges
when it comes sounds and Internet. In an IoS ecosystem,

all the involved units generate distributed, heterogeneous, and
imbalanced data that cannot be easily collected timely due to
the bandwidth of the communication protocols, the economic
unsustainability to deploy high bandwidth communications,
and privacy concerns.

Unfortunately, to achieve the highly desirable ML-based tar-
gets for IoS services, we cannot simply apply existing ML.
The prominent successes of ML are largely in the domains of
images, speech, where the availability of large data sets and
popular platforms that can provide vast amounts of dedicated
computational and communication resources in centralized set-
ups such as data centers. Such assumptions challenge the
distributed, networked, and real-time nature of the IoS [281].
On the one side, ML methods and algorithms are not yet
mature for being used in the IoS domain. On the other side,
it is not clear up to which extent the ML predictions can be
realistically used in an IoS data communication architecture.
Specifically, in the IoS, we face two prominent challenges:
1) unbalanced data sets and 2) distributed data sets, as we
survey below.

1) The first challenge for ML-based IoS systems is that the
predictions have to be done at locations or times from
which noisy or sparse/partial measurements are avail-
able. ML achieves impressive performance mostly on
the data that contains no missing values and have bal-
anced classes. In IoS data sets (for both time-series data
or statistical data), missing data commonly exists due to
the distributed devices connected over communication
networks. IoS data suffer from a number of unpre-
dictable impairments since the hardware and software of
the involved units will be produced by different vendors
with different standards and different costs, memory, and
computation [282]. Data sets may also be imbalanced,
which may increase the risk of having the so-called bias
in the training pipeline. Despite recent advancements in
connectivity solutions for IoT, the existing methods can-
not properly address how to handle heterogeneous types
of data. A recent survey [283] showed that deep learn-
ing methods achieve good performance, among other
alternative approaches, for most time-series classifica-
tion tasks with missing data. Unfortunately, the existing
methods are usually limited to nonsparse and balanced
data sets, which we may rarely see in cyber–physical
systems such as the IoS.

2) The second challenge for ML in IoS is that the data
sets are distributed and must be connected over a public
communication network, including via Edge comput-
ing [281], [284]. In these solutions, ML services will
have to be solved by distributed algorithms, where the
heavy coordination and computation procedures of ML
are much hindered by bandwidth limitations, latency,
and message loss. The computational capability and stor-
age of the IoS devices challenges the use of heavy pre-
trained models. The communication networks enforce
inference with partial knowledge. The challenge here
is to support self-adaptive ML-based applications com-
posed of edge and cloud modules. A promising direction
to address these issue is the design of novel wireless and
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wired communication protocols tailored for distributed
ML [285].

H. Storage

Storage is an important component of the IoS ecosystem
with relevant open challenges. Fast access from embedded
devices to content stored in cloud repositories that can provide
satisfactory user experiences when working with audio in real-
time and consuming audio from the cloud, is one of the basic
challenges that can be addressed with the adoption of faster
network technologies such as 5G. Moreover, interoperability
between different cloud content providers is also an open chal-
lenge. In a rich IoS ecosystem, different processes running in
different devices and under different platforms should be able
to interact with storage solutions using common protocols and
APIs.

In addition to that, the traceability and authentication of
audio content distributed in the IoS ecosystem is a sub-
stantial challenge that needs to be addressed for successful
deployments of IoS applications. To that end, blockchain-
based technologies have already been envisioned to verify the
integrity of original audio content and to enable its secure
distribution, as well as have been implemented as a proof-
of-concept within the paradigm of IoAuT [286]. However,
challenges remain open, including the traceability of audio
content usage in the IoS ecosystem.

I. Interoperability and Standardization

The result of our survey of the IoS field reveals that, to
date, active research on IoS-related themes is rather frag-
mented, typically focusing on individual technologies or single
application domains in isolation. Ad-hoc solutions exist that
are well-developed and substantial. However, their adoption
remains low due to the issues of fragmentation and weak inter-
operability between existing systems. Such a fragmentation
is potentially detrimental for the development and successful
adoption of IoS technologies, a recurring issue within the more
general IoT field [46].

Within the IoS, different types of musical and nonmusi-
cal devices targeting a variety of stakeholders are utilized
to generate, detect, or analyze sonic content. Those devices
need to be able to dynamically discover and spontaneously
interact with heterogeneous computing, physical resources, as
well as digital data. Challenges related to their interconnection
include the need for ad-hoc protocols and interchange for-
mats for sound-related information that have to be common to
the different Sound Things, as well as the definition of com-
mon APIs specifically designed for IoS applications. Semantic
technologies, such as Semantic Web [287] and knowledge
representation [288] have arguably the potential to become
a viable solution to enable interoperability across heteroge-
neous Sound Things. However, to date, only a few ontologies
exist for the representation of the knowledge related to IoS
ecosystems.

The Moving Picture Experts Group was a working group
of ISO/IEC and has since 1988 been instrumental in driving
the development and standardization of audio compression,

synchronization, processing, transmission, and file formats
for a wealth of applications [289]. Recently new organiza-
tions, such as the Moving Picture, Audio and Data Coding
by Artificial Intelligence has been formed in order to fur-
ther push the technology toward artificial intelligence data
coded standards [290]. Standards targeting the combination of
communications and audio for personal area networks include
Bluetooth LE [291], [292]. A challenge would be to further
develop the standardizations and interoperability within the
intersection of communications and audio beyond personal
area networks.

A common operating system for Sound Things can be con-
sidered as a starting point for achieving interoperability. As
surveyed in Section III-C1, recent technological advances in
the embedded audio field have led to the creation of platforms
that are suitable for IoS applications. Their wide adoption
and deployment are therefore expected to enable advanced
IoS ecosystems and has the potential to foster interoperability
within and even between the musical and nonmusical sides of
the IoS.

J. Quality of Service

The desire to distribute audio and audio-related data across
IoS devices imposes application-specific service requirements
of the IoS architecture.

In general, the reliability of the data delivery is defined
under the umbrella term QoS. For telecommunication appli-
cation, the telecommunication experts of the International
Telecommunication Union defines QoS as the “[t]otality of
characteristics of a telecommunications service that bear on
its ability to satisfy stated and implied needs of the user of the
service” [293]. This definition also holds for the IoS in which
users could be humans or machines, e.g., in form of sound cre-
ators or listeners. For instance, for a telematic musical event
with co-located musicians and audiences, the need to exchange
audio signals or parametric control data over the network with-
out perceivable artifacts is crucial. Perceivable artifacts can be
caused by packet loss, transmission delay, and limited band-
width. Packet loss may occur when utilizing an unreliable data
transport protocol, like the UDP, or when the audio stream via
a reliable transport mechanism, like the transmission control
protocol (TCP), gets interrupted. Without proper mitigation or
error concealment, audible artifacts, such as spectral distor-
tion, drop-outs, pops, or crackles reduce the audio quality and
consequently affect the listening experience. An end-to-end
low-latency transmission chain enables remote musicians to
perform as if they were in close proximity. It has been shown
that a round trip delay as low as 40 ms already starts affect-
ing the ability to perform together (see also Section III-A1)
and a latency of above 150 ms will degrade a communication
scenarios [294]. Especially in wireless networks, transmission
latency is often time variant which needs to be compensated by
additional audio buffers. This adds delay for real-time audio
applications. The bandwidth limitations of many IoS network
protocols, such as Bluetooth or Wi-Fi demand perceptual audio
signal compression. The processing latency caused by the sig-
nal encoding and signal decoding contributes to the overall
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transmission latency. Low-latency audio codecs have a cod-
ing delay as low as 5 ms [295], [296]. Generally, parametric
control data (e.g., MIDI and Open Sound Control) require
relatively little bandwidth compared to audio data. When trans-
mitted together, the QoS has to ensure that control data and
audio data are kept synchronized across the IoS network.

Many IoS devices are hardware-constrained and have lim-
ited capabilities to connect. Further, mobile IoS devices need
to be resourceful with their limited battery power which may
lead to throttled data processing and transmission. At the
same time, network conditions may change over time and
can become unstable. Supporting the high QoS requirements
across time-varying network conditions and across devices that
may have different processing and network capabilities poses
a cross-disciplinary challenge for the IoS.

K. Ethics, Privacy, Security, and Sustainability

Notwithstanding the numerous societal, economic, and artis-
tic benefits that the IoS promises, the ubiquitous nature, and
increased autonomy of Sound Things raise concerns about
the ethical compliance of the associated services. We need
to incorporate ethics in the IoS so that the services provided
do not infringe on the ethical rights of its beneficiaries.

Nevertheless, the study of ethics in music and audio tech-
nology is not yet well established, with only a few authors
dealing in recent years with the importance of related ethical
dilemmas. Researchers in the musical domain have ques-
tioned the practices of music streaming services in monitoring
users and inducing behaviors, warning about the associ-
ated risks [297], [298]. Other authors have examined the
ethical dimensions of the field of MIR, arguing that such
technology is not value-neutral but is influenced by design
choices, and so has ethically relevant implications [299]. In
the field of New Interfaces for Musical Expression, some
authors have discussed political issues inherent in new musi-
cal instruments [300]. Similar statements can be made for the
audio-technology domain.

All these research strands are also relevant to the IoS field,
although to the authors’ best knowledge no investigations
have been conducted yet on such topics at the scale of IoS.
Ethical research in IoT has identified major issues, such as pri-
vacy, security, transparency, trust, social equity, social equality,
and responsibility according to law. Research has also iden-
tified the factors that can increase the acceptance of IoT and
proposed a set of guidelines to interact with IoT from a social
perspective [301]. There is a strong need to follow some poli-
cies that support social issues also in the IoS in order for it to
be socially acceptable and undertaken in the public interest.
Nevertheless, the IoS is distinguished from the general IoT
field for its sound-specific focus. While some technical and
societal challenges are common to the two fields, IoS poses
music- and audio-specific challenges that cannot be simply
addressed by using the same methods and tools of IoT.

Sound Things have the ability to automatically collect, ana-
lyze, and exchange personal data related to their users, and
consequently, they can expose users to breaches of security and
privacy, which are common to other IoT subfields [20], [302].

Research in this domain is already emerging, in particular
in the area of speech, where recent works have addressed
the interpretation of legal frameworks [303], the challenge of
quantifying privacy [304], and by organizing challenges, such
as VoicePrivacy [305], to research and develop solutions to
particular problems.

It is important to consider that users have an intuition
and can be assumed to be competent to gauge their level
of privacy and security only when it relates to human capa-
bilities [306], [307]. However, where computer systems go
beyond human, to super-human capabilities, users generally
cannot be expected to have an intuition with respect to their
security and privacy when they interact with the system. As
an analog, it is important that passengers of an airplane feel
safe (i.e., that they have an intuition of safety), but it is more
important that they actually are safe, though we cannot reason-
ably expect passengers to be competent in evaluating whether
they are safe or not. Similarly, it is thus important that reg-
ulations and guidelines are developed to govern the security
and privacy of IoT. Such guidelines are already available or
in development for voice interfaces, e.g., [308] and [309].

The range of problems related to, and approaches for
preserving privacy in IoS and IoT is vast. For example,
data intentionally shared can unintentionally leak related
information or, as a form of function creep, data can be used
in unexpected ways. Moreover, users’ ignorance can lead to
breaches, they can be tricked or coerced to share information,
or their hardware or service providers can be hacked [310]. As
a general policy, it is therefore important to develop products
and services using the privacy-by-design approach, where the
design and development process includes, from the beginning,
impact assessment of security and privacy.

Application of privacy and security standards thus has to
be included in all parts of systems design, including the
acoustic environment, acoustic and hardware design of device,
edge software, communication links, device interaction, cloud
services, as well as user interface and service design. One
approach to ensure the privacy of information consists of the
definition of privacy policies. Sound Things could be equipped
with machine-readable privacy policies, so that when they
come into contact they can negotiate privacy policies for before
communicating [311], [312].

Taking advantage of distributed computational resources in
an IoS context seems to bear the risk of giving away con-
trol over shared data. For instance, transmitting audio signals
to a cloud service for acoustic signal enhancement exposes
the audio signals to the cloud provider and to the algo-
rithm developer and could potentially enable unwanted data
usage. There are well-established data encryption methods
for protecting data from unwanted access while stored and
while transmitted over the Internet (e.g., HTTPS and MQTT).
However, protecting data during the actual processing remains
challenging. Ensuring privacy during data processing is the
field of secure signal processing (SSP) and privacy-preserving
ML, respectively. SSP allows mathematical operations to be
executed on encrypted data without the need for prior decryp-
tion. The foundation of SSP is homomorphic encryption,
which is a special class of data encryption methods. Here,
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one or more specific mathematical operations performed on
the encrypted data corresponds to the mathematical operation
performed on the original data. The result of the operation
remains encrypted and cannot be decrypted without proper
credentials.

In the audio context, homomorphic encryption has been
used for audio analytics (e.g., privacy-preserving speaker
verification and identification [313]) as well as signal process-
ing tasks (e.g., convolution [314]). Besides the audio input
data, it has been shown that even the actual algorithm can
remain encrypted, which protects both the data provider and
the algorithm developer from unwanted information sharing
with the platform provider. Homomorphic encryption is also
applied to ML methods, such as logistic regression [315],
XGBoost [316], or even DNNs [317]. The main challenge of
SSP using homomorphic encryption is the computational com-
plexity. For instance, the inference on the privacy-preserving
ML model in [316] is 400 times slower than its conventional
version.

In a different vein, it is paramount to be aware of the
adverse impact of the current IoS technology on the environ-
ment in terms of greenhouse gases emissions, pollution, and
soil consumption. To date, research on sustainability aspects
of the IoS is limited. The study reported in [318] has recently
provided a survey of the environmental issues produced by cur-
rent information and communication technology and related
these to the use cases that the IoS envisions. On the basis
of this survey, the authors identified some key aspects to
reduce the footprint of IoS services and products and then pro-
vided suggestions to make advancements in IoS environment
aware.

L. Blockchain Technologies

Blockchain is an emerging technology that is impacting
several industries, including the creative industries and those
operating in the IoT [319], [320], [321], [322]. The IoS
vision requires, above all, IoT features, such as decentral-
ization, seamless authentication, transparency, data integrity
and privacy, and self-maintenance, as well as the musical
domain’s feature, such as efficient handling of copyrights and
speed of royalties payment. Such features can be brought
by blockchain, but its integration in the IoS has not been
investigated thus far.

Recently the integration of IoMusT and blockchain technol-
ogy has been proposed in [323], where several examples of
use cases have been provided. For instance, in the “cover song
identification” scenario, authors envisioned a Sound Thing,
equipped with microphones and machine listening algorithms
dedicated to the identification of the cover of songs, which is
used by an inspector of a National Rights Society at a music
venue during a live concert. The Sound Thing automatically
verifies whether the played songs match the titles declared by
musicians in the list of music pieced to be sent to the National
Rights Society. As soon as the match is verified the composers
of those music pieces are immediately rewarded thanks to the
use of a smart contract deployed on the blockchain underlying
the system.

V. IOS: RESEARCH AGENDA

The above sections have shed some light on the current
challenges that prevent the IoS field to flourish. In this section,
we collect together the different aspects and open questions
that need to be answered in order to create, design, use and
finally evaluate IoS systems. This may be seen as a roadmap
that we hope would be addressed in the ongoing research of
the emerging IoS community.

1) To progress the design of embedded platforms specific
for the IoS, including the integration of methods for
low-latency processing, and the support to the latest
generation of cellular networks.

2) To progress the design of reliable, autonomous sensing
devices to better monitor and understand our environ-
ment through the audio modality.

3) To progress the design of Sound Things, with new solu-
tions for the analysis of sound-related information based
on the edge computing paradigm and the most advanced
machine listening approaches.

4) To advance the current connectivity infrastructure, with
the implementation of novel interoperable protocols for
the exchange of sound-related information.

5) To define standards (e.g., for protocols, shared ontolo-
gies, formats, and APIs) that will allow one to reduce
fragmentation and facilitate interoperability among
Sound Things as well as the services they offer includ-
ing audio processing and storage; such endeavors could
entail the creation of dedicated Web of Sound Things
architectures.

6) To create advanced IoS ecosystems, in both the musical
and audio domain, which include enabling technologies
and communities of users interacting with them.

7) To investigate ethical concerns and define appropriate
measures to address them; this includes the definition
of principles for an Ethical IoS that can inform design,
development, and evaluation of IoS ecosystems, their
hardware and software components, and the interac-
tions of stakeholders; moreover, this entails tackling the
challenges of: a) privacy and security of personal data,
with a “privacy by design” approach; b) sustainability
aspects at all levels, from production to distribution; and
c) inclusiveness and accessibility, conceiving systems for
various categories of users.

8) To explore the integration of haptic feedback and motion
tracking mechanisms in those IoS scenarios where ges-
tural data play a fundamental role (e.g., in the context
of remote music teaching) or when enhanced immersion
in artificial soundscapes is required.

9) To devise methods capable of minimizing the need for
the user to configure the Sound Things: the Sound
Things should self-configure and automatically adapt to
changing environments and use cases.

10) To ease the adoption by the industry of IoS-related tech-
nologies by providing end-to-end systems that are easy
to deploy and to adapt to new needs.

11) To investigate novel network communication protocols
for the IoS (e.g., TSN over 5G) that will be compatible
with the network slicing concept introduced in 5G.
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12) To establish distributed ML tasks (training and infer-
ence) that are robust to the data missing and data imbal-
ance problems and that can run over optimized or ad-hoc
communication protocols so that the computations will
be reliable and with limited latencies.

13) To develop cognitive processing methods to fuse
acoustic signals from ad-hoc microphone arrays into a
single high-quality audio stream.

14) To design processing frameworks that allows dynamic
distribution of audio processes within the network with
service guarantees e.g., to take advantage of both low-
latency edge computing and scalable cloud processing.

15) To devise new temporally accurate data sets and methods
for the real-time analysis and classification of musical
and nonmusical sonic content on embedded systems.

16) To integrate the blockchain into the IoS, and create effec-
tive and efficient applications based on such integration,
such as secure audio distribution and traceability.

VI. CONCLUSION

In this article we introduced the paradigm of the IoS, high-
lighting its unique characteristics that differentiate it from to
the IoT, and identifying the major challenges and requirements
that need to be addressed for reaching its full potential. We
introduced a definition for such a new subfield of the IoT,
and placed it in the context of neighboring fields. In the IoS
paradigm, which merges under a unique umbrella the emerg-
ing fields of the IoMusT and the IoAuT, heterogeneous devices
dedicated to musical and nonmusical tasks can interact and
cooperate with one another and with other things connected
to the Internet to facilitate sound-based services and applica-
tions that are globally available to the users. We presented a
vision for this emerging research field, which is rooted in dif-
ferent lines of existing research, including sound and music
computing, IoT, machine listening, semantic audio, artificial
intelligence, and human–computer interaction. The IoS relates
to wireless networks of intelligent devices dedicated to musi-
cal and nonmusical purposes, which enable, in both co-located
and remote scenarios, various forms of interconnection among
different stakeholders.

The IoS vision not only offers several unprecedented oppor-
tunities, but also brings technological and nontechnological
challenges that both academic and industrial research will need
to address in upcoming years. The realization of the proposed
IoS vision would ultimately benefit society, by providing sev-
eral novel possibilities, which include musical interactions
between geographically displaced performers and audiences,
a widespread use of ambient intelligence systems employed
to monitor environments in smart cities, and in general novel
ways of interacting with sounds across the network (such as
sound-based therapies involving remotely connected users).

We recognize that substantial standardization efforts are also
necessary. Just like for the general IoT field, the success of the
IoS strongly relies on standardization requirements, which are
currently unmet. The definition of standards specific to the IoS
(for platforms, formats, protocols, and interfaces) will allow
to achieve interoperability between heterogeneous systems.

Issues related to security and privacy of information, which
are also common to the IoT, need to be addressed, especially
for IoS systems deployed for the masses. Moreover, research
will need to address the challenge of how to design systems
capable of supporting rich interaction paradigms that enable
users to fully exploit the potentials and benefits of the IoS.
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