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A B S T R A C T

Breakage of particles plays a key role in force transmission in granular materials. Discrete element method
(DEM) simulations are often used to model granular materials, but modeling particle breakage in them remains
a challenge. Models for breakage of non-spherical particles are scarce and often the existing models are
computationally heavy to be used in simulations with large numbers of particles. To address this, the present
study develops a particle breakage model for quasi-static DEM simulations of non-spherical particles that fail
due to shear. The model is novel, since it is based on experimental observations and high resolution modeling.
Breakage models based on experimental evidence are rare as it is often virtually impossible to gain detailed
data on the mechanisms related to breakage. The developed particle breakage model was integrated into a
DEM code and direct shear box experiments on ice rubble, a granular material consisting of ice particles, were
then simulated. Accounting for particle breakage in DEM simulations improved their accuracy: simulations
were compared to experiments and the results were found to be in better agreement when particle breakage
was taken into account. The effect of particle breakage on the shear strength of a granular material was found
to be independent of particle size, decreasing fast with increasing particle strength. The combined effect of
shear box length and breakage was also studied. The results showed that the strength of a granular material
may be determined reasonably well with a shear box that has a box to particle length ratio greater than 60.

1. Introduction

Load transmission in a granular material under quasi-static loading
occurs through force chains, chain-like sequences of its particles un-
der high compression [1]. Two important mechanisms that limit the
magnitude of the load transmitted by a force chain are (1) buckling of
the force chain [2] and (2) breakage of the particles within the force
chain [3]. A common way to model the behavior of granular mate-
rials is to employ simulations based on the discrete element method
(DEM) [4]. While force chain buckling is inherently described by DEM
simulations, modeling breakage relies on estimates on stresses within
individual particles. Despite earlier work on breakage, describing it
reliably remains a challenging task. Experimental data on mechan-
ics of breakage are rare, and often, depending on the material and
application, impractical to obtain.

A particle breakage model has to include (1) a failure criterion for
the particles and (2) a technique to generate particle fragments. For
spherical particles, a common approach is to use contact forces to com-
pute average principal stress for each particle and compare that with
a relevant bulk strength measure, often compressive strength, of the
material of the particles [5–10]. The most straightforward approach for
generating fragments in this case is to replace the breaking particle with
progeny fragments whose dimensions are determined from a predefined
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fragment size distribution [11–15]. This approach assumes a uniform
stress for a particle and that the failure plane passes through the
centroid of the particle. Thus, the approach may work well for spherical
particles. The applicability of such an approach in simulations with
even moderately elongated particles is questionable anyhow because
such particles often have highly non-uniform stress distributions and
the failure planes cannot be justifiably assumed to pass through the
centroids of the particles. This is, for example, the case when the
contact forces act mainly on one end of a particle only. Breakage
models based on principal stress values have been, nevertheless, used
in simulations with non-spherical particles [16–21]. This is likely due
to such models being fairly straightforward to implement.

To mitigate these issues, boundary elements have been used in DEM
simulations to estimate stress distributions within the particles [22–25].
In addition, techniques combining finite- and discrete element methods
(FEM-DEM) have been used in simulating breakage [26–30]. In FEM-
DEM, particles are meshed into finite elements, which are then used to
model the failure. Both techniques allow the stress state and the onset of
breakage of a given particle to be more accurately represented and yield
better estimates for crack paths to generate realistic fragments. Such
approaches, however, result in high computational burden, rendering
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them unfeasible for simulations with large numbers of particles. In
highly dynamic simulations, one the other hand, the cumulative impact
energy of the particles is often compared to the fracture energy of
the material to determine if breakage occurs [11,31–34], but such an
approach is not suitable for applications with quasi-static deformation.
Hence, there exists a research gap for a simplified particle breakage
model that can be used in large-scale quasi-static DEM simulations of
non-spherical particles.

The present paper introduces a new, rather simple, model for break-
age of particles in DEM simulations. The model is aimed at quasi-static
simulations of granular materials consisting of particles of moderate
aspect ratios. The particles are assumed to break due to shear failure
governed by the strength of the particle material rather than instan-
taneous crack propagation caused by stress concentrations. The model
is applied to simulations of ice rubble, a granular material consisting
of a rubble pile of ice blocks, for which the engineering problems often
exhibit the aforementioned features. Importantly, our particle breakage
model is based on direct experimental observations and high-resolution
bonded particle model simulations on breakage of particles in ice-to-ice
contacts [35,36]. We compare the results from simulations with and
without the breakage model to experimental data of direct shear box
experiments on ice rubble [37,38] and then study the effect of breakage
on the shear strength of ice rubble using the results of direct shear box
experiments.

Effect of breakage on mechanical properties of granular materials
has been studied extensively for geo-materials, such as sands and
rockfills [39,40]. Similar studies on ice rubble are scarce. Hopkins
and Hibler [41] used a DEM tool with a bending-failure-based particle
breakage model to simulate the direct shear box experiments. The work
showed that the dilatancy of the rubble in direct shear box experiments
decreases when the particles are allowed to break. Kulyakhtin [42] used
a continuum ice rubble model with a breakage parameter to simulate
ice loads on a structure moving through ice rubble and concluded that
the ice loads were governed by the accumulation of the rubble, but not
breakage. However, continuum models are not capable of capturing
force chains within ice rubble, while earlier work suggests that they
may have a crucial role on ice rubble behavior [43,44]. Therefore,
there exists a research gap on the understanding of the effect of particle
breakage on the mechanical properties of ice rubble, which motivated
the present study.

In what follows, we first introduce our particle breakage model
and describe the mechanics of our DEM simulations in Section 2.
Section 3 demonstrates the applicability of the model by comparing our
simulations to experiments. After this, we use the model to study the
effect of breakage on the mechanical behavior of shearing ice rubble.
We end the present paper with a discussion on our results in Section 4
before concluding it in Section 5.

2. Methods

This section introduces the breakage model. The model is integrated
into a three-dimensional DEM code, described in detail by Polojärvi
[45]. The code is parallelized and fairly standard on a general level:
simulations are explicit, particles interact through pairwise contact
forces, a central difference scheme is utilized for time-stepping, and
polyhedrons are used to describe arbitrarily shaped particles. We first
describe the calculation of contact forces, then the breakage model, and
finally the modeled direct shear box experiments.

2.1. Contact forces

The DEM simulation tool used here utilizes a soft contact model,
that is, the contact force for a pair of interacting particles is determined
based on a small overlap between them. The point of application of
the contact force is at the centroid of the overlap volume. In brief,
the contact force between a pair of particles, 𝐟 = 𝐟𝑛 + 𝐟𝑡, consists of a

normal and a tangential component, 𝐟𝑛 and 𝐟𝑡, respectively. An elastic-
viscous-plastic contact force model is used to calculate 𝐟𝑛 [46]. The
elastic and viscous components of 𝐟𝑛 are solved by using the gradient of
overlap volume and its rate of change, respectively [47,48]. The plastic
component of 𝐟𝑛, describing local yielding or crushing of the material of
particles in contact, is based on area of contact. Tangential compliance
and friction between the particles result in 𝐟𝑡 [46]. Importantly, the
contact model can be parameterized by using the material properties
of the particles as described by Polojärvi [45].

2.2. Breakage model

The breakage model is based on checking if a predefined failure
criterion is met on potential failure planes within each particle in
the simulation. This is performed by utilizing so-called base planes,
defined for each particle during pre-processing (Fig. 1a). The base
planes are used to reduce the originally three-dimensional problem into
two dimensions. Actual failure planes, when formed, are perpendicular
to the base planes. The base planes are defined in a local coordinate
system of each particle, which moves with the particle. The model is
foremost developed for particles with polyhedral shapes, but works for
particles of arbitrary shapes, including spherical ones. Fig. 1a shows an
example of a prismatic polyhedral particle for which the base plane is
chosen to align with the face with the largest surface area. This would
be a natural choice for an ice floe floating in water, often under in-
plane loading by other floating floes [21]. Another example would be
to assume a particle having anisotropic strength and known to be likely
to fail due to shear on the plane having the lowest shear strength. In this
case, a natural choice for a base plane would be a plane perpendicular
to the plane of lowest shear strength, since then the failure plane would
align with it. For a cuboid-shaped particle, on the other hand, the first
choice could be three orthogonal base planes. Further, depending on
the desired accuracy, a near-spherical particle of isotropic strength may
need a number of base planes. Below we study an application, where
choice of base planes is straightforward, but applications where the
choice of base planes is more uncertain are left for future work.

At each time step of a simulation, contact forces applied on each
particle and its geometry are projected onto its base plane, the latter
forming a two-dimensional polygon (Fig. 1b). The quasi-static force
equilibrium of this polygon is then analyzed to solve nominal force
and stress components on potential failure planes (Fig. 1b). The contact
forces are projected to the base plane simply by

𝐟∗𝑖 = 𝐟𝑖 − (𝐟𝑖 ⋅ 𝐞𝑏)𝐞𝑏, (1)

where 𝐟∗𝑖 is the projection of contact force 𝐟𝑖 to the base plane and 𝐞𝑏 is
the unit vector perpendicular to the base plane. The force component
perpendicular to the base plane causes a bending moment on the
particle, but it is neglected as the bending failure of particles is not the
dominant failure mode under compressive contact forces. The points of
application of all contact forces are similarly transformed onto the base
plane.

The breakage model assumes that each failure plane goes through
a point of application of one of the contact forces. Fig. 1b illustrates
how this feature was implemented. For each contact force, the polygon
boundary is discretized into a number of mesh points for testing planes
of different orientations for potential failure. The figure shows a mesh
created for checking if 𝐟∗1 leads to breakage. The figure also shows a
line belonging to a potential failure plane, spanned between the point
of application of 𝐟∗1 and mesh point 𝐾 (as mentioned above, the actual
failure plane is always assumed to be perpendicular to the base plane).

Each of the planes is then tested for failure by analyzing the quasi-
static equilibrium of the two-dimensional polygon on the base plane.
Nominal shear and normal force components, 𝑓 ∗

𝑠 and 𝑓 ∗
𝑛 , respectively,

acting on a potential failure plane can be calculated as

𝑓 ∗
𝑠 =

𝑝
∑

𝑖=1
𝐟∗𝑖 ⋅ 𝐞∗𝑠 and 𝑓 ∗

𝑛 =
𝑝
∑

𝑖=1
𝐟∗𝑖 ⋅ 𝐞∗𝑛 , (2)
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Fig. 1. (a) Illustration of the base plane and the contact forces resolved onto the base plane. In the figure, 𝐟 are the contact forces and 𝐟∗ are the contact forces resolved onto
the base plane. (b) Discretization of the particle boundary projection on the base plane. Here, 𝑂𝐾 is assumed to be the failure plane and, 𝑓𝑠 and 𝑓𝑛 are the nominal shear and
normal forces on the failure plane respectively.

where 𝑝 is the number of contact forces acting on the fragment and
𝐞∗𝑠 and 𝐞∗𝑛, respectively, are the tangential and normal unit vectors of
a potential failure plane. Nominal shear and normal stresses are then,
respectively,

𝜏 =
𝑓 ∗
𝑠

𝐴∗ and 𝜎 = − sign (𝑓 ∗
𝑛 )

|

|

𝑓 ∗
𝑛
|

|

𝐴∗ , (3)

where 𝐴∗ is the area of the potential failure plane, calculated by multi-
plying the length of the line spanned for describing the orientation of a
given plane on the two-dimensional polygon by the average thickness
of the particle. The sign of compressive normal stress is here assumed
to be positive.

Nominal stresses 𝜏 and 𝜎 are then used to check for particle failure
by using them in conjunction with a failure criterion, 𝐹 , suitable for
the material studied. For many materials, the Mohr–Coulomb failure
criterion is used. The material parameters in this criterion are internal
cohesion and friction, 𝑐 and 𝜇, respectively. For admissible nominal
stresses

𝐹 = |𝜏| − (𝑐 + 𝜇𝜎) < 0 (4)

and breakage occurs if 𝐹 ≥ 0. When the failure criterion is met, a
failure plane is defined along the plane with 𝐹 ≥ 0, dividing the parent
particle into two fragments. Thus, both the shape and the size of the two
fragments are determined by the location of the failure plane within the
parent particle. This ensures realistic fragment shapes as well as mass
conservation in the simulations. The breakage model is then applied to
new fragments as the simulation progresses. In the simulations below,
we allowed the particles to fragment two more times each after the
initial failure. This limit was set to avoid very small particle fragments.
A pseudocode for the breakage model is presented in Algorithm.

2.3. Direct shear box experiments

Below we compare our DEM simulations to pseudo two-dimensional
direct shear box experiments by Pustogvar et al. [37] (Figs. 2a and
b). The ice rubble specimen modeled had the dimensions of 600 mm
× 400 mm × 40 mm (length × width × thickness). Two rubble types
were used, one consisting of ice blocks of 30 mm × 20 mm × 40 mm
and another consisting of ice blocks of 60 mm × 40 mm × 40 mm,
referred to as small and large particles, respectively (the experiments
were pseudo two-dimensional as the thicknesses of the particles and the
shear box were equal). In the simulations, the box was filled with ice
rubble by first using gravity deposition and then by applying a vibrating
motion to the box—the initial porosity of the simulated rubble was

Algorithm The particle breakage algorithm
1: Choose a base plane for the breakage model
2: Project particle boundary onto the base plane
3: Project contact forces and their points of application onto the base
plane: 𝐟∗ contact force resolved onto the base plane [Eq. (1)]

4: 𝑝: No. of contact forces acting on the particle
5: for 𝑖 = 1 to 𝑝 do
6: Discretize the projected particle boundary of the element
7: 𝑘: No. of mesh points on the projected particle boundary
8: for 𝑗 = 1 to 𝑘 do
9: Define a plausible failure plane between the point of
application of 𝐟∗𝑖 and the mesh point 𝐾𝑗

10: Find the nominal shear and normal forces, 𝑓 ∗
𝑠 and 𝑓 ∗

𝑛 , acting
on the failure plane [Eq. (2)]

11: Find the nominal shear and normal stresses, 𝜏 and 𝜎, acting
on the failure plane [Eq. (3)]

12: Apply the Mohr-Coulomb failure criterion and calculate the
critical value for the failure criterion, 𝐹 [Eq. (4)]

13: end for
14: end for
15: if max (𝐹 ) ≥ 0 then
16: Failure will occur along the plane with max (𝐹 )
17: Split the particle along the failure plane
18: Define two new particles in the DEM simulation for the

fragments
19: end if

same as in the experiments. Confining pressure on the rubble, 𝑃 , was
applied by a varying force on the shear box cover, which was allowed
to rotate. Other walls were not allowed to move. In the experiments, 𝑃
had the magnitudes of 5.75 and 11.03 kPa, while simulations involved
values of 𝑃 varying in the range 5.75…22.06 kPa. The experiments were
quasi-static, since the rate of displacement, 𝛿̇, of the upper half of the
box was only 0.02 ms−1. Table 1 summarizes the main parameters used
in the simulations.

Shear force, 𝑆(𝛿), as a function of displacement 𝛿 was recorded
(Fig. 2a). 𝑆(𝛿) could then be used to derive the instantaneous shear
stress, 𝜏𝑅(𝛿), within the rubble specimen from

𝜏𝑅(𝛿) =
𝑆(𝛿)
𝐴(𝛿)

, (5)

where 𝐴(𝛿) is the area of the shear plane. For ice rubble and ice
engineering applications, it is also useful to determine the mean shear
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Fig. 2. (a) Set-up of the direct shear box experiments simulated. In the figure, 𝐿 and 𝐻 are the length and the height of the shear box, respectively. Further, 𝑆 is the shear force,
𝑃 is the confinement and 𝐴 is the area of the shear plane. (b) Photograph of an experiment with small particles from Polojärvi et al. [38].

Table 1
Main simulation parameters, chosen based on experiments in Pustogvar et al. [37]
where applicable. The breakage model parameters are from Prasanna et al. [35,36].

Parameter Symbol Value Unit

General Gravitational acceleration 9.81 ms−2
Time step 5.0 × 10−6 s

Particles Young’s modulus 1.0 GPa
Plastic limit 1.0 MPa
Friction coefficient 0.3 –
Width × height 𝑤 × ℎ 30 × 20, 60 × 40 mm × mm
Thickness 40 mm

Breakage Internal friction 𝜇 0.75 –
Internal cohesion 𝑐 10…500 kPa

Shear box Length 𝐿 600 mm
Height 𝐻 400 mm
Shearing velocity 𝛿̇ 0.02 ms−1
Confining pressure 𝑃 5.75…22.06 kPa

resistance and the maximum shear strength of the rubble, 𝜏𝑅 and
𝜏𝑚𝑅 , respectively. Mean shear resistance is here defined by taking the
average of 𝜏𝑅(𝛿) for a given interval of 𝛿.

Commonly, direct shear box experiments are used to determine
parameters for the Mohr–Coulomb material model, 𝑐𝑅 and 𝜇𝑅 = tan𝜙𝑅,
where 𝑐𝑅 is the internal cohesion of rubble and 𝜙𝑅 is the angle of inter-
nal friction, often reported for granular materials. These are determined
by conducting experiments with various values of 𝑃 and fitting 𝑃 − 𝜏𝑅
results to

𝑐𝑅 = |𝜏𝑅| − 𝑃 tan𝜙𝑅. (6)

Polojärvi et al. [38] simulated the first quarter of the direct shear
box experiments (0 < 𝛿 < 0.14 m) studied here. Pustogvar et al. [37],
however, reported that particle breakage affected the results of the
experiments during the later stage of the experiments; thus, the present
study simulated the whole experiment to capture the particle breakage
and its effect on rubble behavior.

3. Results and analysis

This section starts with a comparison of our DEM simulations with
experimental data. Then it continues by discussing the effect of break-
age on the direct shear box experiment results. Finally, the combined
effect of box length and breakage on the Mohr–Coulomb material
model parameters is investigated. The present study is based on 395
simulations in total with 79 different parameter configurations and 5
simulations per each configuration with different initial rubble pack-
ings. Supplementary material of the present paper includes a MATLAB
implementation of the breakage model, which the reader can use for
model verification.

3.1. Comparison to experimental data

Fig. 3 presents a comparison of typical shear force–displacement,
𝑆 − 𝛿, records from simulations of direct shear box experiments with
and without the breakage model. Records in Figs. 3a and b are from
simulations with small and large particles, respectively. The confining
pressure, 𝑃 , was 5.75 kPa and in the simulations with the breakage
model, the internal cohesion, 𝑐, and internal friction, 𝜇, had the values
250 kPa and 0.75, respectively, chosen after Prasanna et al. [36]. The
figure also shows the 𝑆 − 𝛿 curves from the experiments by Pustogvar
et al. [37] for the corresponding cases. Experimental records only
reached 𝛿 ≈ 0.4 m due to technical difficulties with the setup [37].

As Fig. 3 illustrates, the general features of the 𝑆 − 𝛿 records from
the simulations and experiments are similar. Both show several distinct
load peaks, here referred to as peak load events. The breakage model
appears to improve the simulation results, as the simulations without it
yield several load peaks of considerably higher magnitude than those
in the experiments. It is worth emphasizing here that the simulated and
experimental 𝑆−𝛿 records do not show one-to-one agreement, since the
initial rubble configurations were not the same. Nevertheless, records
from the simulations with the breakage model are more representative
of experimental curves with regard to the peak load magnitudes. The
𝑆 − 𝛿 records, however, from the simulations without the breakage
model initially follow those from the simulations without it. The two
records deviate from each other as the shear force, 𝑆, builds up towards
the first peak load; clearly breakage affects the mechanism that limits
peak loads, as reflected further by the magnitudes of them being in
general smaller in simulations with the breakage model than in those
without it.

Fig. 4 compares the data from the simulations and experiments
further by showing the mean and maximum of the shear force, 𝑆 and
𝑆𝑚, respectively. Data for confining pressure 𝑃 = 5.75 and 11.03 kPa
are included. Since in both the experiments and simulations the details
of the 𝑆−𝛿 records for a given parameterization depended on the initial
arrangement of the particles, the figure shows data collected from
five repeated simulations for each case. Meanwhile, the experimental
data are from three repeated experiments. For each simulation and
experiment, 𝑆 was defined by simply taking the average of 𝑆, and
𝑆𝑚 as the maximum value of 𝑆. The results are for the displacement
interval 𝛿 = 0…0.3 m, since the effect of shear box wall on 𝑆 is more
pronounced for larger 𝛿.

Fig. 4 shows that, overall, the simulations allowing breakage yield
𝑆 and 𝑆𝑚 data more closely resembling that from the experiments than
the simulations without it. 𝑆 and 𝑆𝑚 in the simulations and experiments
differed on average by 11% and 14%, respectively, with the breakage
model. Simulations without the breakage model led to errors of 23%
and 41% respectively. Thus, the values for 𝑆 and 𝑆𝑚 are more close
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Fig. 3. Typical shear force–displacement, 𝑆 − 𝛿, plots from shear box simulations and experiments [37] with (a) small and (b) large particles. The confining pressure, 𝑃 , in the
simulations and the experiments was 5.75 kPa.

Fig. 4. Mean shear force, 𝑆, in simulations and experiments in the case of (a) small and (b) large particles with confining pressures of 𝑃 = 5.75 and 11.03 kPa. Maximum shear
force, 𝑆𝑚, in the case of (c) small and (d) large particles. The figure shows data points from five repeated simulations for each case. 𝑆 and 𝑆𝑚 are for the shear box displacement
interval 0.0…0.3 m.

to experimental ones in the simulations with the breakage model than
in the simulations without it. This indicates that the particle breakage
model improves the accuracy of DEM simulations of shearing granular
materials. Furthermore, the 𝑆 and 𝑆𝑚 values from the simulations
with the breakage model are lower than those from the simulations
without it. It is also interesting to notice that the values of 𝑆𝑚 from
the simulations show smaller scatter when the particles are allowed to
break.

3.2. Breakage and peak load events

Breakage clearly limits the peak shear load values. In the simu-
lations without the breakage model, load peaks are associated with
the formation and subsequent buckling of force chains [38]. In the

simulations with the breakage model, particles can fail before the load
transmitted by a force chain reaches that needed for its buckling. This
difference is illustrated by Fig. 5 presenting two sequences of images
from the first peak load event in the simulations with the shear force–
displacement, 𝑆 − 𝛿, record presented in Fig. 3a. In Fig. 5, the left
and right columns, respectively, show the ice rubble in the simulation
without and with the breakage model. The figures also illustrate the
first principal stress of the so-called particle stress tensor [49,50]. This
is used to illustrate the main compressive load and its direction within
the particles. For the figures, the principal stress is normalized by its
maximum value during the peak load event in the simulation without
the breakage model, and it is only shown for particles for which its
normalized value exceeds the threshold of 0.1.
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Fig. 5. Snapshots from the simulations, without the breakage model (left column) and with the breakage model (right column) with the shear force–displacement, 𝑆 − 𝛿, records
in Fig. 3a. Snapshots are from the first peak load event. First (a), in both simulations, a force chain forms near the shear plane. Then, (b) particles within the chain break when
breakage is allowed (locations of particle breakage are circled with dashed line). After this, (c) particles within the force chain are further compressed in the simulation without
the breakage model, while the force chain has disappeared and new fragments have formed in the simulation with the breakage model.

At the start of the peak load event, a force chain, that is, a sequence
of particles under high compression, starts to form in both simulations
as indicated by the series of highly stressed particles (Fig. 5a). As the
load increases, some of the particles within the force chain break in
the simulation with the breakage model (Fig. 5b). After breakage, the
force chain disappears, while in the other simulation the particles in
the force chain are compressed further (Fig. 5c). Particle breakage is,
as expected, one of the force chain failure modes (the force chain in
the simulation without the breakage model eventually buckled). As
described above, the 𝑆 − 𝛿 record of Fig. 3a reflects this behavior: the
magnitude of the first peak load in the simulation with the breakage
model is significantly lower than that in the simulation without it. After
the first peak load event, the 𝑆 − 𝛿 records deviate between the two
simulations, as the arrangement of the particles differs between them,
mostly due to new fragments in the simulation allowing breakage.
Also, in the simulations with the breakage model, some force chains
collapsed due to buckling, and thus, breakage was not the only failure
mode in them.

3.3. Particle strength and specimen strength

As seen above, particle strength affects the shear force, 𝑆, measured
in a direct shear box experiment which in turn affects the measured
shear strength, 𝜏𝑅, of the rubble specimen. Fig. 6 illustrates how this
effect changes as a function of internal cohesion, 𝑐, of the particles. The
figure shows the magnitudes of mean shear resistance and maximum
shear strength of the rubble, 𝜏𝑅 and 𝜏𝑚𝑅 , respectively, plotted against 𝑐.

Results are shown for small and large particles and for both confining
pressures, 𝑃 = 5.75 and 11.03 kPa, used in the experiments by Pus-
togvar et al. [37]. Again, five simulations were run for each case, and
thus, the figure shows the mean values and the standard deviations
for the data. The values presented were calculated for the shear box
displacement interval 𝛿 = 0…0.3 m to mitigate the effect of shear box
walls [38]. The figure further presents fits for the mean values defined
by using the MATLAB curve fitting toolbox with an asymptotic function,
𝑦 = 𝑎′ − (𝑎′ − 𝑏′) exp−𝑥∕𝑐′ , where 𝑎′, 𝑏′ and 𝑐′ are the fitting parameters.
In each case, the fit was required to go through the mean value of
the simulations without the breakage model, indicated by the data at
𝑐 = ∞ kPa in the figure.

Data in Fig. 6 show that both 𝜏𝑅 and 𝜏𝑚𝑅 increase with particle
strength and size, and with confinement. This behavior is in line with
earlier studies on granular materials, where shear strength increases
with increasing particle size [51,52] and confinement [53]. Moreover,
𝜏𝑅 and 𝜏𝑚𝑅 increase towards the values of 𝜏𝑅 and 𝜏𝑚𝑅 of simulations
without the breakage model as 𝑐 increases; thus, the effect of particle
breakage diminishes with increasing 𝑐. A similar effect of 𝑐 is seen
for simulations with both values of 𝑃 . The mean relative difference
between the results from the simulations for the two levels of 𝑃 was
33% in 𝜏𝑅 and 31% in 𝜏𝑚𝑅 . For 𝜏𝑅, a measure for shear resistance, the
effect of breakage virtually vanishes at around 𝑐 = 400 kPa. With 𝑐 >
400 kPa, the values of 𝜏𝑅 are about 90% of those from the simulations
without the breakage model. For 𝜏𝑚𝑅 , a measure of instantaneous shear
strength, breakage affects the results still at 𝑐 = 500 kPa and the effect
of 𝑐 on 𝜏𝑚𝑅 is more pronounced with a higher 𝑃 .
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Fig. 6. Effect of particle strength on the shear strength of ice rubble, with two different confining pressures, 𝑃 : mean shear resistance, 𝜏𝑅, against the strength of particles in the
case of (a) small particles and (b) large particles. Maximum shear strength, 𝜏𝑚𝑅 , against the strength of particles in the case of (c) small particles and (d) large particles. Strength
was varied by changing the value of internal cohesion, 𝑐 [Eq. (4)]. Data from the simulations without the breakage model (𝑐 = ∞ kPa) are also presented. The figure shows data
points from five repeated simulations for each case, their mean and standard deviation, and a curve fitted to the mean values (solid line).

Fig. 7 shows normalized values of mean shear resistance and maxi-
mum shear strength of the rubble, 𝜏𝑅 and 𝜏𝑚𝑅 against internal cohesion,
𝑐, of particles. These data were normalized with the results from the
corresponding simulations without the breakage model. The figure
combines the results from simulations with confining pressure 𝑃 = 5.75,
11.03, 16.45, and 22.06 kPa, as importantly, the normalized data in
all simulations behaved very similarly. The figure also presents fits of
similar form to those in Fig. 6 on the normalized data. Fig. 7 shows
that the data for normalized 𝜏𝑅 and 𝜏𝑚𝑅 for small and large particles
overlap. This suggests that the effect of breakage on shear resistance,
𝜏𝑅, and instantaneous maximum shear strength, 𝜏𝑚𝑅 , of the rubble is
independent of particle size. Normalized 𝜏𝑅 and 𝜏𝑚𝑅 converge toward
unity as 𝑐 increases, and the effect of 𝑐 on the data is predicted to vanish
at about 𝑐 = 1.0 MPa.

Further, we also investigated the effect of internal friction, 𝜇,
[Eq. (4)] on the measured shear strength of ice rubble. Simulation
results did not show significant difference with regard of shear force,
𝑆, or the block failure events for the tested 𝜇 values of 0.25. . . 0.75. In
addition, the effect of material properties of particles (Young’s modulus
and friction coefficient from Table 1) on 𝑆 were studied briefly by
varying them within one order of magnitude. The values of mean and
maximum of shear force, 𝑆̄ and 𝑆𝑚, showed an increasing trend with
increasing Young’s modulus and friction coefficient. However, they
remained in general lower when the breakage was allowed compared
to those in the simulations without the breakage.

3.4. Breakage and experimental set-up

Direct shear box experiment results are known to be affected by the
box length to particle length ratio, 𝐿∕𝑤, of the setup used [38]. Is this
effect similar for simulations with and without the breakage model?
We studied this by simulating direct shear box experiments with boxes
having lengths in the range of 𝐿 = 0.6…3.0 m (Fig. 2a), that is, box
length to particle length ratios of 𝐿∕𝑤 = 20…100, where 𝑤 is the
largest side length of small particles; only small particles were used.
Simulations with and without the breakage model were performed,
and for the simulations with the breakage model, internal cohesion
𝑐 = 250 kPa [36] was used. Four different confining pressure 𝑃 values of

5.75, 11.03, 16.45, and 22.06 kPa were tested to see if specimen shear
strength, 𝜏𝑅, values follow the Mohr–Coulomb material model for the
given shear box geometries [Eq. (6)]. For each parameterization, five
simulations with different initial particle arrangements were run.

Fig. 8 presents the data for the mean shear resistance and maximum
shear strength of the rubble 𝜏𝑅 and 𝜏𝑚𝑅 (Section 2.3), respectively,
against 𝑃 for shear box lengths 𝐿 = 0.6 and 3.0 m. Data for simulations
with and without the breakage model are shown for both lengths.
Both 𝜏𝑅 and 𝜏𝑚𝑅 show a linear increase with 𝑃 as illustrated by the
trend lines fitted to the data. This indicates that the Mohr–Coulomb
material model applies for the results yielded by a box with a given
𝐿. Introducing breakage affects 𝜏𝑅 and 𝜏𝑚𝑅 as internal cohesion of ice
rubble, 𝑐𝑅 (intercept of the trend line), and friction angle, 𝜙𝑅 (gradient
of the trend line), are lower for simulations with the breakage model
than for those without it. The first of these results would be expected
based on the above considerations, as the shear force, 𝑆, was lower in
simulations with the breakage model than in those without it (Fig. 4).

Even more importantly, Fig. 8 shows that an increase in 𝐿 from
0.6 to 3.0 m leads to a decrease in the values of 𝑐𝑅 and 𝜙𝑅 in all
simulations. This should not be the case if the measured 𝑐𝑅 and 𝜙𝑅
were material properties, which motivated us to look for 𝐿∕𝑤 ratios
at which they become independent of 𝐿. Figs. 9a and b show the
values of 𝑐𝑅 and 𝜙𝑅, respectively, against 𝐿∕𝑤 derived by using the
results from simulations with different 𝐿 values. The data in the figure
were calculated by using both 𝜏𝑅 and 𝜏𝑚𝑅 from simulations with and
without the breakage model. Additionally, Fig. 9 shows a fit of form
𝑦 = 𝑎′ − (𝑎′ − 𝑏′) exp−𝑐′𝑥 for 𝑐𝑅 and a linear fit for 𝜙𝑅.

As seen from Fig. 9a, internal cohesion of ice rubble, 𝑐𝑅, reaches
an asymptotic value at box length to particle length ratio, 𝐿∕𝑤 ≈
60, that is, at 𝐿 ≈ 1.8 m. For 𝑐𝑅 derived using the instantaneous
maximum shear strength, 𝜏𝑚𝑅 , the asymptotic value is about 7 kPa. This
is double the asymptotic value of 𝑐𝑅 derived using 𝜏𝑅, which describes
the shear resistance. Breakage improves the results with small 𝐿∕𝑤,
or in other words, when experiments are performed for materials with
particles that break, a shorter box appears to suffice for estimating 𝑐𝑅.
Interestingly, when 𝐿∕𝑤 > 60 breakage has no effect on the values of
𝑐𝑅.

The values of ice rubble friction angle, 𝜙𝑅, however, did not appear
to converge as Fig. 9b shows, but instead decreased with increasing
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Fig. 7. (a) Normalized mean ice rubble shear strength, 𝜏𝑅 and (b) normalized maximum ice rubble shear strength, 𝜏𝑚𝑅 , values against the internal cohesion, 𝑐, of the particles.
Here, values were normalized by the mean 𝜏𝑅 and mean 𝜏𝑚𝑅 of the corresponding simulations without the breakage model. Solid lines in the figure are curves fitted to the mean
values.

Fig. 8. Mean shear resistance, 𝜏𝑅, against the confinement, 𝑃 , as observed for shear boxes with lengths, (a) 𝐿 = 0.6 and (b) 𝐿 = 3.0 m, that is 𝐿∕𝑤 = 20 and 100, respectively.
Maximum shear strength, 𝜏𝑚𝑅 , for shear boxes with lengths, (c) 𝐿 = 0.6 and (d) 𝐿 = 3.0 m. The figure shows data points from five repeated simulations for each case, their mean
and standard deviation, and Mohr–Coulomb material model [linear fit of Eq. (6)] fitted to the mean values.

Fig. 9. (a) Internal cohesion, 𝑐𝑅, and (b) friction angle, 𝜙𝑅, of ice rubble deduced from the numerical direct shear box experiments against the ratio of box length to particle
length, 𝐿∕𝑤. Solid and dashed lines in the figure are curves fitted to the results from mean shear resistance and maximum shear strength, 𝜏𝑅 and 𝜏𝑚𝑅 , respectively.

𝐿∕𝑤. One likely reason for 𝜙𝑅 not converging is non-uniform distri-
bution of confining pressure, 𝑃 , within the rubble: Polojärvi et al.
[38] showed that 𝑃 is often transmitted through few nearly vertical
force chains and, thus, an increase in 𝑃 does not necessarily results in
increased frictional resistance on the whole shear plane but only on few
negligibly short parts of it. The simulations with the breakage model
yield smaller 𝜙𝑅 values than the ones without it, but the linear fits on
the data suggest the rate of decrease is about the same for both types
of simulations. The gradient of the trend line derived using mean shear
resistance, 𝜏𝑅, is −0.16 and −0.14 in the simulations with the breakage

model and without it, respectively, while the same using the maximum
shear strength, 𝜏𝑚𝑅 , is −0.23 and −0.16, respectively.

4. Discussion

The approach to modeling breakage taken here, based on nominal
force and stress components, and the Mohr–Coulomb failure criterion,
was demonstrated to predict breakage reliably by our experiments
[35,36]. In these experiments, the material tested was ice, but we
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believe this rather simple approach can be used for modeling the
breakage of particles of other materials, given the breakage is due to
shear failure governed by the strength of the particle material, rather
than instantaneous crack propagation due to stress concentrations. An
example of such material is rocks [54]. In addition, the model can
be modified to work with other materials by choosing an appropriate
failure criterion. It is also worth mentioning here that there have also
been analytical models on ice edge failure based on shear and the
Mohr–Coulomb failure criterion [55,56], but not for ice features other
than an ice sheet.

DEM simulations of ice usually only account for local contact
failure of particles by setting a plastic limit for the contact force. This
limit is practically always based on the compressive strength of ice
[43,44,46,57,58]. Our work in Prasanna et al. [35,36] shows that
this approach is often inaccurate for ice-to-ice contacts, which in turn
motivated us to implement the breakage model introduced here. The
results from the simulations with and without the breakage model
confirm that the previously used approach is not sufficient, but rather
breakage has to be accounted for when modeling ice rubble. This is
because load transmitted by force chains is often limited by breakage
of particles within it (Section 3.2). Moreover, fragments generated from
breakage fill the voids within the rubble during particle rearrangement,
which in turn reduces the porosity of the rubble. Hopkins and Hibler
[41] were the first ones to include any type of a breakage model
for particles within ice rubble. They used a model assuming bending
failure. Our work in Prasanna et al. [35,36] does not support this
assumption, and indicates instead that the model should be based on
shear failure of ice particles when the aspect ratio of particles is low.
For particles with high aspect ratios, however, a breakage model based
on bending failure may work well.

Our results on breakage and peak load events indicate that often
the force chain collapse due to particle breakage occurs at lower
load levels compared to force chain buckling. Thus, the load-carrying
capacity of ice rubble is lower when particles are allowed to break,
which in turn decreases the shear resistance, 𝜏𝑅, and the maximum
instantaneous shear strength, 𝜏𝑚𝑅 , of ice rubble. The normalized 𝜏𝑅 and
𝜏𝑚𝑅 results of Fig. 7 showed about 20% reduction of shear strength of ice
rubble for internal cohesion of ice, 𝑐 = 250 kPa, chosen following the
experiments of Prasanna et al. [35]. This means that previous ice load
estimates obtained from DEM simulations of ice-structure interaction
processes without a particle breakage model [43,44,57] may have had
some disparities, and that their results have to be used cautiously for
interpreting limit loads on structures. Moreover, the normalized 𝜏𝑅 and
𝜏𝑚𝑅 values (Fig. 7) further showed that the effect of breakage on the
shear strength of ice rubble is independent of particle size. This implies
that using smaller particles in DEM simulations in order to mitigate
the effects of force chains is not effective, but that a particle breakage
model has to be used. This is due to the distinct role of particle breakage
as a load limiting mechanism.

It is also worth emphasizing here that normalized 𝜏𝑅 and 𝜏𝑚𝑅 of
Fig. 7 results are not contradictory to the established understanding of
the breakage of granular materials, where particle breakage increases
with the increasing particle size [59–61]. In an experiment, larger
particles are prone to contain more flaws, which in turn increases the
probability of their failure and decreases their strength. Normalized 𝜏𝑅
and 𝜏𝑚𝑅 results indicate that there is no apparent effect of particle size
on breakage since normalized 𝜏𝑅 and 𝜏𝑚𝑅 of small and large particles
overlap; however, as 𝑐 decreases for a given particle size, normalized
𝜏𝑅 and 𝜏𝑚𝑅 also decrease indicating increasing particle breakage. Thus,
an ice rubble specimen consisting of large particles with lower particle
strength would exhibit more breakage than a rubble specimen consist-
ing of smaller particles but higher particle strength. This is in line with
the hypothesis that the effect of particle size on breakage is truly related
to the strength of the individual particles. Moreover, this implies that
the developed breakage model can be used to model particle breakage

in different scales simply by defining internal cohesion, 𝑐, as a function
of the particle size.

Our simulations further revealed that internal cohesion of ice rub-
ble, 𝑐𝑅, and friction angle, 𝜙𝑅, derived from the results of a direct shear
box experiment depend on the length, 𝐿, of the shear box used. This has
been observed to occur in previous studies as well [62,63]. Breakage af-
fects 𝑐𝑅 when the box length to particle length ratio 𝐿∕𝑤 < 60, but with
𝐿∕𝑤 > 60 the difference between the values for 𝑐𝑅 from simulations
with and without the breakage model was less than 10%. The tendency
of breakage to affect the results with small boxes is partly explained by
the 𝐿∕𝑤 ratio changing during an experiment due to breakage: when
𝐿 is relatively small, the 𝐿∕𝑤 ratio changes significantly due to new
ice fragments yielded by breakage. Further, with small 𝐿∕𝑤 ratios,
breakage is more likely to limit the load transmitted by force chains due
to their limited length. Surprisingly, 𝜙𝑅 showed a continuous decrease
with increasing 𝐿 instead of converging. It is, however, clear that 𝜙𝑅 >
0 for any material and, thus, it is evident that the experimental set-up
does not produce physically sound results for 𝜙𝑅 of the rubble. As was
described in Section 3.4 and based on Polojärvi et al. [38], we believe
this is due to non-uniform distribution of confining pressure, 𝑃 , within
the simulated rubble specimens. A potential remedy for this would be
to consider an experimental set-up allowing more even distribution of
𝑃 on the ice rubble [64].

5. Conclusions

The present paper developed a simplified model of particle breakage
for inclusion in DEM simulations of granular materials. The breakage
model is based on experimental observations [35] and high resolution
numerical analysis [36] of ice blocks of meter scale breaking under
quasi-static compressive ice-to-ice contact forces. It was here applied to
simulations of direct shear box experiments on ice rubble [37]. While
the application here was on ice rubble, we believe our approach can be
applied to other materials as well. Based on the foregoing results, the
following conclusions can be drawn:

• The particle breakage model developed in the present paper is
able to successfully capture the effect of particle breakage in DEM
simulations.

• Breakage limits the load transmitted by force chains, as particles
within a force chain may break before the chain buckles (Fig. 5).
Modeling this in DEM improves the accuracy of the simulations
and leads to 20% lower peak load values in direct shear box
simulations (Section 3.1).

• The effect of breakage on the shear strength of a granular assem-
bly is independent of the particle size for a given particle strength,
and decreases with an increase in the internal cohesion of the
particles (Fig. 7). For ice rubble, the effect vanishes at about 1.0
MPa.

• The internal cohesion of ice rubble can be estimated reliably with
a shear box having a box length to particle length ratio 𝐿∕𝑤 > 60
(Fig. 9). Friction angle values did not converge for the tested 𝐿∕𝑤
ratios.

Including particle breakage in DEM simulations improves agreement
between simulations and experimental observations. The first steps of
future work should explore the effect of base plane choice on simulation
results.
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