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The properties of lattices are strongly influenced by their nodal connectivity; yet, previous studies have focused 
mainly on topologies with a single vertex configuration. This work investigates the potential of demi-regular 
lattices, with two vertex configurations, to outperform existing topologies, such as triangular and kagome lattices. 
We used finite element simulations to predict the fracture toughness of three elastic-brittle demi-regular lattices 
under modes I, II, and mixed-mode loading. The fracture toughness of two demi-regular lattices scales linearly 
with relative density �̄�, and outperforms a triangular lattice by 15% under mode I and 30% under mode II. 
The third demi-regular lattice has a fracture toughness 𝐾𝐼𝑐 that scales with 

√
�̄� and matches the remarkable 

toughness of a kagome lattice. Finally, a kinematic matrix analysis revealed that topologies with 𝐾𝐼𝑐 ∝
√
�̄� have 

periodic mechanisms and this may be a key feature explaining their high fracture toughness.

Lattice materials are well known for their ability to be stiff and 
strong at low densities [1–6], but their architecture can also be tailored 
to achieve a high fracture toughness [7–10]. While the stiffness and 
strength of lattices are limited by bounds, and architectures approach-
ing those limits have been identified [11–13], their fracture toughness 
is not theoretically bounded. Relatively few topologies have been in-
vestigated so far in the quest to maximise fracture toughness; therefore, 
the aim of this study is to discover tougher lattice materials by explor-
ing novel architectures.

The influence of topology on fracture toughness has been docu-
mented predominantly for planar lattices. Analytical [14–18], numer-
ical [19–25] and experimental [26–29] studies have shown that the 
fracture toughness of an elastic-brittle lattice can be expressed as:
𝐾𝐼𝑐

𝜎𝑡𝑠

√
𝓁
=𝐷𝐼 �̄�

𝑑 and
𝐾𝐼𝐼𝑐

𝜎𝑡𝑠

√
𝓁
=𝐷𝐼𝐼 �̄�

𝑑 , (1)

where 𝐾𝐼𝑐 and 𝐾𝐼𝐼𝑐 are the fracture toughness under mode I and II, 
respectively; �̄� is the relative density of the lattice; 𝓁 is the length of 
the cell walls; 𝜎𝑡𝑠 is the tensile strength of the parent material; and the 
constants 𝐷𝐼 , 𝐷𝐼𝐼 , and 𝑑 are given in Table 1 for planar transversely 
isotropic lattices, which are shown in Fig. 1. Orthotropic topologies, 
such as the square or snub-square lattices, have also been investigated 
but they do not outperform the toughest isotropic lattices [20,21,27,30,
31].

The exponent 𝑑 has a strong effect on the fracture toughness: a lower 
𝑑 leads to a higher fracture toughness at low relative densities �̄�, see (1). 

* Corresponding author.
E-mail address: luc.st-pierre@aalto.fi (L. St-Pierre).

The exponent 𝑑 is insensitive to the choice of parent material [32], and 
strongly influenced by the lattice’s nodal connectivity (the number of 
bars meeting at each joint). With three bars per joint, the hexagonal 
lattice (Fig. 1a) deforms by bending, and this leads to a particularly low 
fracture toughness with 𝑑 = 2 [14,15,33,34]. In contrast, the triangular 
lattice (Fig. 1b), with six bars per joint, and the snub-trihexagonal ar-
chitecture (Fig. 1c), with five bars per joint, are stretching-dominated 
meaning that their members carry predominantly axial stresses. This 
mode of deformation leads to a fracture toughness that scales linearly 
with relative density, with an exponent 𝑑 = 1 [19,31,35]. Finally, the 
kagome lattice (Fig. 1d), with four bars per joint, has an unusual be-
haviour. It is stretching-dominated, as stiff and strong as a triangular 
lattice [2], but its fracture toughness scales with the square-root of rel-
ative density (𝑑 = 0.5), making it remarkably tough at low values of �̄�. 
This exceptional toughness is due to a crack tip blunting phenomenon 
caused by localised bending deformation [19,32]. The kagome lattice is 
the only known topology with 𝑑 = 0.5, and it is unclear if other archi-
tectures could match or exceed its toughness.

All architectures investigated so far share a similar characteristic: 
they have a unique vertex configuration (meaning that each vertex in-
side a given lattice has the same sequence of polygons, see Fig. 1a-d). In 
geometry, these are referred to as 1-uniform tilings and include regular
tessellations (made from a single regular polygon e.g. hexagonal and tri-
angular lattices) and semi-regular lattices (assembled from two or more 
regular polygons e.g. snub-trihexagonal and kagome lattices) [36]. Con-
sidering the importance of nodal connectivity on fracture toughness, 

https://doi.org/10.1016/j.scriptamat.2023.115686

Received 8 May 2023; Received in revised form 10 July 2023; Accepted 26 July 2023

http://www.ScienceDirect.com/
http://www.journals.elsevier.com/scripta-materialia
mailto:luc.st-pierre@aalto.fi
https://doi.org/10.1016/j.scriptamat.2023.115686
https://doi.org/10.1016/j.scriptamat.2023.115686
http://creativecommons.org/licenses/by/4.0/


Scripta Materialia 237 (2023) 115686

2

M. Omidi and L. St-Pierre

Fig. 1. The seven planar lattices listed in Table 1. The (a) hexagonal, (b) triangular, (c) snub-trihexagonal, and (d) kagome lattices were investigated previously 
[19,31], whereas this paper focuses on demi-regular lattices (e) A, (f) B, and (g) C. The thick black line indicates the position of the initial crack. Fracture sites under 
mixed-mode loading are shown with |, ||, and ||| symbols for demi-regular lattices. (h) Domain and coordinate system used in our finite element predictions.

Table 1

Constants 𝐷𝐼 , 𝐷𝐼𝐼 , and 𝑑 in (1) for planar transversely isotropic lattice materi-
als. These topologies are shown in Fig. 1.
Topology 𝐷𝐼 𝐷𝐼𝐼 𝑑 Reference

Hexagonal 0.800 0.370 2 [19]

Triangular 0.500 0.380 1 [19]

Snub-trihexagonal 0.460 — 1 [31]

Kagome 0.212 0.133 0.5 [19]

A 0.570 0.510 1 This study

B 0.580 0.490 1 This study

C 0.210 0.150 0.5 This study

and to broaden the search for tougher architectures, we turn our atten-
tion to lattices with two different vertex configurations. These are called 
2-uniform or demi-regular lattices [37]. Three examples are shown in 
Fig. 1e-g: demi-regular lattices A and B have joints with five and oth-
ers with six bars, whereas the vertices of tessellation C have either four 
or five struts. These three demi-regular lattices were recently shown 
to be stretching-dominated and transversely isotropic, with an elastic 
modulus that is comparable but slightly lower than that of kagome 
and triangular lattices [38]. The aim of this study is to characterise 
the fracture behaviour of these three demi-regular lattices and evaluate 
if they are tougher than other stretching-dominated architectures, such 
as kagome and triangular lattices.

The fracture toughness of each demi-regular lattice was predicted 
using Finite Element (FE) simulations; more specifically, with the static 
implicit solver of the commercial software Abaqus. Our modelling ap-
proach relied on the boundary layer method, as used in previous studies 
[19,21,31,34,35], to ensure that our results can be compared directly 
those in Table 1.

For each demi-regular lattice, a large square domain was created 
with a side length of 300𝓁, where 𝓁 is the length of a cell wall (see 
Fig. 1h). The domain included a semi-infinite crack along the negative 
𝑥1 axis and a detailed view showing the position of the crack tip for each 
topology is given in Fig. 1e-g. Numerical experimentation showed that 
moving the crack tip to another cell or changing the crack orientation 
have a negligible effect on the fracture toughness. In Supplementary 
material, we show that (i) our domain is sufficiently large to ensure that 
predictions are size-independent, and (ii) the crack orientation consid-
ered in Fig. 1e-g is the one associated with the lowest mode I fracture 
toughness.

The cell walls were meshed using Timoshenko beam elements (B21 
in Abaqus notation). A fine mesh size of 𝓁∕30 was used within a 
60𝓁 × 60𝓁 area centred at the crack tip, whereas a coarser mesh size 
of 𝓁∕10 was employed elsewhere. Further mesh refinements had an im-
perceptible effect on the results. The relative density �̄� was varied from 
0.01 to 0.2 by changing the strut thickness 𝑡 while keeping the strut 
length 𝓁 fixed. The relationship between �̄� and 𝑡∕𝓁 is given in Supple-
mentary material for each demi-regular lattice.

Each node on the domain’s perimeter was subjected to a displace-
ment corresponding to the asymptotic crack tip solution from linear 
elastic fracture mechanics. The displacement field included two transla-
tions, 𝑢1 and 𝑢2, and an in-plane rotation 𝜔, see Fig. 1h. Expressions for 
𝑢1, 𝑢2, and 𝜔 are lengthy and provided in Supplementary material. They 
are functions of the nodal coordinates (𝑟, 𝜃); the elastic properties of the 
lattice given in [38]; and the applied stress intensify factors 𝐾𝐼 and 𝐾𝐼𝐼

for modes I and II, respectively. Our approach is identical to that used 
by Fleck and Qiu [19] to predict the fracture toughness of other planar 
transversely isotropic lattices.

The cell walls were modelled as an elastic-brittle material, charac-
terised by a Young’s modulus 𝐸𝑠 and Poisson ratio 𝜈𝑠, up to a tensile 
fracture strength 𝜎𝑡𝑠. In our simulations, the fracture toughness 𝐾𝐼𝑐 (or 
𝐾𝐼𝐼𝑐 ) corresponded to the value of 𝐾𝐼 (or 𝐾𝐼𝐼 ) when the maximum 
tensile stress in any element of the lattice reached the strength of the 
parent material 𝜎𝑡𝑠.

The fracture toughness of each demi-regular lattice is plotted as a 
function of relative density in Fig. 2a for mode I and Fig. 2b for mode 
II. In each plot, the fracture toughness is normalised by 𝜎𝑡𝑠

√
𝓁 based on 

the scaling law given in (1). Deformed meshes for each topology with 
�̄� = 0.05 are given in Fig. 3 for both modes I and II.

The fracture toughness of demi-regular lattices A and B scales lin-
early with relative density, see Fig. 2, corresponding to an exponent 
𝑑 = 1 in (1). In contrast, the fracture toughness of tessellation C scales 
with 

√
�̄�, giving 𝑑 = 0.5. With a lower value of 𝑑, lattice C is signifi-

cantly tougher than topologies A and B at low relative densities. This 
holds true for both 𝐾𝐼𝑐 and 𝐾𝐼𝐼𝑐 as the exponent 𝑑 is the same for both 
modes I and II. The lower value of 𝑑 for topology C is due to crack tip 
blunting, which does not occur in tessellations A and B, see Fig. 3.

The results in Fig. 2 were used to evaluate the constants 𝐷𝐼 and 𝐷𝐼𝐼

in (1) and their values are given in Table 1. For each demi-regular lat-
tice, 𝐷𝐼 >𝐷𝐼𝐼 meaning that fracture toughness is higher for mode I than 
mode II. The differences are, however, sensitive to topology; the ratios 
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Fig. 2. Fracture toughness under (a) mode I and (b) mode II, as a function of relative density �̄�. Results are given for demi-regular lattices A, B, and C.

Fig. 3. Deformed meshes for demi-regular lattices (a) A, (b) B, and (c) C. Results 
are shown for mode I (left) and mode II (right) loading. All lattices have a 
relative density �̄� = 0.05.

𝐾𝐼𝑐∕𝐾𝐼𝐼𝑐 are 1.12, 1.18 and 1.40 for tessellations A, B, and C, respec-
tively. Demi-regular lattices A and B have a similar fracture toughness, 
which is roughly 15% higher than a triangular lattice under mode I, 
and approximately 30% tougher in mode II, see Table 1. Otherwise, tes-
sellation C and the kagome lattice have practically the same 𝐾𝐼𝑐 and 
𝐾𝐼𝐼𝑐 .

The fracture envelope under mixed-mode loading is plotted in 
Fig. 4a for demi-regular lattices A and B, and in Fig. 4b for tessella-
tion C. Based on the results in Fig. 2, the stress intensity factors 𝐾𝐼 and 
𝐾𝐼𝐼 are normalised here by 𝜎𝑡𝑠�̄�

√
𝓁 for lattices A and B, and by 𝜎𝑡𝑠

√
�̄�𝓁

for tessellation C. This normalisation ensures that each fracture enve-
lope is independent of relative density �̄�. Each envelope is formed by 
two or three straight lines, where each segment corresponds to a differ-
ent fracture location. The segments are labelled |, ||, and ||| in Fig. 4, 
and the corresponding fracture locations are shown in Fig. 1. For com-
parison, results for the triangular and kagome lattices are included in 

Table 2

Elastic modulus 𝐸, Poisson’s ratio 𝜈, tensile strength 𝜎𝑐 , fracture toughness 
𝐾𝐼𝑐 , transition flaw size 𝑎𝑡, and toughness 𝐺𝑐 of triangular, kagome, and demi-
regular lattices. All properties are given in a non-dimensional form. Note that 
𝐸, 𝜈, and 𝜎𝑐 were collected from [2,38], and 𝜎𝑐 is the tensile strength in 𝑥2 , see 
Fig. 1.

Topology 𝐸∕𝐸𝑠 𝜈 𝜎𝑐∕𝜎𝑡𝑠 𝐾𝐼𝑐∕(𝜎𝑡𝑠
√
𝓁) 𝑎𝑐∕𝓁 𝐺𝐼𝑐𝐸𝑠∕(𝜎𝑡𝑠𝓁)

Triangular 0.333�̄� 0.333 0.333�̄� 0.500�̄� 0.717 0.666�̄�
A 0.292�̄� 0.364 0.268�̄� 0.570�̄� 1.440 0.965�̄�
B 0.318�̄� 0.362 0.304�̄� 0.580�̄� 1.158 0.919�̄�

Kagome 0.333�̄� 0.333 0.333�̄� 0.212
√
�̄� 0.129∕�̄� 0.120

C 0.260�̄� 0.455 0.214�̄� 0.210
√
�̄� 0.306∕�̄� 0.135

Fig. 4a and b, respectively. Their envelopes were obtained using the 
same modelling approach detailed above and their crack orientations 
are given in Fig. 1.

The fracture envelopes of lattices A and B are close to a quarter cir-
cle, whereas that of tessellation C has two straight sides, see Fig. 4. 
Demi-regular lattice C and the kagome topology have very similar frac-
ture envelopes, but tessellations A and B both outperform the triangular 
lattice under mixed-mode loading. Quantitatively, the area contained 
within the fracture envelope of tessellation A is 43% larger than that of 
a triangular lattice.

For topologies A and B, fracture takes place in the vertical bar in 
front of the crack tip when 𝐾𝐼 ≫ 𝐾𝐼𝐼 and moves off the crack plane 
when 𝐾𝐼𝐼 increases, see Fig. 1e,f. In contrast, the fracture sites in tes-
sellation C are always off the crack plane and located a few cells away 
from the crack tip. These results are in-line with the observations of 
Fleck and Qiu [19]: they found that fracture sites in a triangular lat-
tice are within a distance 𝓁 of the crack tip, whereas those in a kagome 
lattice are located at ≈ 3𝓁 from the crack tip.

Fracture toughness is not the only property to consider in material 
selection; the elastic modulus 𝐸 and tensile fracture strength 𝜎𝑐 also 
influence design choices depending on the application. These proper-
ties are compared in Table 2 for triangular, kagome, and demi-regular 
lattices. Demi-regular architectures are 5-22% more compliant and 8-
35% weaker than triangular and kagome lattices. Demi-regular lattices, 
however, have a fracture toughness equal or superior to that of other 
topologies.

In load-limited design, the maximum stress that a lattice panel 
with a central crack can carry will switch from 𝜎𝑐 to a lower value 
𝜎 =𝐾𝐼𝑐∕

√
𝜋𝑎 as the crack length 𝑎 increases. This change will occur at 

a transition flaw size [1,19]:

𝑎𝑡 =
1
𝜋

(
𝐾𝐼𝑐

𝜎𝑐

)2
, (2)

which is also listed in Table 2. Clearly, demi-regular lattices are more 
damage tolerant than other topologies. For tessellations A and B, the 
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Fig. 4. Mixed-mode fracture envelopes: (a) demi-regular lattices A and B are compared to a triangular tessellation and (b) demi-regular lattice C is compared to a 
kagome tessellation. The segments labelled |, ||, and ||| correspond to different fracture sites, which are shown in Fig. 1.

Fig. 5. (a) The single 1-periodic mechanism of demi-regular lattice B. (b,c) The two 1-periodic mechanisms of demi-regular lattice C. Tessellation C also has 
𝑁 -periodic mechanisms: examples of (d) 2-periodic, (e) 3-periodic, and (f) 4-periodic mechanisms along the 30◦ direction.

transition flaw size is independent of �̄� and is 1.6-2 times larger than 
that of a triangular lattice. In contrast, 𝑎𝑡 ∝ 1∕�̄� for tessellation C and its 
transition flaw size is 2.4 times higher than that of a kagome lattice.

In some applications, it is necessary to maximise the energy stored 
before fracture, and this requires a material with a high toughness 
𝐺𝐼𝑐 = (1 − 𝜈2)𝐾2

𝐼𝑐
∕𝐸 [39]. This property is also included in Table 2. 
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Demi-regular lattices A and B have a toughness 𝐺𝐼𝑐 ∝ �̄�, which is about 
40% higher than that of a triangular lattice. Otherwise, tessellation C 
and the kagome lattice have a similar toughness, which is, remarkably, 
independent of relative density.

Lattices with 𝑑 = 1∕2, such as kagome and tessellation C, are highly 
desirable; yet, the characteristics that lead to this behaviour are un-
known. Here, we hypothesise that a stretching-dominated lattice should 
have periodic mechanisms to have 𝑑 = 1∕2. This is based on the fact that 
the kagome lattice has many periodic mechanisms [40–42], whereas a 
triangular lattice has none.

The mechanisms of each demi-regular lattice were analysed to test 
the validity of our hypothesis. We used the Bloch wave approach [41]
and all details are provided in Supplementary material. Below, we will 
describe a mechanism as 𝑁 -periodic if its deformation has a wavelength 
of 𝑁 unit cells [42].

Our analysis showed that demi-regular lattice A has no mechanisms, 
see Supplementary material. Otherwise, tessellation B has a single 1-
periodic mechanism, see Fig. 5a. In contrast, demi-regular lattice C has 
two 1-periodic mechanisms (Fig. 5b,c) and many 𝑁 -periodic mecha-
nisms, with some examples given in Fig. 5d-f. Note the similarity be-
tween the mechanism in Fig. 5b and the deformed meshes in Fig. 3c. 
The kagome lattice and tessellation C are the only stretching-dominated 
topologies known to the authors to have such a large number of 𝑁 -
periodic mechanisms. While the evidence is limited, we believe that 
this may be a key feature leading to crack tip blunting and explaining 
the high fracture toughness of these two topologies.

In summary, we showed that three previously unexplored demi-
regular lattices have a remarkably high fracture toughness. Demi-
regular lattices A and B have a fracture toughness that scales linearly 
with relative density and are tougher than a triangular lattice under 
mode I, mode II, and mixed-mode loading conditions. Previously, the 
kagome lattice was the only known topology with a fracture tough-
ness that scales with the square-root of relative density. We discovered 
that demi-regular lattice C exhibits the same scaling, and has a fracture 
toughness equal to that of a kagome lattice. Further analysis showed 
that the kagome lattice and tessellation C both have many 𝑁 -periodic 
mechanisms, and additional work is needed to confirm/rebut that this 
is the main feature explaining their high fracture toughness.
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