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Drought hazard and annual precipitation predicted to increase in the 
Sirppujoki river basin, Finland 

Lauri Ahopelto a,*, Marko Kallio a, Noora Veijalainen b, Roope Kouki a, Marko Keskinen a 

a Water & Development Research Group, Aalto University, 02015 Espoo, Finland 
b Finnish Environment Institute, Latokartanonkaari 11, 00790 Helsinki, Finland   

H I G H L I G H T S  

• Significant increase in agricultural drought hazard is predicted in 2040–2069 in South-West Finland. 
• Agricultural drought hazard in growing seasons increase, despite rising annual precipitation. 
• Multiple drought indices are essential in drought risk analysis involving climate change. 
• Drought indices can assist local drought management, but local knowledge is required.  
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A B S T R A C T   

Droughts pose a critical global risk that affect vast land areas and threaten almost all nations. Yet the impacts of 
droughts are most concretely felt at the local scale. Here, we assess drought indices in a Finnish basin with 
limited observations under current and future climate conditions in order to support local drought management. 
Long time series are needed for deriving drought indices, yet the available data is often a constraint. To increase 
the sample size available for analysis, we generated a thousand years of weather data with a stochastic weather 
generator based on observations and Regional Climate Model (RCM) data. The generated meteorological vari
ables were fed into a hydrological model to simulate a large sample of hydrological variables. These large 
samples of simulated meteorological and hydrological variables were then used to analyse drought events and 
their characteristics in a past (1990–2019) and a future (2040–2069) time period. The results support the 
ongoing drought management work being done in South-Western Finland and specifically the Sirppujoki basin. 
Our results indicate that drought events will most likely become more frequent, especially during the growing 
season. Such changes would affect particularly the agricultural sector of Finland.   

Practical Implications  

Drought has major economic, social and environmental implica
tions across sectors, with agriculture being often particularly 
strongly affected. Addressing the drought risks requires proactive 
drought management, as it is both cheaper and more effective 
than reactive mitigation of drought impacts. Given the increasing 
impacts of climate change, drought management should also 
consider the estimated future drought conditions with the help of 
e.g. drought indices. While this all would preferably build on 
extensive long-term time series, such data is rarely available: this 

emphasises the importance of generated (weather) data and 
modelling activities in drought management. 

Our study focuses on understanding the future drought risk under 
climate change in a small Finnish river basin called Sirppujoki. It is 
also the national pilot area for developing the country’s first-ever 
Drought Management Plan (DMP) at a river basin scale, for which 
our study directly contributed to. Our results indicate that drought 
events are likely to increase in the future even in a water-abundant 
Northern country such as Finland, emphasising the importance of 
cross-sectoral, basin-focused DMPs. 

DMPs establish a general understanding of the drought in a given 
context, making use of data such as drought indices. While there is 
a plethora of such indices (GWP and WMO, 2016; Mishra and 

* Corresponding author. 
E-mail address: lauri.ahopelto@aalto.fi (L. Ahopelto).  

Contents lists available at ScienceDirect 

Climate Services 

journal homepage: www.elsevier.com/locate/cliser 

https://doi.org/10.1016/j.cliser.2023.100400 
Received 25 March 2022; Received in revised form 6 June 2023; Accepted 15 June 2023   

mailto:lauri.ahopelto@aalto.fi
www.sciencedirect.com/science/journal/24058807
https://www.elsevier.com/locate/cliser
https://doi.org/10.1016/j.cliser.2023.100400
https://doi.org/10.1016/j.cliser.2023.100400
https://doi.org/10.1016/j.cliser.2023.100400
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cliser.2023.100400&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Climate Services 31 (2023) 100400

2

Singh, 2010), the challenge is finding the suitable indices for each 
context. Robust calculation of drought indices usually require a 
minimum of 30 years of high-quality data (GWP and WMO, 2016), 
which is not always available. Hydrological models and generated 
weather data can provide additional parameters and centuries- 
long time series, which can improve the performance of the 
associated drought indices. Generating data for predicted climate 
scenarios provides possibility for the DMPs to be better suited to 
the changing climate. This was also evident in our study, where we 
used large samples of simulated meteorological and hydrological 
variables to analyse drought events and their characteristics both 
in a past (1990–2019) and future (2040–2069), using multiple 
drought indices. 

Our results show a significant increase in the amount of future 
drought events in the study area, despite the rising annual pre
cipitation. Given the increase is particularly apparent in the 
growing season, the results are cause for concern particularly for 
the agricultural sector. Our study shows how generating long time 
series of weather data can help analysis in data scarce regions, 
although underestimation of low frequencies and uncertainties 
related to the method need also to be taken into account. This kind 
of analysis can provide the local planners valuable information 
about different drought indices as well as climate-related 
uncertainties. 

The study also has broader policy implications particularly for 
Europe. While the European Union does not have a specific 
drought directive, the EU Water Framework Directive recom
mends drought management. Member states are also encouraged 
to implement drought management strategies and plans 
(Howarth, 2018). Finland does not currently have any national or 
local DMPs and there is no legislation demanding such plans. Yet, 
the major agricultural impacts and economic losses caused by 
recent droughts have emphasised the importance of proactive 
drought management – with climate change estimations just 
amplifying such need. 

Data availability 

Supplementary Data: “Drought hazard and annual precipitation 
predicted to increase in the Sirppujoki basin, Finland.” https:// 
doi.org/10.24342/d9dc5979-80fc-43e9-941e-0d8b9ac740e7   

Introduction 

Droughts cause major impacts and affect nations ́ water, food and 
energy security (e.g. de Amorim et al., 2018; Jääskeläinen et al., 2018; 
UNDRR, 2021). Droughts pose a risk even to nations with abundant 
water resources (Ahopelto et al., 2019). This risk should be managed 
proactively, as it is cheaper than reactive drought management and 
mitigates also societal impacts more effectively (e.g. Gerber and Mir
zabaev, 2017; Wilhite and Pulwarty, 2017). 

Drought risk can be generally understood to consist of three key 
components recognized by the IPCC risk framework, namely hazard, 
vulnerability and exposure (IPCC, 2014). This article focuses on drought 
hazard, which can be defined as the frequency and severity of droughts. 
Hazard assessments also need to factor in climate change, especially 
since drought hazard is estimated to increase in most places globally 
including Europe (e.g. Vogt et al., 2018). 

There are several partly overlapping approaches for managing 
drought risk. A Drought Management Plan (DMP) is one common 
approach for proactive drought risk management. DMPs can be done at 
national, regional or local scale and their key elements usually include at 
least mitigation measures, drought indices, and organizational frame
works (e.g. Benítez Sanz and Schmidt, 2012; GWP CEE, 2015; UNDRR, 
2021; Vogt et al., 2018). The drought indices and thresholds are 
essential for functional DMPs, and there is a plethora of indices to choose 

from (GWP and WMO, 2016; Mishra and Singh, 2010). The problem is 
choosing and fitting the right ones for each context. 

While preparing the DMPs is typically a public-sector driven process, 
a diversity of (local) stakeholders should be engaged in both planning 
and implementing the drought risk management (Logar and van den 
Bergh, 2013). Communicating the uncertainty of climate variability and 
climate models for stakeholders is therefore central to the associated risk 
analyses (Hassan et al., 2014; Semenov et al., 1998). 

Since the drought impacts are predominantly sectoral and occur 
largely at local scale, there is a need to study local and sectoral drought 
indices. For localized DMPs it would be highly valuable to have data 
about meteorological and hydrological variables that are linked to the 
identified sectoral drought risks and impacts. The link between drought 
indices and drought impacts has been considered a critical question e.g., 
by Blauhut et al., (2016), Stephan et al. (2021) and Trnka et al. (2018). 
To obtain robust drought indices, high-quality observational or 
modelled data are typically needed for 30 years or preferably for a 
longer period (GWP and WMO, 2016). Precipitation is the most common 
observation, whilst data for other hydrological and meteorological 
variables (i.e., soil-moisture, discharge, evapotranspiration, runoff) is 
scarcer (see e.g. Brunner and Tallaksen, 2019). 

Hydrological models and generated weather data can provide addi
tional parameters and long time series, which can improve the perfor
mance of the drought indices. Increasing the sample size by generating 
weather data is a common method in hydrology (Brunner et al., 2021), 
but drought risk management applications with climate change sce
narios have been limited. Calculating and comparing several drought 
indices and their characteristics from long generated time series from 
climate scenarios has not to our knowledge been done previously. In 
addition, drought management plans, indices and climate change esti
mations for drought at local scale have not been studied previously in 
Finland. 

In this article we address the aforementioned gaps in the following 
two ways. Firstly, to better understand how best to accommodate the 
indicator choosing process, we compare, test, and analyse local drought 
indices for a local DMP that take climate change into account. The 
indices are calculated by using observations, Regional Climate Model 
(RCM) simulated variables (for reference period and 2040–69), and 
hydrological modelling. We hypothesise that by generating long time 
series of hydrological and meteorological data for current and future 
climates, we can support local drought management and choose better 
drought indices for local DMPs compared to using precipitation and 
temperature observations for just some decades. Secondly, in order to 
improve the risk assessment, we provide localized drought hazard in
formation for the case study area for the local DMP. 

To test our hypothesis we increased the sample size of historical 
observation data and climate change scenarios significantly. We used a 
stochastic weather generator (WeaGETS) and hydrological model 
(Watershed Simulation and Forecasting System, WSFS) to generate a 
millennium’s worth of weather data for our case study area in Finland, 
including climate scenarios for 2040–2069. Then, we identified drought 
events and calculated their characteristics utilising five drought indices: 
SPI (Standardised Precipitation Index), SPEI (Standardised Precipitation 
and Evaporation Index), SMA (Soil Moisture Anomaly), SRI (Stand
ardised Runoff Index), and SSI (Standardized Streamflow Index). Af
terwards, we compare our methods and findings with previous literature 
and discuss the implications in two ways: methodologically as well as 
practically in our case study area, in Finland and in Europe. 

Study context: Drought risk management in the EU, Finland and 
Sirppujoki basin 

Most of Europe has experienced severe drought events e.g., in 
2002–2003 and 2018–2019 (Bakke et al., 2020; Boergens et al., 2020; 
García-Herrera et al., 2019), and the economic losses due to drought in 
the European Union (EU) have been estimated to be several billion euros 
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annually (Naumann et al., 2021). As a reaction to drought risk and their 
growing impacts, the European Commission has taken a number of 
measures, including establishing the European Drought Observatory, 
drafting drought guidelines, and conducting studies to support drought 
management in its member states (GWP CEE, 2015; Vogt et al., 2018). 

DMPs form a key approach in proactive drought risk management, 
and they can be applied in different scales. A local DMP can be used to 
both complement and implement national drought strategies (UNDRR, 
2021). Drought indices are a key element of any functional DMP, since 
they are often used in assessing the current and future drought risk, 
early-warning systems, and estimation of the onset, severity, duration, 
and extent of the drought event. They are also used to trigger emergency 
drought mitigation measures in different stages of the drought (Steine
mann and Cavalcanti, 2006). 

To effectively address drought risks with the DMP, the drought risks 
need to be assessed. A thorough assessment can be a part of the planned 
mitigation measures, but a preliminary assessment is always needed. 
The most prevalent risk assessment method with natural hazard and 
climate change related assessments is the IPCC 2014 risk assessment 
framework (IPCC, 2014; UNDRR, 2019, 2021). The framework sees the 
(drought) risk as a combination of hazard, exposure, and vulnerability. 
The vulnerability and exposure components can be mitigated (e.g. with 
DMPs and increased resilience) or aggravated by human actions (e.g. 
clearing more crop fields or letting water-infrastructure deteriorate). 
Climate change affects the drought hazard component of the framework, 
making droughts generally more frequent and severe. 

Previous studies on the effects of climate change on drought hazards 
in Finland have reported varying results (Grillakis, 2019; Roudier et al., 
2016; Ruosteenoja et al., 2018; Spinoni et al., 2017; Stagge et al., 2017; 
Veijalainen et al., 2019). Finland has a relatively low drought risk and 
abundant water resources (Carrão et al., 2016; FAO, 2016). Thus, 
drought has not been seen as a major problem. However, past drought 
events of 2002–2003 and 2018 have had a clear impact in Finland 
(Ahopelto et al., 2019; Silander and Järvinen, 2004) and a need for 
better drought management has been acknowledged. 

Drought risk varies around Finland due to differences in climate, 
hydrology, watershed properties, agriculture, industry, and population 
distribution (Ahopelto et al., 2019), yet comprehensive drought risk 
assessments have not been done. The 2002–2003 drought event in 
Finland was estimated to cost 100 million euros in direct costs (Silander 
and Järvinen, 2004), while the 2018–2019 event was estimated at 400 
million euros for the agricultural sector alone (YLE, 2018), and lead to 
50% lower crop yield of wheat in South-Western Finland (Natural Re
sources Institute Finland, 2015). The differing impacts were mainly due 
to the timing of the droughts as the 2002–2003 event started after the 
summer of 2002 and ended before next summer, whereas the 
2018–2019 event started in spring 2018 and was severe at a critical time 
for crop development (see Fig. 6). In both events several water supply 
companies had to limit water use and after the 2002–2003 event, many 
built emergency connections to neighboring water supply companies. 

The agricultural and economic impacts from recent droughts have 
emphasised the importance of drought management, and also the Eu
ropean Commission recommended in the latest Water Framework Di
rective’s (WFD) feedback for Finland to consider DMPs (European 
Commission, 2019). Hence, a pilot was launched in 2020 to develop a 
drought management plan for Sirppujoki basin (Ahopelto and Veijalai
nen, 2020) in South-Western Finland, which had been identified to have 
elevated drought risk (Ahopelto et al., 2019). The pilot was a part of a 
larger project funded by the Ministry of Agriculture and Forestry (the 
ministry responsible for water resources management) and intended to 
study drought-related climate resilience in South-Western Finland 
(Ahopelto and Veijalainen, 2020). The project also included develop
ment of a drought early warning system and a guide on how to draft 
local DMPs in Finland. 

The Sirppujoki basin was chosen as a test basin for this study since it 
is the planning area of the first, and at the moment only, local DMP of 

entire Finland. The planning process for its DMP is still ongoing, and the 
plan has not yet been implemented. The Sirppujoki basin covers an area 
of 438 km2 with a 53 km long river and a few small lakes covering 1.85% 
of the basin area (Fig. 1). The basin is relatively flat and small without 
large geographical variations. Thus, observations from a single station 
can be seen to represent the conditions over the whole basin. The ma
jority of the basin lies within the borders of two municipalities: Uusi
kaupunki and Laitila. The basin has a lot of agriculture and water 
intensive industry combined with relatively small aquifers. There is a 
large coastal reservoir at the end of the basin, which has been formed by 
enclosing a sea bay. This serves the urban areas of Uusikaupunki and 
water intensive industries nearby. All these features make the basin a 
suitable candidate for testing the first DMP of Finland. The IPCC (2014) 
risk framework was used in the Sirppujoki basin’s DMP and is proposed 
to be used in future DMPs in Finland by the national guidance document 
for local DMPs. 

Methods and data 

To analyse different drought indices and the impact of climate 
change on drought hazard, several steps are needed: these are presented 
in Fig. 2. Numbers 3.1 to 3.5 in the figure indicate the associated sub- 
chapters. 

First, we collected the observations (3.1) and RCM data (3.2) for the 
basin. Then, in section 3.3, we generated 990 years worth of precipita
tion and temperature data with the WeaGETS weather generator. Gen
eration was based on observations (1980–2019) and daily simulated 
values from two RCMs for the reference period (1990–2019) and for the 
future period (2040–2069) with two Representative Concentration 
Pathways (RCPs) (3.3) (Moss et al., 2010; van Vuuren et al., 2011). 

The generated precipitation and temperature data were then used as 
inputs for the hydrological model Watershed Simulation and Forecasting 
System (WSFS), developed by the Finnish Environment Institute (3.4) 
(Vehviläinen and Huttunen, 2001). Finally, we used WSFS to simulate 
990 years worth of hydrological variables, and these were used together 
with the meteorological variables as inputs for the drought index 
calculation (3.5). 

Observation data 

The basin had 40 years of good quality daily precipitation (P) data 
and minimum, maximum and mean temperature (T) data from Laitila 
weather station from 1980 to 2019 observed by the Finnish Meteoro
logical Institute. The study thus used a single weather station, which 
limits the ways the results can be generalised for the entire river basin 
(see also Section 5.3). The observation period for the used weather 
station is ten years longer than the RCM reference period and climate 
scenarios: to make the analysis representative, we wanted to use the full 
available observation data, instead of shortening it to match the other 
datasets. The precipitation data was corrected for aerodynamic, wetting 
and evaporation errors (Taskinen and Söderholm, 2016). Missing values 
were retrieved from the nearest weather stations. 

Similar observations were also used from a second location at 
Siuntionjoki basin, Finland. This was done to compare and validate the 
results and index behavior in a different basin with different hydrolog
ical features. The Siuntionjoki upper basin has more lakes and less 
agriculture. All index and observation data for Siuntionjoki basin are 
available in the annex. 

Regional climate model (RCM) data 

To estimate the climate change impacts, we used temperature and 
precipitation scenarios from the Euro-Cordex data archive (Jacob et al., 
2014), which provides regional climate change projections based on 
Coupled Model Intercomparison Project 5 models of the Fifth Assess
ment Report of the Intergovernmental Panel on Climate Change (IPCC, 
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2014). We used two different global climate models (GCMs) and RCM 
combinations with two different RCPs: RCP4.5 and RCP8.5. From these 
combinations we selected data for two periods: 1) the reference period 
1990–2019 and 2) years 2040–2069. Thus, for each RCM-GCM combi
nation we get three different datasets: 1) reference 1990–2019, 2) 
2040–69 with RCP4.5 and 3) 2040–69 with RCP8.5. The reference 
period 1990–2019 used historical experiment for 1990–2005 and 
RCP4.5 simulation for 2006–2019. All three datasets for both RCM-GCM 
combinations make a total of six individual datasets. 

The first RCM-GCM combination was SMHI-RCA4 RCM using 
MOCH-HadGEM2 GCM as boundary condition (abbreviation Had-S) and 
the second was KNMI-RACMO22E RCM using EC-EARTH GCM (abbre
viation EC-E-K). These were chosen from a larger set of scenarios to 
enable estimation of model and RCP influence on the results. These two 
scenarios were selected since their results function relatively well after 
the bias correction, they are from two different GCMs and RCMs, and 
produce variable results. A limited number of RCM-GCM combinations 
was chosen, since it was estimated to be sufficient to test the presented 
methodology and hypotesis. A larger amount of RCM-GCM would give 
more insight to the climate change uncertainties, and the full range of 
possible climate change impacts is therefore larger than presented in this 
study. 

Since there can be significant biases in the RCM data (Christensen 

et al., 2008; Teutschbein and Seibert, 2012) we applied bias correction 
to the RCM temperature and precipitation. The daily precipitation and 
temperature data from the grid cell closest to the test catchments was 
bias corrected based on quantile–quantile mapping (Seguí et al., 2010; 
Teutschbein and Seibert, 2012; Veijalainen et al., 2012) using observed 
values for 1990–2019. In the quantile–quantile mapping method the 
cumulative density functions of the RCM simulated air temperature and 
precipitation are corrected to match their observed cumulative density 
functions during the control period. The same corrections are used also 
during the future period. The data from the two RCM-GCM combina
tions for years 1990–2019 provide a reference dataset for the climate 
change results to be compared against. 

The years 2040–2069 were chosen as it was considered to be 
particularly suitable to aid practical drought management planning, 
being close enough for current time but still so far ahead that climate 
change impacts are already more clearly visible. RCPs 4.5 and 8.5 were 
chosen to support drought management planning, i.e., the preparedness 
of the society. The RCP4.5 representing the modest mitigation scenario 
that can be considered likely given current policies (Hausfather and 
Peters, 2020) and RCP8.5 representing the worst-case scenario. 

Fig. 1. Sirppujoki basin in South-Western Finland.  

Fig. 2. Steps of the analysis. The number in each box refers to the subsection associated with the step. ‘T’ refers to temperature data and ‘P’ to precipitation data.  
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Data generation 

Weather data generation of temperature and precipitation was car
ried out with the WeaGETS stochastic weather generator using MatLab 
(Chen, 2021). The generated 990-year datasets represent the stationary 
climates of 1980–2019 (observations), 1990–2019 (RCM reference 
period) and 2040–2069 (RCM scenarios) without a trend in the dataset. 

This particular generator was chosen because it features a low- 
frequency correction mechanism for temperature and precipitation, 
which is essential when estimating low frequency events like severe 
droughts (Chen and Brissette, 2014). Underestimation of the low prob
abilities is a well-known problem with weather generators (Chen et al., 
2010; Khazaei et al., 2020). 

WeaGETS is a parametric distribution-based model where different 
schemes are used to simulate the precipitation occurrence and amount. 
A Markov chain-based model is used for simulating precipitation 
occurrence and probability distributions to simulate daily precipitation 
amounts. Temperature is generated using a normal distribution and a 
first-order linear autoregressive model. The seasonal cycles of mean and 
standard deviation are modelled by finite Fourier series with two har
monics. Tmax and Tmin are conditioned on each other (Chen and 
Brissette, 2014). 

We used a third-order Markov chain to produce precipitation 
occurrence, and a gamma distribution to generate daily precipitation 
amounts. A spectral correction approach was used for correcting the 
underestimation of interannual variability. Parameters of precipitation 
occurrence and quantity were not smoothed. The low-frequency vari
ability of precipitation and maximum and minimum temperatures were 
corrected. Fig. 3 illustrates the performance of the weather generator by 
comparing generated data with the observed data. The frequency dis
tributions of temperature match qualitatively, but there is an underes
timation of temperatures near 0 ◦C in the generated data. 

For climate change scenarios and references we used 30 years of 
daily precipitation (P), maximum temperature (Tmax) and minimum 
temperature (Tmin) as inputs and generated 990 years of daily P, Tmin 
and Tmax. Period of 990 years were generated due to restriction by 
WeaGETS for the number of generated years to be a multiple of the 
observation period (33 times 30 years of observations equals 990 years). 
These datasets do not experience any climate change during the 990 
years and represent the climate of each 30-year period of input data. 
Similarly, 990 years were generated from 40 years of observation data as 

control for testing the hypothesis (1000 years were generated, but ten 
last dropped, to have equal-length time series). Next we calculated daily 
mean temperature (Tmean) from the generated Tmax and Tmin (Dal
l’Amico and Hornsteiner, 2006) for the WSFS hydrological model. 

Hydrological model data 

The generated daily P and Tmean values were then used as inputs to 
the WSFS model. The WSFS is a conceptual hydrological model devel
oped and operated by the Finnish Environment Institute, used for 
operational flood forecasting and research purposes (Vehviläinen and 
Huttunen, 2001). The system is based on a watershed model, which was 
originally a HBV-type (Hydrologiska Byråns Vattenbalansavdelning) 
model (Bergström, 1976) and simulates the hydrological cycle using 
standard meteorological data. The watersheds are divided into small 
sub-basins each with their own parameters and water balance simula
tion. The runoff from different sub-basins is then connected with river 
routing and lake models. Sirppujoki catchment consist of ten subcatch
ments with a size varying from 10 to 136 km2. 

The inputs of the model are daily precipitation and mean tempera
ture. In these simulations the potential evaporation is calculated from 
temperature, precipitation, and time of year, which is used to indicate 
the amount of available shortwave radiation. The model simulates snow 
accumulation and melt, soil moisture deficit, evaporation, runoff and 
discharges, and the water levels of main rivers and lakes. 

The watershed model has been calibrated with approximately 40 
years of observations of snow depths, water levels, and discharges. The 
procedure used is the direct search Hooke-Jeeves optimization algo
rithm (Hooke and Jeeves, 1961), which has been developed into a fully 
automatic procedure. This procedure minimises the error function 
weighted for observations of discharge, water level, and snow water 
equivalent. The weights of each observation in the objective function 
can be defined individually for the calibrated area to produce the best 
results with usually the largest weight given to discharge observations. 
The Nash–Sutcliffe model efficiency coefficient R2, which can be used to 
evaluate model performance, was 0.78 for Sirppujoki (at Puttakoski 
gauging station) during 1981–2010. The performance of the hydrolog
ical model is further illustrated in Fig. 4, which presents the simulated 
and observed discharge at the Puttakoskis gauging station. 

With WSFS we simulated 990 years of discharge at Puttakoski 
gauging station, soil-moisture, evapotranspiration, and runoff data 

Fig. 3. The cumulative density function for precipitation and probability distribution function for temperature for observed data (1980–2019) from Laitila weather 
station and generated data (990 years). 
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based on the T and P data generated by the WeaGETS for the observation 
period (1980–2019), reference periods (1990–2019), and for climate 
scenarios (2040–2069). 

Drought indices 

After generating all the data, we calculated drought indices with the 
Standardized Precipitation Index (SPI) methodology for all obtained 
hydrological and meteorological variables. Table 1 shows the five 
different drought indices computed from the outputs of WeaGETS and 
WSFS with four different accumulation periods (McKee et al., 1993; 
Modarres, 2007; Sepulcre-Canto et al., 2012; Shukla and Wood, 2008; 
Vicente-Serrano et al., 2010). These standardized indices were chosen 
because they are widely used and are easy to interpret in an operative 
setting and comparable against each other. The different indicators and 
accumulations also support partly different sectors, as e.g. agriculture 
benefits from information on soil moisture and is particularly interested 
in 1- and 3-month accumulations, whereas ground water dependent 
sectors benefit from information on longer accumulations. Similar 
indices are also planned for Finland’s national drought early warning 
system. The same set of indices were calculated for all generated data
sets and for observed data for comparison. The indices were calculated 
using R (R Core Team, 2020) with package SPEI (Beguería and Vicente- 
Serrano, 2017). Several different distribution can be selected in the R- 
package SPEI for the calculation of indices. For SPI, SRI, and SSI accu
mulations we evaluated that the gamma distribution was the most 
suitable as is also suggested by Stagge et al. (2015). For SPEI and SMA 
log-logistic was the most suitable distribution. Evaluations were based 
on visual examination of the distributions. The reference period of 
1990–2019 was used when calculating the standardised index values for 
years 2040–2069. 

Understanding drought frequencies and severities is fundamental for 
drought management. To analyse the droughts further with the indices, 
we utilised Run Theory (Yevjevich, 1967), meaning that we identify 
continuous drought events as so-called runs and characterize them using 
concepts of duration, intensity, and severity (See Fig. 5). Analyzing 

drought events with Run Theory provides more insight to drought as a 
phenomenon, compared for example to analysing monthly index values 
only and has been used extensively (e.g. Jamro et al., 2019; Ma et al., 
2023; Tian and Quiring, 2019). 

We identified the drought events and calculated their characteristics 
(duration, severity, and intensity) using R (R Core Team, 2020). The 
thresholds for event thresholds are always case-specific and many 
different thresholds have been used in literature (e.g. Jamro et al. 2019; 
and Tian and Quiring 2019). Due to Finland being a water-abundant 
country and to limit the mild droughts from the analysis we set the 
threshold for drought event initiation to −1.5 of the index value, which 
is an often used threshold with standardized indices for severe drought 
(e.g. McKee et al., 1993). The event ending threshold was set to −0.5 
which have been used as an threshold for “normal conditions” e.g. by Ma 
et al. (2023) and Ramadas (2014). When detecting a drought event, we 
allowed one-month of index value above the ending threshold without 
breaking the event, since it takes more than one month to recover from 
drought. This is especially relevant for indices with short accumulation 
since they fluctuate more than indices with long accumulation. We also 
set a threshold to indicate serious droughts, since they are most relevant 
for drought management. We defined a severe drought to have a severity 
of at least −12 (sum of monthly intensities within each event) for the 
Sirppujoki basin. The relevant thresholds and characteristics are shown 
in Fig. 5. 

Results 

Drought index analysis results for 1980–2019 

First, we analysed the two most impactful drought events of the 
observation period 1980–2019: droughts of 2002–2003 and 2018–2019. 
This was carried out to understand how severe the drought events were 
according to each index. The propagation of both drought events can be 
seen in Fig. 6 with some selected indices to illustrate the events (all 
indices are available in supplementary materials). The drought initia
tion, duration, and severity by all calculated indices can be seen in Fig. 7. 

Fig. 4. Observed (red) and simulated (black) daily discharges (m3/s) at the Puttakoski gauging station for 1981–2021. (For interpretation of the references to colour 
in this figure legend, the reader is referred to the web version of this article.) 

Table 1 
Indices and their accumulation periods chosen for the analysis.  

Abbreviation Full name Accumulation 
(months) 

Input(s) Distribution for index 
calculation 

Reference 

SPI Standardized Precipitation Index 1,3,6,12 Precipitation Gamma McKee et al., 1993 
SPEI Standardized Precipitation and 

Evaporation Index 
1,3,6,12 Precipitation and potential 

evapotranspiration 
Log-logistic Vicente-Serrano et al., 

2010 
SMA Soil Moisture Anomaly 1,3,6,12 Soil moisture deficit (WSFS calculates 

one soil layer) 
Log-logistic Sepulcre-Canto et al., 

2012 
SRI Standardized Runoff Index 1,3,6,12 Surface runoff Gamma Shukla and Wood, 

2008 
SSI Standardized Streamflow Index 1,3,6,12 Streamflow Gamma Modarres, 2007  
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The results show that the drought of 2002–2003 was much more severe 
than 2018–2019. The 2018–2019 drought was preceded with almost 
equally severe drought in 2016–2017, which was also experienced 
throughout Europe (García-Herrera et al., 2019), but this did not cause 
major impacts in Finland. Durations with shorter accumulations (one 
and three months) were quite similar, but with six- and twelve-month 
accumulations the durations were longer due to the deeper deficit. We 
can also observe which indices initiated first, which is important infor
mation for drought early warning systems. For the 2002–03 drought the 
one-month indices started earlier, but for 2018–19 the three-month 
indices were most often the first to initiate, suggesting that both accu
mulations should be used for the best results. The drought propagation 
from meteorological drought, to agricultural drought, and then hydro
logical drought is also visible, however, due to the small size of the 
basin, the transition is fast. 

Analysing only two drought events provides a limited understanding 
about droughts in the study region. Applying the same drought indices 
to the generated 990-year dataset and identifying the drought events 
and their severity for this extended period (Table 2), provides more 
insight about the drought risk. The amount of drought events and severe 
drought events (event severity below −12) give an understanding about 
the frequency of events over the generated 990 years. A drought event 
triggered with the chosen threshold (-1.5), which is a common threshold 

for severe drought (McKee et al., 1993), but does not always proceed to a 
drought that requires actions (i.e. would not have a clear impact). In this 
study it was held as the latest limit in Finnish context when a water 
resources manager or water supply engineer should start to monitor the 
situation more closely. Roughly 5–20% of the time (depending on the 
index) the drought event proceeds to a severe drought, which in most 
cases would require emergency actions. 

The shorter the accumulation period, the more events were recorded 
in the generated time series. This is due to the nature of the indices: 
shorter accumulation means more fluctuation in the indices. The 
threshold for severe drought is the same for all indices: −12. This means 
that the number of severe events is higher with longer accumulation 
periods, as was expected. In boreal conditions, shorter accumulation 
periods (one to three months) are generally more useful in drought 
management context. For example, the agricultural impacts of drought 
are mainly experienced in summer. 

Using a single drought index is typically too limited to satisfy the 
diverse needs of different sectors affected by drought. At the same time, 
using too many indices is laborious and potentially also confusing in an 
operative setting. Thus, it is desirable to choose a comprehensive but 
limited set of indices that support each other and reflect the needs of the 
key sectors experiencing drought risk. To facilitate such a process, we 
analysed the correlations of the three-month accumulations of selected 

Fig. 5. Explanations how the drought events and their duration, intensity and severity are calculated with the run theory.  

Fig. 6. Droughts of 2002–2003 and 2018–2019 with some selected indices. The lower bolded line presents the drought initiation threshold (-1.5).  
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indices with Pearson correlation. The correlation analysis revealed that 
SSI and SRI correlate strongly (Table 3). This is expected in a small 
catchment where streamflow and runoff are close related. Thus, both are 
not necessarily beneficial to follow in an operative setting. This is also 
true for SPI and SPEI in the current climate, however, when we examine 

the climate change results, SPI and SPEI behave differently (Figs. 6 and 
7). Indices with low correlation are important to keep in risk analysis 
and operative plans since they most likely provide independent infor
mation about the drought situation. 

Fig. 7. Observed droughts of 2002–03 and 2018–2019 with their start, duration and severity (as calculated with run theory) according to all five studied indices and 
their respective accumulation periods (1, 3, 6 and 12 months). The average initiation of the droughts is also presented. Other than T and P values used to calculate the 
indices are simulated with the hydrological model, not direct observations. The ‘average drought imitation’ is the average drought initiation month of all the indices. 

Table 2 
Drought indices with drought characteristics calculated from 990 years of generated data for the reference period 1990–2019, based on 40 years of observations.  

Index Accumulation Months Drought Events Severe Droughts Mean Duration Mean Severity Max Duration Max Severity 

SPI 1 709 2  2.3  −3.6 9  −16.5 
3 435 39  4.6  −6.6 17  −25.8 
6 265 80  8.1  −11.2 37  −60.3 
12 151 109  14.9  −20.3 51  −93.6  

SPEI 1 602 3  2.5  −3.5 10  −13.7 
3 408 33  4.9  −6.7 17  −22.9 
6 247 83  8.5  −11.4 31  −41.9 
12 142 115  15.7  −21.0 53  −83.3  

SMA 1 362 72  5.9  −8.1 20  −28.1 
3 243 97  8.4  −11.6 37  −54.5 
6 163 110  12.3  −16.9 39  −61.5 
12 97 93  22.0  −29.4 70  −92.8  

SRI 1 485 4  2.8  −4.0 11  −12.7 
3 429 28  4.2  −6.1 13  −18.5 
6 311 90  6.8  −9.7 23  −40.3 
12 173 118  13.2  −18.4 51  −93.7  

SSI 1 414 5  3.2  −4.5 11  −13.3 
3 408 30  4.4  −6.4 16  −25.0 
6 298 92  7.0  −10.0 24  −41.5 
12 176 122  13.0  −18.2 50  −94.6  
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Climate model results for 2040–2069 

The use of generated data provides an opportunity to study how 
climate change may affect droughts, by analysing the projected changes 
of drought characteristics and numbers of events. Fig. 8 shows the 
number of events and severe events for the generated 990 year time 
series in current climate (1990–2019) and in future climate (2040–69) 
with two different RCP scenarios and two different RCM-GCM combi
nations, allowing us to estimate how the frequency of drought events 
and severe drought events is likely to change over time. 

The results show that SPI drought events and severity decrease be
tween current climate and the four climate scenarios (Fig. 8). Such a 
finding is expected, given that climate change is projected to increase 
future precipitation in Finland (Ruosteenoja et al., 2016) and SPI has 
also previously been found to perform poorly in drought related climate 
change analysis (Vicente-Serrano et al., 2010). With SRI and SSI drought 
events increase (Fig. 8a) but the severe drought events (Fig. 8b) decrease 
with most scenarios. These changes are likely to be due to the changes in 
the seasonal rhythm of runoff, snow, and soil moisture. Higher tem
peratures mean less snow and longer summer periods with higher 
evaporation leading to drier summer and early autumn periods. 

Also noteworthy is the relatively large differences in the different 
RCM-GCM combination results, especially with the EC-E-K RCP8.5 
scenario (orange bars in Fig. 8): these differences are most likely 
explained by the larger increases in precipitation in the Had-S RCP8.5 
scenario compared with the EC-E-K RCP8.5 scenario. This highlights the 
uncertainty in climate scenarios and the need to use several climate 
scenarios to project the future impacts of climate change on droughts. 

Since drought particularly impacts agriculture, we calculated also 
how much the drought events are expected to change specifically during 
the growing season, namely between April and October (Fig. 9). As can 
be seen from Fig. 9, all studied drought indices except SPI show an in
crease of future drought events during the growing season, caused by the 
longer summer season with increased evaporation. 

Generated data vs. observations 

To test our hypothesis, that generating weather data provides useful 
information for drought management, we compared the number of 
events and drought characteristics from the observation period 

1980–2019, against 990 years of weather data generated from the dis
tribution characteristics of the observation period (SPEI-1, 3 and 6 
presented in Table 4 and more indices in supplementary materials). In 
theory, a larger sample size should lead to more representative results. 

The annual event frequency and annual severe drought frequency rep
resents the number of events divided by the number of years in the 
timeseries (40 and 990 years). For all indices, the overall proportion of 
events is higher for generated data, but lower for severe droughts 
(except SPEI-6), meaning that the generated data indicate fewer severe 
droughts. This is expected since weather generators usually underesti
mate low frequencies. The mean duration and mean severity of events 
are similar. Maximum duration and maximum severity for one-month 
accumulation are similar for both datasets, however, the longer accu
mulation periods for generated maximum duration and maximum 
severity mostly have higher values than the observed data. The 990 
years contain hundreds of drought events compared to the handful of 
observed ones, some of which are much more severe than in the 
observed 40-year period. 

Discussion 

Drought hazard increase despite rising annual precipitation 

The analysis provides information about key aspects of drought 
hazard, namely frequency, maximum and average severity, and duration 
of drought events for both current and future climate. The predicted 
increase of annual precipitation in Finland with most climate change 
scenarios is evident also in the localised results for our study context, the 
Sirppujoki basin. However, the seasonal nature of runoff in Finland and 
increases in evapotranspiration mean that hydrological and agricultural 
droughts may be affected differently than meteorological droughts 
(Veijalainen et al., 2019). According to our results, the amount of 
drought events increases with all scenarios in all studied indices with 
three-month accumulation, except SPI that is purely precipitation 
driven. Future drought events and severe drought events increase 
significantly more with SPEI and SMA. The increases in drought events 
are largely due to the predicted longer growing season, earlier and less 
spring runoff, increased evapotranspiration (especially during late 
spring) and projected precipitation increase occurring more during 
winter season than during summer (see also Fig. 9). In addition to the 
presented results, additional drought characteristics are presented in 
supplementary materials (Ahopelto, 2021). 

Previous studies related to drought hazard in Europe or Finland 
provide varying results, with some studies indicating decrease (Spinoni 
et al., 2017; Stagge et al., 2017), no significant changes in Southern 
Finland (Roudier et al., 2016), and increasing drought hazard for most of 
Finland (Grillakis, 2019; Ruosteenoja et al., 2018; Veijalainen et al., 
2019). The differences between their results are most likely due to their 
differing scopes as well as different methods, scales, models and data 

Table 3 
Pearson correlations between different indices calculated from 990-years of 
generated data based on 1980–2019 observation data.   

SPEI-3 SMA-3 SRI-3 SSI-3 

SPI-3  0.95***  0.51***  0.62***  0.58*** 

SPEI-3   0.56***  0.60***  0.56*** 

SMA-3    0.56***  0.60*** 

SRI-3     0.98***  

Fig. 8. Number of generated (a) drought events and (b) severe drought events (severity <−12) with all scenarios and three month accumulation. The current climate 
represent an average value of the two reference periods (1990–2019) and the data generated from observations. The error bar presents both model simulations in the 
reference period (EC-E-K and Had-S). The climate scenarios represent the period 2040–2069. 
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used. Projected increases in precipitation would logically mean 
decreased drought risk, however a longer growing season with higher 
evapotranspiration acts to increase drought risk in southern and central 
Finland (Veijalainen et al., 2019). The finding is supported by Trnka 
et al. (2018) stating that the ‘wet-getting-wetter and dry-getting-drier’ 
paradigm is too simplistic and drought-related climate change impacts 
might be more complex than estimated earlier. 

Despite the relatively small size of the basin analysed here, our 
findings on climate change impacts can be seen potentially relevant for 
Finland and possibly also Northern Europe more broadly. The soil 
moisture and SPEI results indicate a significant change in drought haz
ard during the growing season already by 2040–2069. This is troubling 
particularly for the agricultural sector, which is already exposed to the 
largest drought impacts. Agriculture in Finland is mostly rain-fed, with 
only 1–2% percent of the cultivated area being irrigated (Ahopelto et al., 
2019), as most irrigation investments have not been seen as economi
cally viable. However, Peltonen-Sainio et al. (2021) found that in most 
years irrigation would already be beneficial in early summers. Irrigation 
mitigates the drought risk effectively, as long as the water source does 
not run dry. While Finland generally has relatively abundant surface 
water resources that can provide water even during severe droughts 
(Peltonen-Sainio et al., 2015), the studied area in South-Western Finland 
has relatively less surface water resources, making extensive irrigation 
during droughts difficult. 

The increasing agricultural drought risk is therefore something that 
the agricultural sector in (South-Western) Finland should both prepare 
for and study more – for example through cross-sectoral DMPs and, more 
broadly, through the concept of water security (Marttunen et al., 2019). 
This should also include active local involvement as well as 

consideration of local knowledge (Steinemann et al., 2015). While the 
possible implementation of the DMPs in Finland is still to be decided, 
there are plans for the establishment of so-called drought management 
groups in selected areas. Such groups would form an administrative 
body that initiates, monitors, and implements the local DMPs. This 
group is planned to consist of local stakeholders and officials, who 
would together have the required know-how to choose the right set of 
drought indices for their DMP. The results of this study can be used to 
support the planning of the Sirppujoki basin DMP, including the process 
of choosing the relevant drought indices for that context. The results can 
also support Finland’s upcoming national Drought Early Warning Sys
tem, when adjusting thresholds and choosing final indices. 

Our study also emphasises the diversity if settings for drought 
management within Europe. Europe is hydro-climatically very diverse, 
and future climate change will affect the EU member states differently 
(e.g. Stagge et al., 2017). While a potential EU drought directive would 
undoubtedly increase the drought preparedness, it should also 
acknowledge the differing drought risks and contexts within Europe. 
While many EU member states have combined the DMPs with the River 
Basin Management Plans (RBMPs) of the EU Water Framework Directive 
(Benítez Sanz and Schmidt, 2012; GWP CEE, 2015), this may not always 
be feasible. This is very much the case in our study area: while the 
Sirppujoki basin (438 km2) is the first area in Finland where the DMP 
process has been initiated, it is almost 200 times smaller than the vast 
RBMP area that it belongs to (83 360 km2). Extending the DMP for the 
entire RBMP area in this context would therefore simply not be viable. 

Fig. 9. Drought events during growing season with 3-month accumulation indices (at least one month of the event in April-October) for reference and RCP scenarios 
for a) EC-E-K and b) Had-S for 2040–2069. 

Table 4 
Generated and observed drought events and some characteristics for 1980–2019 with SPEI. SirC is the generated 990 years and sirObs40y is the observed data series 
without any generated data. The annual event frequencies represents the number of events per timeseries length (990/40 years).  

Index Time scale Scenario Events Annual Event Frequency Ann. Severe Drought Frequency Mean duration Mean severity Max duration Max severity 

SPEI 1 sirC 602 61 % 0.3 %  2.5  −3.5 10  −13.7 
sirObs40y 18 45 % 2.5 %  2.8  −4.0 9  −14.2  

SPEI 3 sirC 408 41 % 3.3 %  4.9  −6.7 17  −22.9 
sirObs40y 13 33 % 5.0 %  5.0  −6.9 9  −15.0  

SPEI 6 sirC 247 25 % 8.4 %  8.5  −11.4 31  −41.9 
sirObs40y 5 13 % 7.5 %  9.2  −14.0 12  −20.1  
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Data generation can help in local drought management in data scarce 
areas 

Our study has three key methodological implications related to: 1) 
increasing the sample size with data generation, 2) communication of 
risks and uncertainties and 3) the need for multiple drought indices. 

Firstly, the lack of an adequate time series to provide robust esti
mates for droughts or other hydrometeorological events is a well-known 
problem. It has been addressed already by Matalas (1967) and more 
recently from stochastic hydrology and climate change perspective by e. 
g. Nazemi and Wheater (2015), and considering droughts by Borgomeo 
et al. (2015) and Herman et al. (2016). Europe and Finland generally 
have good quality observation records, but globally many places lack 
long datasets to analyse droughts effectively. Generally, a larger sample 
size provides more accurate results. However, in this case the larger 
sample size is based on the distribution characteristics of the original 
observations. Brunner et al. (2021) mentioned stochastic data genera
tion as a method to increase sample sizes in hydrology, and examples of 
data generation, and the challenges that it holds, have been presented in 
a number of studies e.g., by Ilich (2014) and Chen and Zhang (2021). 
Our combination of a stochastic weather generator combined with a 
hydrological model presents one optional solution to address challenges 
presented by Brunner et al. (2021) related to the need for continuous 
stochastic models. Another option to increase sample size would be to 
use more climate model chains. This would also provide more insight to 
the model uncertainties, but would provide less parameters. The best 
option would be to combine these two methodologies. 

Secondly, our results also have implications for the effective 
communication of risks and uncertainties to decision makers and the 
public. This is listed as one of the eight golden rules of strategic drought 
risk management by Sayers et al. (2017). Our data generation method
ology provides information about drought characteristics and examples 
of drought events that the area might experience in a hypothetical 990- 
year period, which may be easier to communicate to non-experts than 
statistical information or index values. On the other hand, data gener
ation is known to underestimate low-frequency events (e.g. Chen et al., 
2010; Khazaei et al., 2020). Also, uncertainties accumulate with every 
additional model and methodological step. Hence, the generation of 
weather data gives the analysis an illusion of statistical certainty, which 
should be communicated to users and policy makers. The uncertainties 
can be understood better by using multiple models and indices. Based on 
this analysis, our hypothesis of data generation helping in local drought 
risk management can be partly confirmed. The data generation aids in 
understanding extreme droughts better now and in future climates, but 
uncertainties accumulate in the process. Using a large ensemble of 
climate scenarios would also give a better understanding of un
certainties. Also using the RCP4.5 (i.e. modest mitigation scenario) or 
RCP8.5 (i.e. worst-case) scenarios as the basis of adaptation measures 
should be communicated and understood by end-users. However, the 
end-users should mainly focus on the RCP4.5 scenario, as it is the more 
plausible one. 

Thirdly, the variations in the index results in all datasets and accu
mulation periods make it clear that using just one index is not sufficient 
for efficient drought risk management. A combination of indices is 
advisable as has been argued by many earlier studies and sources (e.g. 
GWP and WMO, 2016; Hao and AghaKouchak, 2013; Rajsekhar et al., 
2015). The need for multiple indices is even more evident with the 
climate change scenarios. The most useful indices can be found with a 
correlation analysis, avoiding the usage of too many indices in an 
operative setting. Another option is to combine indices into a combined 
indicator, e.g. EDO combined drought indicator (Cammalleri et al., 
2021). This can be a good solution for an operative setting but can 
possibly mask relevant information. The balance between usability and 
complexity is always case specific. Drought indices should also be linked 
with drought impacts (e.g. Stagge et al., 2017; Trnka et al., 2018). Since 
the drought impacts are local, it should be easier to link the indices to 

the impacts on a local level in a local DMP process. If this is repeated in 
several local DMPs, it can provide the national drought early warning 
system with the data to develop a working impact driven drought index. 

Limitations and uncertainties 

There are also some limitations related to our study concerning the 
study context as well as the data and methods used. Since droughts are 
not common in Finland, there are only two recent severe drought events 
with documented impacts from the two past decades. For reference 
purposes this is not ideal, especially since they were clearly different in 
severity and seasonal timing. Looking further into the past may not help, 
as the 1980s and 1990s were generally wet in the whole Northern 
Europe, and Finland did not experience any droughts with significant 
impacts. 

The simulated 990-year results and climate change scenarios include 
several uncertainties. The results are simulated using a long chain of 
connected models including uncertainties in every step. The modeling 
chain includes the weather generator, the RCM scenarios, the bias 
correction method, and the hydrological model. A second test basin 
(Siuntionjoki basin) was used to have a better understanding of the 
uncertainties: the results from this test basin can be found from sup
plementary materials (Ahopelto, 2021). 

To provide some idea of the uncertainties involved in climate 
change, we used four climate scenarios with two RCM-GCM combina
tions and two RCPs, but the full range of combinations available is 
significantly larger. A more comprehensive understanding of climate 
change impacts and uncertainties on droughts would require a more 
detailed analysis using a large ensemble of climate scenarios. The bias 
correction method used also adds uncertainties, especially the assump
tion that the same bias corrections of the reference period are still valid 
in future time periods (Christensen et al., 2008). From our selected 
scenarios especially the EC-E-K RCP 8.5 seems to stand out more than 
others, and the results from that scenario should be interpreted with 
caution. 

The weather generator had a fairly short input timeseries (30–40 
years). The inputs have significant natural variability which might 
amplify the impacts through the generator. Especially precipitation have 
large stochastic natural variations. Thus, it is possible that the results are 
more a product of natural variability than climate change. 

The input data for the weather generator with the EC-E-K RCP 8.5 
scenario had 14 drought events with the SPI-3 index, where the others 
had ten to twelve events. The longest event was also in the same sce
nario, eleven months. The others had 6 or 7 months. However, the most 
severe drought was in the scenario EC-E-K RCP 4.5. 

The EURO-CORDEX RCM simulations have a systematic tendency to 
simulate too small summertime warming for the future, and the pre
cipitation projections are excessively wet, compared to the driving 
global climate models (Boé et al., 2020). Due to the simplified aerosol 
forcing in the RCMs, it is likely the RCMs and therefore also our results 
produce too wet future climate. This could potentially lead to drought 
events becoming more frequent in the future than was estimated here, 
which should be considered when using the results. 

Understanding the low frequency events are essential to analysing 
droughts (Hanel et al., 2018; Haslinger and Blöschl, 2017). The ability of 
the weather generator to estimate the frequencies and lengths of the dry 
periods correctly is one source of uncertainty. As stated previously, data 
generation is known to underestimate low frequencies (e.g. Chen et al., 
2010; Khazaei et al., 2020). WeaGETS was chosen, since it tries to cor
rect this feature, but based on the results and literature (e.g. Ng et al., 
2017) some underestimation still occurs. 

Data generation with WeaGETS works well for small areas, since the 
data is generated for one spot. For larger basins precipitation and tem
perature inputs should be extracted from multiple places that are 
naturally correlated. Some weather generators allow this, but as such, 
the method presented here does not support analysis of large basins 
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directly. There should be no theoretical obstacles for the method to be 
used for large basins, but the complexity of the analysis will increase. 
However, it should be noted that the study used data from only one 
weather station and one gauging station due to constraints by the 
weather generator, which affects the way the results can be generalized 
to the entire river basin (even when the basin is relatively small and 
flat). Using just one location, may not characterize the whole basin 
accurately and generalizations should be done with caution. Further 
studies with additional data sources and multiple stations or gridded 
data, such as E-OBS, should therefore be explored to provide a more 
comprehensive view on the drought in the studied river basin. These 
studies could include a spatial analysis to quantify the spatial variability 
of precipitation and temperature in the study area, such as testing how 
the results change when using data from other nearby stations or when 
averaging data from multiple stations. 

We use a relatively simple conceptual hydrological model, which has 
a simple model for potential evapotranspiration. These kinds of evapo
ration models using temperature as input have been shown to over
estimate the increase in potential evapotranspiration (Mukherjee et al., 
2018) compared to methods which also include other meteorological 
variables such as radiation, cloudiness, and relative humidity. Droughts 
are sensitive to changes in evapotranspiration, however, during long 
droughts the soil moisture will limit the evapotranspiration compared to 
the potential evapotranspiration significantly. 

Conclusions 

In this article we analysed drought indices for developing local 
drought management plans. In addition to observations, we used 
Regional Climate model (RCM) simulated variables for reference period 
and 2040–2069. We also used hydrological modelling to get additional 
data for the current climate and climate scenarios for 2040–2069. We 
generated 990-years of weather data using a weather generator to sup
plement the short time-series. 

Based on the results, in the Sirppujoki basin in Finland, evapo
transpiration sensitive indices showed significant increase in the amount 
of drought and severe drought events in 2040–2069, despite the rising 
annual precipitation. These findings are cause for concern, and may 
have significant repercussions, especially for the agricultural sector. 
Based on our results, generating a thousand years worth of weather data 
can assist drought management in data scarce regions, but underesti
mation of low frequencies and increasing uncertainties limit the use
fulness of the method. However, it can provide the local drought 
management planners with valuable information about different 
drought indices and uncertainties of climate variability and climate 
models, hence improving the associated risk analyses and drought 
impact mitigation measures. 
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Kröner, N., Kotlarski, S., Kriegsmann, A., Martin, E., van Meijgaard, E., Moseley, C., 
Pfeifer, S., Preuschmann, S., Radermacher, C., Radtke, K., Rechid, D., 
Rounsevell, M., Samuelsson, P., Somot, S., Soussana, J.-F., Teichmann, C., 
Valentini, R., Vautard, R., Weber, B., Yiou, P., 2014. EURO-CORDEX: new high- 
resolution climate change projections for European impact research. Reg. Environ. 
Chang. 14, 563–578. https://doi.org/10.1007/s10113-013-0499-2. 

Jamro, S., Dars, G.H., Ansari, K., Krakauer, N.Y., 2019. Spatio-temporal variability of 
drought in Pakistan using standardized precipitation evapotranspiration index. Appl. 
Sci. 9, 4588. https://doi.org/10.3390/app9214588. 

Khazaei, M.R., Zahabiyoun, B., Hasirchian, M., 2020. A new method for improving the 
performance of weather generators in reproducing low-frequency variability and in 
downscaling. Int. J. Climatol. 40, 5154–5169. https://doi.org/10.1002/joc.6511. 

Logar, I., van den Bergh, J.C.J.M., 2013. Methods to assess costs of drought damages and 
policies for drought mitigation and adaptation: review and recommendations. Water 
Resour. Manag. 27 (6), 1707–1720. 

Ma, Q., Li, Y., Liu, F., Feng, H., Biswas, A., Zhang, Q., 2023. SPEI and multi-threshold run 
theory based drought analysis using multi-source products in China. J. Hydrol. 616, 
128737 https://doi.org/10.1016/j.jhydrol.2022.128737. 

Marttunen, M., Mustajoki, J., Sojamo, S., Ahopelto, L., Keskinen, M., 2019. A framework 
for assessing water security and the water–energy–food nexus—The case of Finland. 
Sustainability 11, 2900. https://doi.org/10.3390/su11102900. 

Matalas, N.C., 1967. Time series analysis. Water Resour. Res. 3, 817–829. https://doi. 
org/10.1029/WR003i003p00817. 

McKee, T.B., Doesken, N.J., Kleist, J., others, 1993. The relationship of drought 
frequency and duration to time scales. In: Proceedings of the 8th Conference on 
Applied Climatology. Boston, pp. 179–183. 

Mishra, A.K., Singh, V.P., 2010. A review of drought concepts. J. Hydrol. 391, 202–216. 
https://doi.org/10.1016/j.jhydrol.2010.07.012. 

Modarres, R., 2007. Streamflow drought time series forecasting. Stoch. Environ. Res. 
Risk Assess 21, 223–233. https://doi.org/10.1007/s00477-006-0058-1. 

Moss, R.H., Edmonds, J.A., Hibbard, K.A., Manning, M.R., Rose, S.K., van Vuuren, D.P., 
Carter, T.R., Emori, S., Kainuma, M., Kram, T., Meehl, G.A., Mitchell, J.F.B., 
Nakicenovic, N., Riahi, K., Smith, S.J., Stouffer, R.J., Thomson, A.M., Weyant, J.P., 
Wilbanks, T.J., 2010. The next generation of scenarios for climate change research 
and assessment. Nature 463, 747–756. https://doi.org/10.1038/nature08823. 

Mukherjee, S., Mishra, A., Trenberth, K.E., 2018. Climate change and drought: a 
perspective on drought indices. Curr Clim Change Rep 4, 145–163. https://doi.org/ 
10.1007/s40641-018-0098-x. 

Natural Resources Institute Finland, 2015. Yield of the main crops [web publication]. 
Helsinki, Finland. 

Naumann, G., Cammalleri, C., Mentaschi, L., Feyen, L., 2021. Increased economic 
drought impacts in Europe with anthropogenic warming. Nat. Clim. Chang. 11, 
485–491. https://doi.org/10.1038/s41558-021-01044-3. 

Nazemi, A., Wheater, H.S., 2015. On inclusion of water resource management in Earth 
system models – Part 1: Problem definition and representation of water demand. 
Hydrol. Earth Syst. Sci. 19, 33–61. https://doi.org/10.5194/hess-19-33-2015. 

Ng, J.L., Abd Aziz, S., Huang, Y.F., Wayayok, A., Rowshon, M.K., 2017. Stochastic 
modelling of seasonal and yearly rainfalls with low-frequency variability. Stoch. 
Environ. Res. Risk Assess. 31, 2215–2233. https://doi.org/10.1007/s00477-016- 
1373-9. 

Peltonen-Sainio, P., Laurila, H., Jauhiainen, L., Alakukku, L., 2015. Proximity of 
waterways to Finnish farmlands and associated characteristics of regional land use. 
AFSci 24, 24–38. https://doi.org/10.23986/afsci.46504. 

Peltonen-Sainio, P., Juvonen, J., Korhonen, N., Parkkila, P., Sorvali, J., Gregow, H., 
2021. Climate change, precipitation shifts and early summer drought: An irrigation 
tipping point for Finnish farmers? Clim. Risk Manag. 33, 100334 https://doi.org/ 
10.1016/j.crm.2021.100334. 

R Core Team, 2020. R: A language and environment for statistical computing. 
Rajsekhar, D., Singh, V.P., Mishra, A.K., 2015. Multivariate drought index: An 

information theory based approach for integrated drought assessment. J. Hydrol. 
Drought Process. Model. Mitig. 526, 164–182. 

Ramadas, M., 2014. Predictor selection for streamflows using a graphical modeling 
approach. Stoch. Environ. Res. Risk A 29 (6), 1583–1599. 

Roudier, P., Andersson, J.C.M., Donnelly, C., Feyen, L., Greuell, W., Ludwig, F., 2016. 
Projections of future floods and hydrological droughts in Europe under a +2◦C 
global warming. Clim. Change 135, 341–355. https://doi.org/10.1007/s10584-015- 
1570-4. 

Ruosteenoja, K., Jylhä, K., Kämäräinen, M., 2016. Climate projections for Finland under 
the RCP forcing scenarios 51, 17–50. 

Ruosteenoja, K., Markkanen, T., Venäläinen, A., Räisänen, P., Peltola, H., 2018. Seasonal 
soil moisture and drought occurrence in Europe in CMIP5 projections for the 21st 
century. Clim. Dyn. 50, 1177–1192. https://doi.org/10.1007/s00382-017-3671-4. 

Sayers, P.B., Yuanyuan, L., Moncrieff, C., Jianqiang, L., Tickner, D., Gang, L., Speed, R., 
2017. Strategic drought risk management: eight ‘golden rules’ to guide a sound 
approach. 15, 239–255. https://doi.org/10.1080/15715124.2017.1280812. 

Seguí, P.Q., Ribes, A., Martin, E., Habets, F., Boé, J., 2010. Comparison of three 
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Gregorič, G., Havlik, P., Hain, C., Holman, I., Johnson, D., Kersebaum, K.C., 
Ljungqvist, F.C., Luterbacher, J., Micale, F., Hartl-Meier, C., Mozný, M., Nejedlik, P., 
Olesen, J.E., Ruiz-Ramos, M., Rötter, R.P., Senay, G., Vicente-Serrano, S.M., 
Svoboda, M., Susnik, A., Tadesse, T., Vizina, A., Wardlow, B., Zdenek, Z., 
Büntgen, U., 2018. Priority questions in multidisciplinary drought research. Climate 
Res. 75, 241–260. https://doi.org/10.3354/cr01509. 

UNDRR, 2019. Global Assessment Report on Disaster Risk Reduction 2019. 
UNDRR, 2021. GAR Special Report on Drought, GAR Special Report on Drought 2021. 

Geneva. 

van Vuuren, D.P., Edmonds, J., Kainuma, M., Riahi, K., Thomson, A., Hibbard, K., 
Hurtt, G.C., Kram, T., Krey, V., Lamarque, J.-F., Masui, T., Meinshausen, M., 
Nakicenovic, N., Smith, S.J., Rose, S.K., 2011. The representative concentration 
pathways: an overview. Clim. Change 109 (1-2), 5–31. 
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