
This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail.

Powered by TCPDF (www.tcpdf.org)

This material is protected by copyright and other intellectual property rights, and duplication or sale of all or
part of any of the repository collections is not permitted, except that material may be duplicated by you for
your research use or educational purposes in electronic or print form. You must obtain permission for any
other use. Electronic or print copies may not be offered, whether for sale or otherwise to anyone who is not
an authorised user.

Ikäheimonen, Arsi; Triana, Ana M.; Luong, Nguyen; Ziaei, Amirmohammad; Rantaharju,
Jarno; Darst, Richard; Aledavood, Talayeh
Niimpy : A toolbox for behavioral data analysis

Published in:
SoftwareX

DOI:
10.1016/j.softx.2023.101472

Published: 01/07/2023

Document Version
Publisher's PDF, also known as Version of record

Published under the following license:
CC BY

Please cite the original version:
Ikäheimonen, A., Triana, A. M., Luong, N., Ziaei, A., Rantaharju, J., Darst, R., & Aledavood, T. (2023). Niimpy :
A toolbox for behavioral data analysis. SoftwareX, 23, Article 101472.
https://doi.org/10.1016/j.softx.2023.101472

https://doi.org/10.1016/j.softx.2023.101472
https://doi.org/10.1016/j.softx.2023.101472

SoftwareX 23 (2023) 101472

Contents lists available at ScienceDirect

SoftwareX

journal homepage: www.elsevier.com/locate/softx

Original software publication

Niimpy: A toolbox for behavioral data analysis
Arsi Ikäheimonen ∗, Ana M. Triana, Nguyen Luong, Amirmohammad Ziaei,
Jarno Rantaharju, Richard Darst, Talayeh Aledavood
Department of Computer Science, Aalto university, Tietotekniikan laitos, P.O. Box 15400, FI-00076 AALTO, Finland

a r t i c l e i n f o

Article history:
Received 26 September 2022
Received in revised form 5 June 2023
Accepted 6 July 2023

Dataset link: https://studentlife.cs.dartmou
th.edu/dataset.html

Keywords:
Data analysis toolbox
Digital behavioral studies
Mobile sensing
Python package

a b s t r a c t

Behavioral studies using personal digital devices typically produce rich longitudinal datasets of mixed
data types. These data provide information about the behavior of users of these devices in real-time
and in the users’ natural environments. Analyzing the data requires multidisciplinary expertise and
dedicated software. Currently, no generalizable, device-agnostic, freely-available software exists within
Python scientific computing ecosystem to preprocess and analyze such data. This paper introduces a
Python package, Niimpy, for analyzing digital behavioral data. The Niimpy toolbox is a user-friendly
open-source package that can quickly be expanded and adapted to specific research requirements.
The toolbox facilitates the analysis phase by offering tools for preprocessing, extracting features, and
exploring the data. It also aims to educate the user on behavioral data analysis and promotes open
science practices. Over time, Niimpy will expand with new data analysis features developed by the
core group, new users, and developers. Niimpy can help the fast-growing number of researchers with
diverse backgrounds who collect data from personal and consumer digital devices to systematically
and efficiently analyze the data and extract useful information. This novel information is vital for
answering research questions in various fields, from medicine to psychology, sociology, and others.

© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

Code metadata

Current code version 1.1
Permanent link to code/repository used for this code version https://github.com/ElsevierSoftwareX/SOFTX-D-22-00304
Permanent link to Reproducible Capsule –
Legal Code License MIT license
Code versioning system used Git
Software code languages, tools, and services used Python
Compilation requirements, operating environments & dependencies https://github.com/digitraceslab/niimpy/blob/master/requirements-dev.txt
If available Link to developer documentation/manual https://niimpy.readthedocs.io/en/latest/
Support email for questions talayeh.aledavood@aalto.fi

Software metadata

Current software version 1.1
Permanent link to executables of this version https://github.com/digitraceslab/niimpy/releases/tag/v1.1
Permanent link to Reproducible Capsule –
Legal Software License MIT License
Computing platforms/Operating Systems Any capable of running Python
Installation requirements & dependencies Python and SciPy stack packages
If available, link to user manual - if formally published, include a reference to
the publication in the reference list

https://niimpy.readthedocs.io/

Support email for questions talayeh.aledavood@aalto.fi

∗ Corresponding author.
E-mail address: arsi.ikaheimonen@aalto.fi (A. Ikäheimonen).

1. Motivation and significance

Digital behavioral studies aim to quantify human behavior
continuously in natural living environments using data from per-
sonal digital devices (e.g., smartphones and fitness trackers) and

https://doi.org/10.1016/j.softx.2023.101472
2352-7110/© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.softx.2023.101472
https://www.elsevier.com/locate/softx
http://www.elsevier.com/locate/softx
http://crossmark.crossref.org/dialog/?doi=10.1016/j.softx.2023.101472&domain=pdf
https://studentlife.cs.dartmouth.edu/dataset.html
https://studentlife.cs.dartmouth.edu/dataset.html
https://studentlife.cs.dartmouth.edu/dataset.html
https://studentlife.cs.dartmouth.edu/dataset.html
https://studentlife.cs.dartmouth.edu/dataset.html
https://studentlife.cs.dartmouth.edu/dataset.html
https://studentlife.cs.dartmouth.edu/dataset.html
https://studentlife.cs.dartmouth.edu/dataset.html
https://studentlife.cs.dartmouth.edu/dataset.html
https://studentlife.cs.dartmouth.edu/dataset.html
https://studentlife.cs.dartmouth.edu/dataset.html
https://studentlife.cs.dartmouth.edu/dataset.html
https://studentlife.cs.dartmouth.edu/dataset.html
https://studentlife.cs.dartmouth.edu/dataset.html
https://studentlife.cs.dartmouth.edu/dataset.html
https://studentlife.cs.dartmouth.edu/dataset.html
https://studentlife.cs.dartmouth.edu/dataset.html
https://studentlife.cs.dartmouth.edu/dataset.html
https://studentlife.cs.dartmouth.edu/dataset.html
https://studentlife.cs.dartmouth.edu/dataset.html
https://studentlife.cs.dartmouth.edu/dataset.html
https://studentlife.cs.dartmouth.edu/dataset.html
https://studentlife.cs.dartmouth.edu/dataset.html
https://studentlife.cs.dartmouth.edu/dataset.html
https://studentlife.cs.dartmouth.edu/dataset.html
https://studentlife.cs.dartmouth.edu/dataset.html
https://studentlife.cs.dartmouth.edu/dataset.html
https://studentlife.cs.dartmouth.edu/dataset.html
https://studentlife.cs.dartmouth.edu/dataset.html
https://studentlife.cs.dartmouth.edu/dataset.html
https://studentlife.cs.dartmouth.edu/dataset.html
https://studentlife.cs.dartmouth.edu/dataset.html
https://studentlife.cs.dartmouth.edu/dataset.html
https://studentlife.cs.dartmouth.edu/dataset.html
https://studentlife.cs.dartmouth.edu/dataset.html
https://studentlife.cs.dartmouth.edu/dataset.html
https://studentlife.cs.dartmouth.edu/dataset.html
https://studentlife.cs.dartmouth.edu/dataset.html
https://studentlife.cs.dartmouth.edu/dataset.html
https://studentlife.cs.dartmouth.edu/dataset.html
https://studentlife.cs.dartmouth.edu/dataset.html
https://studentlife.cs.dartmouth.edu/dataset.html
https://studentlife.cs.dartmouth.edu/dataset.html
https://studentlife.cs.dartmouth.edu/dataset.html
https://studentlife.cs.dartmouth.edu/dataset.html
https://studentlife.cs.dartmouth.edu/dataset.html
https://studentlife.cs.dartmouth.edu/dataset.html
https://studentlife.cs.dartmouth.edu/dataset.html
https://studentlife.cs.dartmouth.edu/dataset.html
http://creativecommons.org/licenses/by/4.0/
https://github.com/ElsevierSoftwareX/SOFTX-D-22-00304
https://github.com/digitraceslab/niimpy/blob/master/requirements-dev.txt
https://niimpy.readthedocs.io/en/latest/
mailto:talayeh.aledavood@aalto.fi
https://github.com/digitraceslab/niimpy/releases/tag/v1.1
https://niimpy.readthedocs.io/
mailto:talayeh.aledavood@aalto.fi
mailto:arsi.ikaheimonen@aalto.fi
https://doi.org/10.1016/j.softx.2023.101472
http://creativecommons.org/licenses/by/4.0/

A. Ikäheimonen, A.M. Triana, N. Luong et al. SoftwareX 23 (2023) 101472

Fig. 1. Schematic of a typical digital behavioral study workflow. Generally, individuals or groups volunteer to gather data. The data streams are collected via devices
that use different sensors. The data streams are then stored locally or in the cloud. Next, the data is ready to be analyzed. Niimpy provides tools for this analysis
phase via four layers (highlighted in dark gray). Users can (i) read the data and then opt to (ii) preprocess or (iii) explore them. While in these layers, users can
switch from preprocessing to exploration as needed, and once they are ready, start the (iv) analysis to obtain the requested results.

online social media platforms the user interacts with [1–4]. Re-
cently, there has been an increasing scientific interest in digi-
tal behavioral studies for unobtrusive human behavior monitor-
ing [5–8].

Typically, digital behavioral studies produce large, heteroge-
neous, rich data sets of mixed data types. Multiple stages are
required to go from the data produced within such studies to
meaningful and useful information. A typical digital behavioral
study analysis workflow consists of data collection, storage, and
analysis phases. Fig. 1 expands on these details. Data preprocess-
ing and feature extraction are crucial tasks for analyzing the data,
yet they often have to be re-implemented for each study. Recy-
cling the implemented tools is challenging due to differences in
data types and structures across projects. The lack of established
data analysis methods and reusable open-source software form
significant barriers to new research [9–11]. Additionally, the lack
of reusable methods leads to study results that are not necessarily
reproducible and comparable.

The existing software solutions for digital behavioral studies
can be categorized by the functionality into three categories: 1)
data collection platforms (such as AWARE [12], BEIWE [13], and
CARP Mobile Sensing [14]), 2) data analysis frameworks (e.g., The
Digital Biomarker Discovery Pipeline (DBDP) [10], Forest [15], and
Rapids [9]), and 3) platforms dedicated for study participants
and clinicians (e.g., mindLAMP Dashboard [16]). Some solutions
focus on certain functionality, while some encompass all three
(e.g., HOPES [17], LAMP platform [16], and RADAR-base [18]).

Among the data analysis frameworks, existing software comes
with various limitations for behavioral data analysis; the software
may not contain a complete suite for data preprocessing and anal-
ysis, may be focused on physiological or biomedical data analysis,
the code may not be organized coherently for a reproducible
analysis pipeline, may be outdated, not actively developed or
maintained, tied to some specific data collection platform or de-
vice, may not be openly available for researchers, or the software
adaptation has a high entry barrier.

The most comprehensive and mature analysis frameworks
include DBDP, Forest, Rapids, and Radar-base. These open-source
software feature digital behavioral data analysis and are imple-
mented wholly or partly in Python.

DBDP is a platform dedicated to transforming mobile health
data into digital biomarkers. The code is organized in modules
that are written in R and Python. DBDP provides modules for
data aggregation, preprocessing, exploration, and analysis. DBDP
supports various wearable devices and data formats, including
physiological and behavioral data.

Forest is a library to analyze smartphone-based
high-throughput digital phenotyping data. The library is written
in Python. It is integrated with the BEIWE back-end and can

also be run locally. The system also implements an API for
Tableau [19], supporting dashboard visualizations.

Rapids is a framework offering an open-source code for pre-
processing, extracting, and visualizing behavioral features from
data. It is written in Python and R and supports mobile phones
and wearable devices. The code is executed by Snakemake work-
flow manager [20] and is organized by cookie cutter data sci-
ence [21] project structure.

Radar-base is a data collection platform built around Con-
fluent/Apache Kafka. It features data preprocessing capabilities
and visualization dashboards implemented in Python. Data pre-
processing enables compatibility with standard machine learning
and data science libraries.

To offer an easily deployable, lightweight analysis framework
alternative for researchers already familiar with Python program-
ming, we propose Niimpy: a toolbox for behavioral data analysis.
Niimpy is a user-friendly, open-source Python package. It can
quickly expand and adapt to specific research questions and
workflows and integrates seamlessly into the existing Python sci-
entific computing ecosystem [22]. Niimpy targets a group of users
who already use Python for their data analysis needs and are
possibly already familiar with other scientific computing libraries
in Python. With a minimal barrier to entry, these users can use
Niimpy for projects in which sensor data (e.g., from smartphones)
from study participants are collected, and the data require pre-
processing, exploration, and feature extraction. In the future,
later versions of Niimpy will allow them to perform a certain
level of analysis on top of these as well. Niimpy is accompanied
by comprehensive documentation and examples using real data,
facilitating the implementation of the toolbox. The toolbox is not
an out-of-the-box software solution but offers a base framework
requiring some programming knowledge to use it.

2. Software description

The Niimpy toolbox is a Python package for rich multi-sensor
longitudinal behavioral data analysis. Niimpy can preprocess raw
sensor data (e.g., GPS coordinates) or work on predefined data
summaries (e.g., daily step count). It is designed for small to
moderate-sized (order of thousands of participants) studies. Ni-
impy is built around Pandas [23] and other scientific Python stack
libraries. The toolbox requires basic Python programming knowl-
edge. Niimpy comes with comprehensive example notebooks
which serve as boilerplate templates for users.

2.1. Design philosophy

Niimpy provides basic behavioral data analysis operations and
is a starting point for implementing new analyses. As a single
software tool cannot provide everything required for every type

2

A. Ikäheimonen, A.M. Triana, N. Luong et al. SoftwareX 23 (2023) 101472

Fig. 2. Block diagram of the niimpy library. Currently, niimpy has several Python functions that can i) read different data formats, ii) preprocess data from eight
different sources, and (iii) explore the data using different plots and tools. In the future, Niimpy will also implement functions for data analysis.

of analysis, Niimpy makes it easy to customize analyses while
building on existing work.

Niimpy introduces a standard data schema using Pandas
DataFrames. The schema facilitates generalizability, guides data
structures, and promotes overall reusability. Data processing tools
and functions following this schema can be directly incorporated
into a Niimpy analysis pipeline. If these add-on analysis functions
are generalizable and reusable, we encourage the user to incorpo-
rate those into Niimpy. Using existing functionality in Pandas and
other Python scientific libraries in the pipeline is straightforward.

Finally, Niimpy uses existing tools as much as possible. The
scientific Python ecosystem provides a wide variety of data pro-
cessing tools, which are used directly. For example, a significant
part of data preprocessing can be done using standard Pandas op-
erations, and shortcut functions are not created for this. Instead,
shortcuts are created when they can significantly reduce the
user’s cognitive load or increase the code’s readability. Reusing
these standard components allows others to begin using Niimpy
more quickly and apply the skills learned in Niimpy to other
projects.

2.2. Software architecture

The Niimpy software architecture divides into distinct func-
tional layers; 1) reading, 2) preprocessing, 3) exploration, and 4)
analysis. Fig. 2 expands on these details, and a succinct summary
of the functionalities of each layer is provided in Table 1.

2.2.1. Data reading
The reading layer imports the data from files or other sources,

converting the input data to Pandas dataframes with the stan-
dardized data schema and doing some minimal data type stan-
dardization. Niimpy provides importer functions for CSV and
sqlite3 databases, and the current development version supports
open mHealth [24] datatypes. However, in many cases, the user
loads and converts data into the required dataframe format, pre-
defined by the schema. The schema expects data to be in a
tabular (relational) format where a row represents an observa-
tion, and columns are properties of observations. This layer is not
concerned with the type of sensor or sensor-specific data formats.

2.2.2. Data preprocessing
The preprocessing layer is for data cleaning, filtering, trans-

formation, encoding, and feature extraction. The main focus is
on feature extraction functions, while we recommend using ex-
isting Python functions for preprocessing when possible. Some
preprocessing functions are sensor or device-specific (e.g., Polar
tracker feature extraction functions), while some apply generally

(e.g., location data feature extraction). Preprocessing functions
take in Pandas dataframes and return dataframes and may also
require specified column names. Niimpy provides a set of ready-
made features for each sensor. Users can extract all the features
by default or select the desired ones. Furthermore, users may
implement their custom preprocessing functions.

Currently supported sensors and data streams include the Po-
lar fitness tracker, Android and iOS mobile phone sensors (appli-
cation data, audio, battery, communication, screen), GPS location,
and survey streams. For details, refer to appendix Table 2.

2.2.3. Data exploration
The exploration layer produces visual data summaries and

assesses the data quality (e.g., missing data, outliers). The module
includes functions for plotting categorical data counts and dis-
tributions, individual and group-wise observation counts, time
series line plots for visualizing trends, cyclicity, and anomalies,
punchcard charts for comprehensive surveys, and visualizing
missing data. All the functions are implemented using Plotly
Python Open Source Library [25]. Plotly enables interactive in-
spection of different aspects of the data (e.g., specific time range).
For more details about exploration module functions, refer to
appendix Table 3.

2.2.4. Data analysis
The analysis layer has functions for modeling data and statisti-

cal inference. The models and inference are applied to the data to
identify relationships (e.g., correlation and association) among the
features. This layer will be continuously expanded in the future.

2.3. Unit tests

A set of unit tests accompanies each Niimpy module to ensure
it works as intended. The general guideline is to have unit tests for
each function with which the toolbox users interact. The toolbox
comes with synthetically created and openly available sample
data sets for unit tests. More details about the sample data are
found on the GitHub repository [26]. Currently, the code test
coverage is above 84%.

2.4. Expanding the toolbox

Niimpy can serve as a base for developing new analysis meth-
ods by leveraging the lower functional layers. The toolbox is in-
tended to be expanded according to different research needs. We
encourage users to contribute reusable and well-generalizable
functions, which are accompanied by test functions to the tool-
box. The toolbox structure is fully modular; therefore, adding a

3

A. Ikäheimonen, A.M. Triana, N. Luong et al. SoftwareX 23 (2023) 101472

Fig. 3. Heatmap visualization presenting significant places-based and movement-based features for ten days, highlighting movement patterns, including those days
in which the participant has traveled longer distances, moved faster or has stayed at home more time. Here the y-label n_home represents the time spent at home,
n_moving the time spent moving from place to place, speed_average the average speed, and dist_total the total distance traveled. The figure was created using the
Seaborn data visualization library [27].

Fig. 4. Barplot presenting of pre- and post-study PHQ9-1 question score distributions. The visualization reveals minor differences between pre- and post-study survey
score distributions.

new feature is straightforward. New features should be added
via GitHub pull requests, following the instructions provided in
the project code repository. The instructions include required
data schema, basic design guidelines, unit test requirements, in-
structions for documentation and demonstrative notebooks, and
instructions for adding example datasets. Inputs and outputs
are Pandas dataframes that follow standard formatting so that
Niimpy fits into the Python scientific stack, allowing the users to
use Niimpy in their custom data processing workflows.

3. Illustrative examples

This section provides illustrative examples of toolbox usage.
These examples elucidate how to use functions from different
toolbox layers to read the data from various sources, transform
it into Niimpy-compatible format, extract features, and visual-
ize them. These features carry useful information for analyzing
people’s behavioral patterns and changes in their behavior. For
further examples, refer to Niimpy’s documentation [26]. The first
example, code listing 1, offers a snapshot of location features
extraction from GPS data from a single participant. The data was
collected via an Android phone using the AWARE framework [12].
Initially, the data is loaded (line 5), followed by a noise reduction
step through data downsampling (lines 8–11). Finally, significant
places-based and movement-based features are extracted (line
14). Selected resultant features are displayed in a heatmap, as
seen in Fig. 3.

Code listing 2 demonstrates a second example with survey
data from the StudentLife dataset [28], specifically featuring PHQ-
9 questionnaire [29] responses. The Kaggle API facilitates ac-
cess to the data [30] (lines 8–10), followed by data download
and questionnaire data extraction (lines 13–16). Next, the code
transforms the data into Niimpy-compatible format by renaming
columns (lines 19–25). Then the code restructures the data for
better readability and analysis: shorter PHQ9 question numbers
replace the column (lines 28–29), the data format transforms
from wide to long (lines 32–33), and numerical format answers
replace the original questionnaire responses (lines 36–38). Visu-
alizing this processed data (lines 41–50) provides insight into pre-
and post-study score distributions, as demonstrated in Fig. 4.

Finally, the third code listing 3 provides an example of extract-
ing features from synthetic activity tracker data, modeled after
the Polar activity tracker data schema [31]. The process begins
with loading the data (line 7) and converting the index into the
Pandas DateTime format (line 8). Then the code extract features
(lines 11–12) and generate visualizations (lines 15–16). Fig. 5
offers a glance at the step count data of a single subject over three
days.

1 import niimpy
2 import niimpy.preprocessing.location as

nilo
3

4 # Load location sample data

4

A. Ikäheimonen, A.M. Triana, N. Luong et al. SoftwareX 23 (2023) 101472

Fig. 5. Lineplot visualization presenting a single subject’s hourly aggregated step count patterns for three consecutive days. Inactivity times can be directly seen
from this data, as well as variation in more active days.

5 data = niimpy.read_csv(niimpy.sampledata.
LOCATION_FILE ,tz=’et’)

6

7 # Reduce noise by downsampling the data
using the median

8 binned_data = niimpy.util.aggregate(data,
freq=’5T’,

9

method_numerical=’median’)
10 # Reset index and drop rows with missing

values
11 binned_data = binned_data.reset_index(0).

dropna()
12

13 # Extract the features
14 all_features = nilo.

extract_features_location(binned_data)

Listing 1: Illustrative code example to extract features from
GPS-location data.

1 import zipfile
2 import pandas as pd
3 from niimpy.preprocessing import survey
4 from niimpy.exploration.eda import

categorical
5 from kaggle.api.kaggle_api_extended import

KaggleApi
6

7 # Authenticate and download dataset using
Kaggle API

8 api = KaggleApi()
9 api.authenticate()

10 api.dataset_download_files(’dartweichen/
student-life’, path= " . ")

11

12 # Extract the specific file from the
downloaded zip

13 archive = zipfile.ZipFile(’student-life.zip
’, ’r’)

14 with archive.open(f " dataset/survey/PHQ-9.
csv ") as survey_file:

15 # Read the csv file into a pandas
DataFrame

16 survey_data = pd.read_csv(survey_file)
17

18 # Rename question columns by adding a ’.’
to the end

19 new_columns = [b + ’.’ if not b.endswith(’.
’) else b for b in survey_data.columns
[2:11]]

20 old_columns = survey_data.columns[2:11] #
old column names

21 mapping = dict(zip(old_columns , new_columns
)) # create a dictionary

22 survey_data.rename(columns=mapping, inplace
=True) # rename the columns

23

24 # Rename the ’uid’ column to ’user’
25 survey_data.rename(columns={ " uid " : " user "

,},inplace=True)
26

27 # Remap column names to shorter identifiers
based on Niimpy provided mappings

28 col_id = {**survey.PHQ9_MAP}
29 selected_cols = [col for col in survey_data

.columns if col in col_id.keys()]
30

31 # Reshape data to long format and encode
responses numerically

32 transformed_df = pd.melt(survey_data ,
id_vars=[’user’, ’type’], value_vars=
selected_cols , var_name=’question’,
value_name=’raw_answer’)

33 transformed_df[’id’] = transformed_df[’
question’].replace(survey.PHQ9_MAP)

34

35 # Convert survey answers to numerical
format

36 transformed_df[’answer’] = survey.
survey_convert_to_numerical_answer(

37 transformed_df , answer_col = ’
raw_answer’, question_id = ’id’,

38 id_map={ " PHQ9 " : survey.PHQ9_ANSWER_MAP
}, use_prefix=True)

39

40 # Visualize distribution of responses to
the first question

41 fig = categorical.
questionnaire_grouped_summary(

42 transformed_df ,
43 question=’PHQ9_1’,
44 group=’type’,

5

A. Ikäheimonen, A.M. Triana, N. Luong et al. SoftwareX 23 (2023) 101472

45 title=’PHQ9 question: Little interest
or pleasure in doing things’,

46 xlabel=’score’,
47 ylabel=’count’,
48 width=800,
49 height=400)
50 fig.show()

Listing 2: Illustrative code example for acquiring data using
Kaggle API, preprocessing, and visualizing the data

1 import pandas as pd
2 import niimpy.preprocessing.tracker as

tracker
3 import niimpy.exploration.eda.lineplot as

lineplot
4 from niimpy import config
5

6 # Load tracker data and convert index to
datetime

7 data = pd.read_csv(config.STEP_SUMMARY_PATH
, index_col=0)

8 data.index = pd.to_datetime(data.index)
9

10 # Extract daily step distribution features
11 f = tracker.tracker_daily_step_distribution
12 step_distribution = tracker.

extract_features_tracker(data, features
={f: {}})

13

14 # Visualize hourly-aggregated step count
for a single user

15 lineplot.timeplot(data, users=[" wiam9xme "],
columns=[" steps "],

16 title= " Step count " , xlabel= " date " , ylabel= "
steps " , resample=’H’)

Listing 3: Illustrative code example to extract and visualize
activity tracker data.

4. Impact

Quantifying digital behavioral data yields information about
the study participants’ behavioral patterns, changes in patterns,
and differences between groups. This information is beneficial
for predicting future changes in a person’s well-being or clinical
conditions. It may also yield new insights into theoretical models
of human behavior. However, running similar studies in different
places and populations is key to producing reliable and validated
results. The studies need to be reproducible in terms of study
protocols and data analysis. Niimpy can facilitate this by making
the data analysis workflow consistent from one study to another
and making the data analysis more accessible for a wider group of
researchers. The resulting information can be used for well-being
applications encouraging improved health behavior or may help
develop novel, efficient healthcare solutions.

The Niimpy toolbox helps researchers to analyze digital be-
havioral data. For this data, preprocessing and feature extraction
are critical tasks and have the highest barrier to entry in the
analysis. Thus, preprocessing functionalities are the most promi-
nent feature of the toolbox, setting it apart from other data
analysis software tools. Niimpy provides tools and comprehensive
examples of how to conduct the analysis.

Niimpy’s development was motivated by the needs of the
Mobile Monitoring of Mood (MoMo-Mood) pilot [32] and the

main study [33], which collected various types of data from
different devices and different groups of patients with mental
disorders as well as a control group. The toolbox is actively used
for these and other similar studies (e.g., the cor:ona study [8]) and
is consciously extended based on the needs of different projects.
In the future, we will continue to develop and add new features
to the toolbox actively. While analyzing data sets acquired from
existing and new digital behavior studies, we will incorporate a
layer for analysis functions into the toolbox. Further, the toolbox
will be used for educational purposes in courses and workshops
covering the topic of digital health and human behavior at Aalto
University, Finland, and possibly internationally in the future.

5. Conclusion

We have released a Python package, Niimpy toolbox, for dig-
ital behavioral data analysis. The toolbox is intended for data
scientists and provides data loading, preprocessing, feature ex-
traction, and visualization tools. Niimpy includes comprehensive
documentation and examples covering toolbox functionality and
educating users about digital behavioral studies.

The toolbox contributes to the scientific community by facili-
tating digital behavioral data preprocessing and analysis. Niimpy
offers an adaptable data analysis framework enabling replicable
and transparent results.

As the toolbox is still under development, more advanced
analysis features will be incorporated into it over time. In the
near future, we will incorporate readers for the Open mHealth
data format [34] as well as data from the LAMP platform [16]. Our
work promotes open science; thus, we encourage researchers to
adopt and contribute to the toolbox with new analysis features.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Data availability

We used synthetic data, part of the data is confidential, and
part open-source: https://studentlife.cs.dartmouth.edu/dataset.ht
ml

Acknowledgments

We thank Professor Jari Saramäki for providing valuable feed-
back. We also thank Aalto Science-IT for providing computational
resources and Aalto Research Software Engineers for their sup-
port. We thank Anna Hakala for their help with the project in
its early stages. TA acknowledges the support of Professor Erkki
Isometsä and other collaborators in the MoMo-Mood project,
which has motivated the creation of the Niimpy toolbox.

Appendix

A.1. Toolbox layers by functionality

A.2. Toolbox preprocessing features

A.3. Exploration module description

6

https://studentlife.cs.dartmouth.edu/dataset.html
https://studentlife.cs.dartmouth.edu/dataset.html
https://studentlife.cs.dartmouth.edu/dataset.html
https://studentlife.cs.dartmouth.edu/dataset.html
https://studentlife.cs.dartmouth.edu/dataset.html
https://studentlife.cs.dartmouth.edu/dataset.html
https://studentlife.cs.dartmouth.edu/dataset.html
https://studentlife.cs.dartmouth.edu/dataset.html
https://studentlife.cs.dartmouth.edu/dataset.html
https://studentlife.cs.dartmouth.edu/dataset.html
https://studentlife.cs.dartmouth.edu/dataset.html
https://studentlife.cs.dartmouth.edu/dataset.html
https://studentlife.cs.dartmouth.edu/dataset.html
https://studentlife.cs.dartmouth.edu/dataset.html
https://studentlife.cs.dartmouth.edu/dataset.html
https://studentlife.cs.dartmouth.edu/dataset.html
https://studentlife.cs.dartmouth.edu/dataset.html
https://studentlife.cs.dartmouth.edu/dataset.html
https://studentlife.cs.dartmouth.edu/dataset.html
https://studentlife.cs.dartmouth.edu/dataset.html
https://studentlife.cs.dartmouth.edu/dataset.html
https://studentlife.cs.dartmouth.edu/dataset.html
https://studentlife.cs.dartmouth.edu/dataset.html
https://studentlife.cs.dartmouth.edu/dataset.html
https://studentlife.cs.dartmouth.edu/dataset.html
https://studentlife.cs.dartmouth.edu/dataset.html
https://studentlife.cs.dartmouth.edu/dataset.html
https://studentlife.cs.dartmouth.edu/dataset.html
https://studentlife.cs.dartmouth.edu/dataset.html
https://studentlife.cs.dartmouth.edu/dataset.html
https://studentlife.cs.dartmouth.edu/dataset.html
https://studentlife.cs.dartmouth.edu/dataset.html
https://studentlife.cs.dartmouth.edu/dataset.html
https://studentlife.cs.dartmouth.edu/dataset.html
https://studentlife.cs.dartmouth.edu/dataset.html
https://studentlife.cs.dartmouth.edu/dataset.html
https://studentlife.cs.dartmouth.edu/dataset.html
https://studentlife.cs.dartmouth.edu/dataset.html
https://studentlife.cs.dartmouth.edu/dataset.html
https://studentlife.cs.dartmouth.edu/dataset.html
https://studentlife.cs.dartmouth.edu/dataset.html
https://studentlife.cs.dartmouth.edu/dataset.html
https://studentlife.cs.dartmouth.edu/dataset.html
https://studentlife.cs.dartmouth.edu/dataset.html
https://studentlife.cs.dartmouth.edu/dataset.html
https://studentlife.cs.dartmouth.edu/dataset.html
https://studentlife.cs.dartmouth.edu/dataset.html
https://studentlife.cs.dartmouth.edu/dataset.html
https://studentlife.cs.dartmouth.edu/dataset.html

A. Ikäheimonen, A.M. Triana, N. Luong et al. SoftwareX 23 (2023) 101472

Table 1
Layer functionality summary. For a detailed reference, see Niimpy documentation [26].
Layer Name Functionality

Reading Read data from stream or database into a dataframe

Preprocessing Cleaning, encoding, feature extraction, integration, normalization, reduction,
transformation

Exploration Summary statistics, data visualization, data quality assessment

Analysis Data modeling, statistical inference

Table 2
Preprocessing sub-module feature summary table. For a detailed reference, see Niimpy documentation [26].
Sub-module Input time series Features

Fitness tracker Stepcount Daily step count: mean, mean standard deviation, min, max, distribution per
hour

Audio Decibels, frequency,
silence indicator

Time window based features: count silent, count speech, count loud, min freq,
max freq, mean freq, median freq, std freq, min db, max db, mean db, median
db, std db

Application Application package
name

Count, duration

Battery Status, charge level Shutdown event timestamp, datapoint occurrence, datapoint gaps, battery
charge difference

Communication Call or message
events, including
duration, type

Total call duration, mean call duration, median call duration, call duration std,
call count, outgoing–incoming call ratio, sms count

Location Latitude, longitude Distance based features: total distance, variance, log variance, average speed,
speed variance, max speed, location bin count. Significant place related
features: static point count, moving point count, static bin count, max distance
from home, number of significant places, number of rarely visited places,
number of transitions between significant places, bin count in the top1, top2,
top3, top4, and top5 cluster, normalized entropy

Screen Screen status
(including on, off,
unlock, and lock
events)

Screen off timestamp, screen event count, screen event duration, min screen
event duration, max screen event duration, median screen event duration,
mean screen event duration, screen event duration std, screen first unlock
timestamp

Survey Survey questions,
including question ID,
answer

Survey score summation: min, max, mean*, std*
(∗: for applicable data)

Table 3
Exploration module function summary (∗: available for applicable data types). For a detailed reference, see Niimpy
documentation [26].
Sub-module Data Type Visualization type Usage

Categorical plot Categorical Barplot Observation counts and distributions

Count plot Categorical/Numerical Barplot/Boxplot* Observation counts and distributions

Lineplot Numerical Lineplot Trend, cyclicity, patterns

Punchcard Categorical/Numerical Heatmap* Temporal patterns of counts or values

Missingness Categorical/Numerical Barplot/Heatmap* Missing data patterns

References

[1] Marsch LA. Digital health data-driven approaches to understand human be-
havior. Neuropsychopharmacology 2021;46(1):191–6. http://dx.doi.org/10.
1038/s41386-020-0761-5, URL https://www.nature.com/articles/s41386-
020-0761-5. Number: 1 Publisher: Nature Publishing Group.

[2] Onnela J-P. Opportunities and challenges in the collection and analysis
of digital phenotyping data. Neuropsychopharmacology 2021;46(1):45–54.
http://dx.doi.org/10.1038/s41386-020-0771-3, URL https://www.nature.
com/articles/s41386-020-0771-3. Number: 1 Publisher: Nature Publishing
Group.

[3] Insel TR. Digital phenotyping: Technology for a new science of behavior.
JAMA 2017;318(13):1215–6. http://dx.doi.org/10.1001/jama.2017.11295.

[4] Aledavood T, Hoyos AMT, Alakörkkö T, Kaski K, Saramäki J, Isometsä E, et
al. Data collection for mental health studies through digital platforms: re-
quirements and design of a prototype. JMIR Res Protocols 2017;6(6):e110,
Publisher: JMIR Publications Inc., Toronto, Canada.

[5] Barnett I, Torous J, Staples P, Sandoval L, Keshavan M, Onnela J-P.
Relapse prediction in schizophrenia through digital phenotyping: a pilot
study. Neuropsychopharmacology 2018;43(8):1660–6. http://dx.doi.org/10.
1038/s41386-018-0030-z, URL https://www.nature.com/articles/s41386-
018-0030-z. Number: 8 Publisher: Nature Publishing Group.

[6] Huckins JF, daSilva AW, Wang W, Hedlund E, Rogers C, Nepal SK, et al.
Mental health and behavior of college students during the early phases
of the COVID-19 pandemic: Longitudinal smartphone and ecological mo-
mentary assessment study. J Med Internet Res 2020;22(6):e20185. http://
dx.doi.org/10.2196/20185, URL https://www.jmir.org/2020/6/e20185. Com-
pany: Journal of Medical Internet Research Distributor: Journal of Medical
Internet Research Institution: Journal of Medical Internet Research Label:
Journal of Medical Internet Research Publisher: JMIR Publications Inc.,
Toronto, Canada.

[7] Berrouiguet S, Ramírez D, Barrigón ML, Moreno-Muñoz P, Carmona Ca-
macho R, Baca-García E, et al. Combining continuous smartphone native
sensors data capture and unsupervised data mining techniques for be-
havioral changes detection: A case series of the evidence-based behavior
(eB2) study. JMIR Mhealth Uhealth 2018;6(12):e197. http://dx.doi.org/10.
2196/mhealth.9472.

[8] Luong N, Barnett I, Aledavood T. The impact of the COVID-19 pandemic
on daily rhythms. 2023, arXiv preprint arXiv:2303.04535.

[9] Vega J, Li M, Aguillera K, Goel N, Joshi E, Khandekar K, et al. Reproducible
analysis pipeline for data streams: Open-source software to process data
collected with mobile devices. Front Digit Health 2021;3. URL https://www.
frontiersin.org/article/10.3389/fdgth.2021.769823.

[10] Bent B, Wang K, Grzesiak E, Jiang C, Qi Y, Jiang Y, et al. The
digital biomarker discovery pipeline: An open-source software

7

http://dx.doi.org/10.1038/s41386-020-0761-5
http://dx.doi.org/10.1038/s41386-020-0761-5
http://dx.doi.org/10.1038/s41386-020-0761-5
https://www.nature.com/articles/s41386-020-0761-5
https://www.nature.com/articles/s41386-020-0761-5
https://www.nature.com/articles/s41386-020-0761-5
http://dx.doi.org/10.1038/s41386-020-0771-3
https://www.nature.com/articles/s41386-020-0771-3
https://www.nature.com/articles/s41386-020-0771-3
https://www.nature.com/articles/s41386-020-0771-3
http://dx.doi.org/10.1001/jama.2017.11295
http://refhub.elsevier.com/S2352-7110(23)00168-1/sb4
http://refhub.elsevier.com/S2352-7110(23)00168-1/sb4
http://refhub.elsevier.com/S2352-7110(23)00168-1/sb4
http://refhub.elsevier.com/S2352-7110(23)00168-1/sb4
http://refhub.elsevier.com/S2352-7110(23)00168-1/sb4
http://refhub.elsevier.com/S2352-7110(23)00168-1/sb4
http://refhub.elsevier.com/S2352-7110(23)00168-1/sb4
http://dx.doi.org/10.1038/s41386-018-0030-z
http://dx.doi.org/10.1038/s41386-018-0030-z
http://dx.doi.org/10.1038/s41386-018-0030-z
https://www.nature.com/articles/s41386-018-0030-z
https://www.nature.com/articles/s41386-018-0030-z
https://www.nature.com/articles/s41386-018-0030-z
http://dx.doi.org/10.2196/20185
http://dx.doi.org/10.2196/20185
http://dx.doi.org/10.2196/20185
https://www.jmir.org/2020/6/e20185
http://dx.doi.org/10.2196/mhealth.9472
http://dx.doi.org/10.2196/mhealth.9472
http://dx.doi.org/10.2196/mhealth.9472
http://arxiv.org/abs/2303.04535
https://www.frontiersin.org/article/10.3389/fdgth.2021.769823
https://www.frontiersin.org/article/10.3389/fdgth.2021.769823
https://www.frontiersin.org/article/10.3389/fdgth.2021.769823

A. Ikäheimonen, A.M. Triana, N. Luong et al. SoftwareX 23 (2023) 101472

platform for the development of digital biomarkers using mHealth
and wearables data. J Clin Transl Sci 2021;5(1). http://dx.doi.
org/10.1017/cts.2020.511, URL https://www.cambridge.org/core/
journals/journal-of-clinical-and-translational-science/article/digital-
biomarker-discovery-pipeline-an-opensource-software-platform-for-
the-development-of-digital-biomarkers-using-mhealth-and-wearables-
data/A6696CEF138247077B470F4800090E63. Publisher: Cambridge
University Press.

[11] Onnela J-P, Dixon C, Griffin K, Jaenicke T, Minowada L, Esterkin S, et al.
Beiwe: A data collection platform for high-throughput digital phenotyp-
ing. J Open Source Softw 2021;6(68):3417. http://dx.doi.org/10.21105/joss.
03417, URL https://joss.theoj.org/papers/10.21105/joss.03417.

[12] Ferreira D, Kostakos V, Dey AK. AWARE: Mobile context instrumentation
framework. Front ICT 2015;2. URL https://www.frontiersin.org/article/10.
3389/fict.2015.00006.

[13] Torous J, Kiang MV, Lorme J, Onnela J-P. New tools for new research in
psychiatry: a scalable and customizable platform to empower data driven
smartphone research. JMIR Ment Health 2016;3(2):e16, Publisher: JMIR
Publications Inc., Toronto, Canada.

[14] Bardram JE. The CARP mobile sensing framework–A cross-platform, re-
active, programming framework and runtime environment for digital
phenotyping. 2020, arXiv preprint arXiv:2006.11904.

[15] Onnela-Lab. Onnela-Lab/Forest: Forest is a library for analyzing
smartphone-based high-throughput digital phenotyping data. 2023,
GitHub. URL https://github.com/onnela-lab/forest. [Accessed 09 March
2023].

[16] Bilden R, dcurrey88, Vaidyam A, Patel S, Meyer A, Scheuer L, et al.
BIDMCDigitalPsychiatry/LAMP-platform: release 2023.2.15. 2023, Zenodo.
http://dx.doi.org/10.5281/zenodo.7643628.

[17] Wang X, Vouk N, Heaukulani C, Buddhika T, Martanto W, Lee J,
et al. HOPES: An integrative digital phenotyping platform for data
collection, monitoring, and machine learning. J Med Internet Res
2021;23(3):e23984. http://dx.doi.org/10.2196/23984, URL https://www.
jmir.org/2021/3/e23984. Company: Journal of Medical Internet Research
Distributor: Journal of Medical Internet Research Institution: Journal of
Medical Internet Research Label: Journal of Medical Internet Research
Publisher: JMIR Publications Inc., Toronto, Canada.

[18] Ranjan Y, Rashid Z, Stewart C, Conde P, Begale M, Verbeeck D, et al.
RADAR-base: open source mobile health platform for collecting, monitor-
ing, and analyzing data using sensors, wearables, and mobile devices. JMIR
MHealth UHealth 2019;7(8):e11734.

[19] Tableau: Business intelligence and analytics software. 2023, Tableau. URL
https://www.tableau.com/node/62770. [Accessed 09 March 2023].

[20] Köster J, Rahmann S. Snakemake—a scalable bioinformatics workflow
engine. Bioinformatics 2012;28(19):2520–2.

[21] Cookiecutter data science. In: Home - Cookiecutter data science. 2023,
URL https://drivendata.github.io/cookiecutter-data-science/. [Accessed 09
March 2023].

[22] Virtanen P, Gommers R, Oliphant TE, Haberland M, Reddy T, Cournapeau D,
et al. SciPy 1.0: Fundamental algorithms for scientific computing in python.
Nature Methods 2020;17:261–72. http://dx.doi.org/10.1038/s41592-019-
0686-2.

[23] The pandas development team. pandas-dev/pandas: Pandas. 2020.
[24] Estrin D, Sim I. Open mHealth architecture: an engine for health care

innovation. Science 2010;330(6005):759–60.
[25] Plotly Technologies Inc. Collaborative data science. Place: Montreal, QC:

Plotly Technologies Inc.; 2015, URL https://plot.ly.
[26] Niimpy: behavioral data analysis — Niimpy dev documentation. 2023, URL

https://niimpy.readthedocs.io/en/latest/. [Accessed 09 March 2023].
[27] Waskom ML. Seaborn: statistical data visualization. J Open Source Softw

2021;6(60):3021. http://dx.doi.org/10.21105/joss.03021.
[28] Wang R, Chen F, Chen Z, Li T, Harari G, Tignor S, et al. StudentLife:

assessing mental health, academic performance and behavioral trends of
college students using smartphones. In: Proceedings of the 2014 ACM
international joint conference on pervasive and ubiquitous computing.
2014, p. 3–14.

[29] Kroenke K, Spitzer RL, Williams JB. The PHQ-9: validity of a brief
depression severity measure. J Gen Intern Med 2001;16(9):606–13.

[30] Kaggle public API documentation. 2023, URL https://www.kaggle.com/
docs/api. [Accessed 09 March 2023].

[31] Polar accesslink API V3. 2023, URL https://www.polar.com/accesslink-api/
#polar-accesslink-api. [Accessed 09 March 2023].

[32] Triana AM, Martikkala A, Baryshnikov I, Heikkilä R, Alakörkkö T, Darst RK,
et al. Mobile monitoring of mood (MoMo-mood) pilot: A longitudinal,
multi-sensor digital phenotyping study of patients with major depressive
disorder and healthy controls. Health Informatics; 2020, http://dx.doi.org/
10.1101/2020.11.02.20222919, URL http://medrxiv.org/lookup/doi/10.1101/
2020.11.02.20222919.

[33] Baryshnikov I, Aledavood T, Rosenström T, Heikkilä R, Darst R, Riihimäki K,
et al. Relationship between daily rated depression symptom severity
and the retrospective self-report on PHQ-9: A prospective ecological
momentary assessment study on 80 psychiatric outpatients. J Affect Disord
2023;324:170–4.

[34] Chen C, Haddad D, Selsky J, Hoffman JE, Kravitz RL, Estrin DE, et
al. Making sense of mobile health data: an open architecture to
improve individual-and population-level health. J Med Internet Res
2012;14(4):e2152.

8

http://dx.doi.org/10.1017/cts.2020.511
http://dx.doi.org/10.1017/cts.2020.511
http://dx.doi.org/10.1017/cts.2020.511
https://www.cambridge.org/core/journals/journal-of-clinical-and-translational-science/article/digital-biomarker-discovery-pipeline-an-opensource-software-platform-for-the-development-of-digital-biomarkers-using-mhealth-and-wearables-data/A6696CEF138247077B470F4800090E63
https://www.cambridge.org/core/journals/journal-of-clinical-and-translational-science/article/digital-biomarker-discovery-pipeline-an-opensource-software-platform-for-the-development-of-digital-biomarkers-using-mhealth-and-wearables-data/A6696CEF138247077B470F4800090E63
https://www.cambridge.org/core/journals/journal-of-clinical-and-translational-science/article/digital-biomarker-discovery-pipeline-an-opensource-software-platform-for-the-development-of-digital-biomarkers-using-mhealth-and-wearables-data/A6696CEF138247077B470F4800090E63
https://www.cambridge.org/core/journals/journal-of-clinical-and-translational-science/article/digital-biomarker-discovery-pipeline-an-opensource-software-platform-for-the-development-of-digital-biomarkers-using-mhealth-and-wearables-data/A6696CEF138247077B470F4800090E63
https://www.cambridge.org/core/journals/journal-of-clinical-and-translational-science/article/digital-biomarker-discovery-pipeline-an-opensource-software-platform-for-the-development-of-digital-biomarkers-using-mhealth-and-wearables-data/A6696CEF138247077B470F4800090E63
https://www.cambridge.org/core/journals/journal-of-clinical-and-translational-science/article/digital-biomarker-discovery-pipeline-an-opensource-software-platform-for-the-development-of-digital-biomarkers-using-mhealth-and-wearables-data/A6696CEF138247077B470F4800090E63
https://www.cambridge.org/core/journals/journal-of-clinical-and-translational-science/article/digital-biomarker-discovery-pipeline-an-opensource-software-platform-for-the-development-of-digital-biomarkers-using-mhealth-and-wearables-data/A6696CEF138247077B470F4800090E63
https://www.cambridge.org/core/journals/journal-of-clinical-and-translational-science/article/digital-biomarker-discovery-pipeline-an-opensource-software-platform-for-the-development-of-digital-biomarkers-using-mhealth-and-wearables-data/A6696CEF138247077B470F4800090E63
https://www.cambridge.org/core/journals/journal-of-clinical-and-translational-science/article/digital-biomarker-discovery-pipeline-an-opensource-software-platform-for-the-development-of-digital-biomarkers-using-mhealth-and-wearables-data/A6696CEF138247077B470F4800090E63
http://dx.doi.org/10.21105/joss.03417
http://dx.doi.org/10.21105/joss.03417
http://dx.doi.org/10.21105/joss.03417
https://joss.theoj.org/papers/10.21105/joss.03417
https://www.frontiersin.org/article/10.3389/fict.2015.00006
https://www.frontiersin.org/article/10.3389/fict.2015.00006
https://www.frontiersin.org/article/10.3389/fict.2015.00006
http://refhub.elsevier.com/S2352-7110(23)00168-1/sb13
http://refhub.elsevier.com/S2352-7110(23)00168-1/sb13
http://refhub.elsevier.com/S2352-7110(23)00168-1/sb13
http://refhub.elsevier.com/S2352-7110(23)00168-1/sb13
http://refhub.elsevier.com/S2352-7110(23)00168-1/sb13
http://refhub.elsevier.com/S2352-7110(23)00168-1/sb13
http://refhub.elsevier.com/S2352-7110(23)00168-1/sb13
http://arxiv.org/abs/2006.11904
https://github.com/onnela-lab/forest
http://dx.doi.org/10.5281/zenodo.7643628
http://dx.doi.org/10.2196/23984
https://www.jmir.org/2021/3/e23984
https://www.jmir.org/2021/3/e23984
https://www.jmir.org/2021/3/e23984
http://refhub.elsevier.com/S2352-7110(23)00168-1/sb18
http://refhub.elsevier.com/S2352-7110(23)00168-1/sb18
http://refhub.elsevier.com/S2352-7110(23)00168-1/sb18
http://refhub.elsevier.com/S2352-7110(23)00168-1/sb18
http://refhub.elsevier.com/S2352-7110(23)00168-1/sb18
http://refhub.elsevier.com/S2352-7110(23)00168-1/sb18
http://refhub.elsevier.com/S2352-7110(23)00168-1/sb18
https://www.tableau.com/node/62770
http://refhub.elsevier.com/S2352-7110(23)00168-1/sb20
http://refhub.elsevier.com/S2352-7110(23)00168-1/sb20
http://refhub.elsevier.com/S2352-7110(23)00168-1/sb20
https://drivendata.github.io/cookiecutter-data-science/
http://dx.doi.org/10.1038/s41592-019-0686-2
http://dx.doi.org/10.1038/s41592-019-0686-2
http://dx.doi.org/10.1038/s41592-019-0686-2
http://refhub.elsevier.com/S2352-7110(23)00168-1/sb23
http://refhub.elsevier.com/S2352-7110(23)00168-1/sb24
http://refhub.elsevier.com/S2352-7110(23)00168-1/sb24
http://refhub.elsevier.com/S2352-7110(23)00168-1/sb24
https://plot.ly
https://niimpy.readthedocs.io/en/latest/
http://dx.doi.org/10.21105/joss.03021
http://refhub.elsevier.com/S2352-7110(23)00168-1/sb28
http://refhub.elsevier.com/S2352-7110(23)00168-1/sb28
http://refhub.elsevier.com/S2352-7110(23)00168-1/sb28
http://refhub.elsevier.com/S2352-7110(23)00168-1/sb28
http://refhub.elsevier.com/S2352-7110(23)00168-1/sb28
http://refhub.elsevier.com/S2352-7110(23)00168-1/sb28
http://refhub.elsevier.com/S2352-7110(23)00168-1/sb28
http://refhub.elsevier.com/S2352-7110(23)00168-1/sb28
http://refhub.elsevier.com/S2352-7110(23)00168-1/sb28
http://refhub.elsevier.com/S2352-7110(23)00168-1/sb29
http://refhub.elsevier.com/S2352-7110(23)00168-1/sb29
http://refhub.elsevier.com/S2352-7110(23)00168-1/sb29
https://www.kaggle.com/docs/api
https://www.kaggle.com/docs/api
https://www.kaggle.com/docs/api
https://www.polar.com/accesslink-api/#polar-accesslink-api
https://www.polar.com/accesslink-api/#polar-accesslink-api
https://www.polar.com/accesslink-api/#polar-accesslink-api
http://dx.doi.org/10.1101/2020.11.02.20222919
http://dx.doi.org/10.1101/2020.11.02.20222919
http://dx.doi.org/10.1101/2020.11.02.20222919
http://medrxiv.org/lookup/doi/10.1101/2020.11.02.20222919
http://medrxiv.org/lookup/doi/10.1101/2020.11.02.20222919
http://medrxiv.org/lookup/doi/10.1101/2020.11.02.20222919
http://refhub.elsevier.com/S2352-7110(23)00168-1/sb33
http://refhub.elsevier.com/S2352-7110(23)00168-1/sb33
http://refhub.elsevier.com/S2352-7110(23)00168-1/sb33
http://refhub.elsevier.com/S2352-7110(23)00168-1/sb33
http://refhub.elsevier.com/S2352-7110(23)00168-1/sb33
http://refhub.elsevier.com/S2352-7110(23)00168-1/sb33
http://refhub.elsevier.com/S2352-7110(23)00168-1/sb33
http://refhub.elsevier.com/S2352-7110(23)00168-1/sb33
http://refhub.elsevier.com/S2352-7110(23)00168-1/sb33
http://refhub.elsevier.com/S2352-7110(23)00168-1/sb34
http://refhub.elsevier.com/S2352-7110(23)00168-1/sb34
http://refhub.elsevier.com/S2352-7110(23)00168-1/sb34
http://refhub.elsevier.com/S2352-7110(23)00168-1/sb34
http://refhub.elsevier.com/S2352-7110(23)00168-1/sb34
http://refhub.elsevier.com/S2352-7110(23)00168-1/sb34
http://refhub.elsevier.com/S2352-7110(23)00168-1/sb34

