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Theory of coherent interaction-free detection of pulses

John J. McCord ,* Shruti Dogra, and Gheorghe Sorin Paraoanu
QTF Centre of Excellence, Department of Applied Physics, Aalto University, FI-00076 Aalto, Finland

(Received 1 March 2023; accepted 31 May 2023; published 7 July 2023)

Quantum physics allows an object to be detected even in the absence of photon absorption, by the use of
so-called interaction-free measurements. We provide a formulation of this protocol using a three-level system,
where the object to be detected is a pulse coupled resonantly into the second transition. In the original formulation
of interaction-free measurements, the absorption is associated with a projection operator onto the third state.
We perform an in-depth analytical and numerical analysis of the coherent protocol, where coherent interaction
between the object and the detector replaces the projective operators, resulting in higher detection efficiencies.
We provide approximate asymptotic analytical results to support this finding. We find that our protocol reaches
the Heisenberg limit when evaluating the Fisher information at small strengths of the pulses we aim to detect—in
contrast to the projective protocol that can only reach the standard quantum limit. We also demonstrate that the
coherent protocol remains remarkably robust under errors such as pulse rotation phases and strengths, the effect
of relaxation rates and detunings, as well as different thermalized initial states.

DOI: 10.1103/PhysRevResearch.5.033012

I. INTRODUCTION

Interaction-free measurements [1] are a type of quan-
tum hypothesis tests whereby the presence of an object is
confirmed or falsified even when the probe photons are
not absorbed. As originally formulated, interaction-free mea-
surements are based on the observation that placing an
ultrasensitive object in one arm of a Mach-Zehnder inter-
ferometer alters the output probabilities, thus allowing us
to probabilistically infer its presence. This class of mea-
surements provides a remarkable illustration of so-called
negative-result measurements as first described by Renninger
[2] and Dicke [3]. Furthermore, the detection efficiency can
be improved by utilizing the quantum Zeno effect [4] through
repeated “interrogations” of the object [5–8].

Several topics in the foundations of quantum mechanics
have been motivated by interaction-free measurements, such
as the Hardy’s paradox [9]—where they have been utilized
to rule out local hidden variables. Others include develop-
ments in quantum thermodynamics [10]—where an engine
is proposed that is able to do useful work on an Elitzur-
Vaidman bomb without seemingly having interacted with it.
Finally, interaction-free measurements can induce nonlocal
effects between distant atoms [11], while the Zeno effect
has been shown to transform a single qubit gate opera-
tion into multiqubit entangling gates, even in noninteracting
systems [12,13]. Various implementations of interaction-free
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measurements have been done on different experimental plat-
forms, leading to a plethora of applications. Some examples
include optical imaging, where a photosensitive object is
imaged in an interaction-free manner [14], counterfactual
quantum cryptography, where a secret key distribution can
be acquired without a particle carrying this information be-
ing transmitted through a quantum channel [15,16], and
counterfactual ghost imaging, where ghost imaging, i.e., the
technique of using entangled photon pairs for detecting an
opaque object with improved signal-to-noise ratio is merged
with the idea of interaction-free measurements. This com-
bined technique significantly reduces photon illumination and
maintains comparable image quality of regular ghost imaging
[17,18]. A related idea—combining interaction-free measure-
ments with the concept of induced coherence—led to the
realization of single-pixel quantum imaging of a structured
object with undetected photons [19]. Other examples include
counterfactual communication [20–25], and counterfactual
quantum computation [26]. Remarkably, these advancements
have shown that information can be transmitted independent
of a physical particle carrying it [20,22,24]. Overall, these
results demonstrate that the interaction-free concept offers an
unconventional yet viable avenue towards quantum advan-
tage: tasks that manifestly cannot be achieved classically can
be realized in this framework.

We recently proposed and experimentally demonstrated a
protocol [27], which employs repeated coherent interrogations
instead of projective ones as used in the original interaction-
free concept [1,4–8]. This distinction is of fundamental nature
and for clarity we will refer to the original protocol as “pro-
jective” and to ours as “coherent”. We will formulate these
protocols as the task of detecting the presence of a microwave
pulse in a transmission line via a resonantly-activated detector
realized as a three-level (qutrit) transmon. We hereafter refer
to these pulses as B pulses, which are taken close to resonance
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with respect to the second transition. The connection to a
specific superconducting-circuit implementation is convenient
but not restrictive: indeed the concepts are general and can be
readily employed in any experimental platform where a three-
level system is available. We will investigate the theoretical
foundations of this protocol, providing approximate analytical
results in the asymptotic limit. We will study the sensitiv-
ity of the success probability and efficiency of our coherent
protocol and compare with the corresponding figures-of-merit
of the projective protocol under a variety of realistic exper-
imental scenarios. Our results show that coherence acts as
an additional quantum resource, allowing the accumulation
of information about the B pulses under successive exposures
separated by Ramsey pulses on the first transition. Moreover,
the protocol proposed can be further generalized to the de-
tection of quantized B pulses (such as photons in a single or
multiple cavities).

The paper is organized as follows: In Sec. II, we intro-
duce our coherent detection scheme and compare it with the
standard projective scheme as often described in optical sys-
tems. We outline the description of the two hypothesis: the
system evolution with only beam-splitters and the evolution
with the presence of pulses we wish to detect. In Sec. III, we
investigate the limit when the number of Ramsey sequences N
is large, and subsequently explore the lower limit of B-pulse
strength θ leading to sufficiently high detection efficiency. In
Sec. IVA, we investigate how information on the presence of
the pulses is acquired during each protocol by studying the
success probabilities obtained when B pulses of same strength
are applied. We also investigate in Sec. IVB the successive
probabilities of success and absorption for N = 25 Ramsey
sequences when subjected to B pulses of strength θ = π .
Additionally, in Sec. IVC we investigate the quantum limits
of each protocol by studying the Fisher information and the
Fisher information of the efficiencies. In Sec. V, we consider
several sources of error and expound on their implications
for the effectiveness of our protocol. These include the effect
of beam-splitter strength (Sec. VA), B pulses with a variable
phase (Sec. VB), interaction-free detection with randomly
placed B pulses (Sec. VC), initialization on thermal states
(Sec. VD), effects of decoherence (Sec. VE), and detuned B
pulses (Sec. VF).

II. COHERENT INTERACTION-FREE MEASUREMENTS
WITH QUTRITS

Our protocol employs repeated coherent interrogations to
perform interaction-free measurements using a qutrit [27].
We consider a qutrit (three-level quantum system) with
basis states (|0〉, |1〉, |2〉) and introduce the asymmetric Gell-
Mann generators of SU(3) by σ

y
kl = −i|k〉〈l| + i|l〉〈k|, σ x

kl =
|k〉〈l| + |l〉〈k|, with k, l ∈ {0, 1, 2} and k < l . Our protocol is
such that in certain cases it is possible to detect the presence of
a series of pulses without exciting the detector into the second
excited state. This is experimentally realized by trying to
detect the presence of a microwave pulse in a transmission line
using a transmon qutrit, which serves as a resonantly-activated
detector. We require that the detector has not irreversibly
absorbed the pulse at the end of the protocol, as witnessed
by a nonzero occupation of the second excited state.

Moreover, we employ N Ramsey sequences with beam-
splitter unitaries S(φ) to the lowest two energy levels. Each
of these unitaries are of the form

S(φ) = exp
[−iφσ

y
01/2

]
, (1)

or

S(φ) = I01 cos
φ

2
− iσ y

01 sin
φ

2
+ |2〉〈2|, (2)

where I01 = |0〉〈0| + |1〉〈1| is the identity operator on the
{|0〉, |1〉} subspace.

The microwave B pulses to be detected are parametrized
by a strength θ j and a phase ϕ j , and are represented by the
unitary

B(θ j, ϕ j ) = exp[−iθ jn jσ12/2], (3)

where n j = (cos ϕ j, sin ϕ j, 0) and σ12 = (σ x
12, σ

y
12, σ

z
12), or

explicitly

B(θ j, ϕ j ) = |0〉〈0| + I12 cos
θ j

2

−i
(
cos ϕ jσ

x
12 + sin ϕ jσ

y
12

)
sin

θ j

2
. (4)

In matrix form the S and B operators read

S(φ) =

⎛
⎜⎝

cos φ

2 − sin φ

2 0

sin φ

2 cos φ

2 0

0 0 1

⎞
⎟⎠, (5)

and

B(θ j, ϕ j ) =

⎛
⎜⎝

1 0 0

0 cos θ j

2 −ie−iϕ j sin θ j

2

0 −ieiϕ j sin θ j

2 cos θ j

2

⎞
⎟⎠. (6)

The protocol’s evolution is governed by a series of
j = 1, N Ramsey sequences, each containing a B pulse
with arbitrary θ j as shown in Fig. 1(a). In practice, these
unitaries are generated by applying pulses with Hamiltoni-
ans H01, j (t ) = −ih̄[�01, j (t )/2]|0〉〈1| + H.c. and H12, j (t ) =
h̄[�12, j (t ) exp(−iϕ j )/2]|1〉〈2| + H.c. resonant to the 0 − 1
and 1 − 2 transitions respectively. The beam-splitter pulses
differ only by the times at which they are applied, other-
wise their Rabi frequencies are identical, resulting in φ =∫ ∞
−∞ �01, j (t )dt . For the B pulses, the Rabi frequencies in

general can differ at different j’s and therefore we have θ j =∫ ∞
−∞ �12, j (t )dt .

At the end of the protocol, single-shot measurements (cor-
responding to projectors |0〉〈0|, |1〉〈1|, and |2〉〈2|) as well as
three-level state tomography can be performed.

We now outline the two main cases below.
Case 1. Absence of B pulses
Here we study the efficiency of the protocol under a gen-

eral φ. The usual arrangement considered in interaction-free
measurements is φ → φN = π/(N + 1) [5]. From Eq. (1) we
see that SN+1(φN ) = exp(−iπσ

y
01/2) = −|0〉〈1| + |1〉〈0| +

|2〉〈2|. This choice guarantees that for an initial state |0〉 the
resulting state after N + 1 beam-splitter unitaries is |1〉, while
an initial state |1〉 would result in a final state −|0〉. When no
B pulses are present, the coherent and projective protocols are
identical.
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FIG. 1. Schematic of (a) the coherent protocol and (b) the pro-
jective protocol. Here, φN = π/(N + 1).

Case 2. Presence of B pulses
When B pulses are included between each beam-splitter,

the evolution of our coherent protocol with N pulses is gov-
erned by the string of unitaries

U{N} = S(φ)
N∏

j=1

[B(θ j, ϕ j )S(φ)], (7)

where the product is defined from right to left and the sub-
script {N} signifies the fact that U is parametrized by all φ,
θ j , and ϕ j variables from j = 1 to j = N . When starting in
the state |0〉, the final state after the application of the full
sequence is U{N}|0〉, yielding the probabilities

pi = |〈i|U{N}|0〉|2 (8)

for i = {0, 1, 2}. If the initial state is a density matrix ρ, then
we have U{N}ρU†

{N} as the final state and the probabilities are

pi = Tr{|i〉〈i|U{N}ρU†
{N}}. (9)

Table I shows the resulting probabilities and the coherent
interaction-free efficiency, ηc=p0/(p0 + p2), for N = 1, 2, 3,

TABLE I. The probabilities p0, p1, p2, and efficiency ηc for the
coherent case up to four significant digits for N = 1, 2, 3, and 4. All
values are evaluated at φ = φN , θ = π , and ϕ = π/2. The initial
state is |0〉.

N = 1 N = 2 N = 3 N = 4

p0 0.25 0.8091 0.9983 0.8957
p1 0.25 0.0034 9.721×10−4 0.1041
p2 0.5 0.1875 7.243×10−4 2.505×10−4

ηc 0.3333 0.8119 0.9993 0.9997

and 4 Ramsey sequences at φ = φN , θ = π , and ϕ = π/2,
when U{N} acts on the initial state |0〉.

We also introduce the following elements of the confu-
sion matrix [27]: the positive ratio (PR) and the negative
ratio (NR). For equal-strength pulses with θ j = θ these are
defined as PR(θ ) = p0(θ )/(p0(θ ) + p1(θ )), and NR(θ ) =
p1(θ )/(p0(θ ) + p1(θ )). The quantity FPR = PR(θ = 0) is
called the false positive ratio and it is a way to characterize the
reduction in the confidence of the predictions due to the dark
count probability p0(θ = 0) (positive detection count even in
the absence of a pulse).

In contrast, for the standard projective case [1] as usually
implemented in optics, the POVM measurement operators
after each application of the B pulse are

Pabs = I01 = |0〉〈0| + |1〉〈1|, (10)

Pabs = |2〉〈2|, (11)

where the latter is the projector corresponding to an absorption
event while the first describes the situation where absorption
did not occur. Figure 1(b) diagrammatically illustrates this
detection scheme for a protocol with N steps. Note that by
including the pulse we can define the POVM measurement
operators Mabs = PabsB and Mabs = PabsB, satisfying the com-
pleteness property M†

absMabs + M†
abs

Mabs = I3, where I3 is the
3×3 identity matrix.

In this protocol, it is useful to define two probabilities:
the probability of detection and the probability of absorption
[5]. For N B pulses, these probabilities can be obtained by
applying Wigner’s generalization of Born’s rule [28]

pdet = |〈0|X{N}|0〉|2, (12)

pabs =
N∑

j=1

|〈2|B(θ j, ϕ j )X{ j−1}|0〉|2, (13)

where the string of operators

X{ j} = S(φ)
j∏

i=1

[PabsB(θi, ϕi )S(φ)] (14)

with the convention X0 = I3 (the 3×3 identity matrix) now
plays the role of the UN unitary from the coherent case, see
Eq. (7).

One can readily verify that pdet is a product of probabilities:
the probability of detection on the state |0〉 when applying
S the (N + 1)th time multiplied by the probability that the
wavefunction did not collapse to |2〉 in any of the previous
N detection steps. Similarly, pabs is a sum of probabilities,
each of them obtained as a product between the state-|2〉
probability after applying B in step j and the probability that
the wavefunction did not collapse to |2〉 in any of the previous
j − 1 detection steps.

For mixed states, these expressions generalize immediately
as

pdet = Tr{|0〉〈0|X{N}ρX†
{N}}, (15)

pabs =
N∑

j=1

Tr{|2〉〈2|B(θ j, ϕ j )X{ j−1}ρX†
{ j−1}B

†(θ j, ϕ j )},

(16)
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TABLE II. The projective probabilities pdet and pabs, along with
the efficiency η for the projective protocol up to four significant digits
for N = 1, 2, 3, and 4. All values are evaluated at φ = φN , θ = π ,
and ϕ = π/2. The initial state is |0〉.

N = 1 N = 2 N = 3 N = 4

pdet 0.25 0.4219 0.5308 0.6054
pabs 0.5 0.4375 0.3781 0.3307
η 0.3333 0.4909 0.5840 0.6468

where ρ is the initial state. As we will see later, in real systems
under decoherence the operators S and B will also be modified
accordingly.

Table II shows the resulting probabilities and the projective
interaction-free efficiency defined as η = pdet/(pdet + pabs),
for N = 1, 2, 3, and 4, at φ = π/(N + 1), θ = π , and ϕ =
π/2, starting with the initial state |0〉. Comparing the effi-
ciencies from Tables I and II, we note that there is a clear
advantage of the coherent interaction-free detection protocol
with respect to the projective one, with the coherent efficiency
ηc already exceeding 0.999 for N = 3.

Similarly to the coherent case, we can also introduce the
positive and negative ratios of projective interaction-free mea-
surements by replacing p0 and p1 with pdet and 1−pabs−pdet,
respectively.

A few observations are in place at this point. One is that the
three-state model with projection operators is able to emulate
exactly the physics of an ultrasensitive object placed in one
arm of a chain of Mach-Zehnder interferometers, as usually
studied in quantum optics. The only difference is that in the
latter case the measurement is destructive, while in our case
the projector |2〉〈2| is a von Neumann nondemolition operator.
However, this is not a serious issue: One can connect the
|2〉〈2| detector to an instrument that simply switches off the
experiment. Another way of realizing this in circuit QED, is
by using a phase qubit with the states |0〉 and |1〉 localized
in one of the wells of the washboard potential and with the
state |2〉 such that switching into the running state occurs by
tunneling with some probability [29].

Another observation is that in the projective case the prob-
ability pabs is calculated immediately after the last B pulse
while in the coherent case all probabilities are calculated after
the last beam-splitter S. However, the last S acts only on the
subspace {|0〉, |1〉} therefore the probability of state |2〉 re-
mains invariant under the action of the last S. We can therefore
perform a point-to-point fair comparison of the two protocols.

III. RESULTS IN THE LARGE-N LIMIT

In this section, we derive approximate expressions for the
probability amplitudes when our protocol is subjected to a
large number of Ramsey sequences N . We also explore the
lower limit to the B-pulse strength, which can still give rise to
high enough interaction-free detection efficiency.

A. Analytical results

The coherent interaction-free protocol has been re-
ported to yield high efficiencies when the number N of

consecutive Ramsey sequences is large [27]. Here we present
a detailed analysis of this case using analytical tools. Let us
consider the beam-splitter unitary S(φN ) = exp(−iφNσ

y
01/2)

from Eq. (1), where φN = π/(N + 1) is the beam-splitter
strength that presents constructive interference on state |1〉 in
the absence of B pulses. For the B-pulse unitary we choose
B(θ ) = B(θ, π/2) = exp(−iθσ

y
12/2), or in other words we

take all ϕ j = π/2 for simplicity [see Eq. (3)].
We start with the observation that U{N} =

S(φN )[B(θ )S(φN )]N = [S(φN )B(θ )](N+1)B−1(θ ). Since B(θ )
does not act on the ground state, it follows that B−1(θ )|0〉 =
|0〉 and therefore the final state can be obtained as

U{N}|0〉 = [S(φN )B(θ )]N+1|0〉. (17)

Next, our goal is to obtain an approximate spectral decom-
position of the matrix S(φN )B(θ ) in the limit φN � 1 and
cos(θ/2) � 1. The details of this calculation are presented
in Appendix A. We find the eigenvalues 1, e−iθ/2, eiθ/2 with
corresponding eigenvectors appearing as columns in the diag-
onalizing matrix M,

M =

⎛
⎜⎜⎝

1 1
2φN

1
2φN

1
4φN 2i sin θ

4 eiθ/4 −2i sin θ
4 e−iθ/4

1
4φN cot θ

4 −2 sin θ
4 eiθ/4 −2 sin θ

4 e−iθ/4

⎞
⎟⎟⎠.

We can then obtain the matrix [S(φN )B(θ )]N+1 as

[S(φN )B(θ )]N+1=M ·
⎛
⎝1 0 0

0 e−i(N+1)θ/2 0
0 0 ei(N+1)θ/2

⎞
⎠ · M−1.

Consider now the final state written in the form c0|0〉 +
c1|1〉 + c2|2〉 = U{N}|0〉. Using the results above, after some
algebra we obtain

c0 = 1 − 1

2

(
φN

2

)2 1

sin2 θ
4

sin2 (N + 1)θ

4
, (18)

and

c1 = φN

2

1

sin θ
4

cos
Nθ

4
sin

(N + 1)θ

4
, (19)

c2 = φN

2

1

sin θ
4

sin
Nθ

4
sin

(N + 1)θ

4
. (20)

One can see just by inspection that the wavefunction is cor-
rectly normalized up to fourth order in φN .

The detection efficiency of the coherent protocol is given
by

ηc = p0

p0 + p2
= |c0|2

|c0|2 + |c2|2 , (21)

which, using the results above, can be evaluated to

ηc ≈ 1 − φ2
N

16 sin2 θ
4

[
cos

θ

2
− cos

(
Nπ

2
+ π

4

)]2

. (22)

This shows that the efficiency approaches 1 in an oscillatory
way, exactly as observed in the numerical simulations.

These results allow us to obtain even deeper insights into
the mathematics of our protocol. In the asymptotic large-N
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FIG. 2. The probabilities and efficiency of our protocol vs θ/φN

for N = 25. The exact numerical values are represented by solid
lines, whereas the approximations are represented by dashed lines.
We see that for θ/φN � 4, the ground-state probability p0 and effi-
ciency ηc approach unity.

limit and if θ 	 1/N we can completely neglect even the first-
order terms in φN/2. The coefficients of the final wavefunction
become c0 ≈ 1, c1 ≈ c2 ≈ 0 so the protocol achieves nearly
perfect efficiency. To understand why this is the case, we
can calculate U{N} = [S(φN )B(θ )](N+1)B−1(θ ) in this limit,
obtaining

U{N} ≈
(

1 O1×2

O2×1 B(Nθ )

)
, (23)

where On1×n2 is a null matrix of dimension n1×n2 and B(θ ) is
the submatrix on the 1–2 subspace from Eq. (6) with θ j = θ

and φ j = π/2. Asymptotically, the evolution is approximated
as a rotation with an angle Nθ in the subspace {|1〉, |2〉}.
When we apply this operator to an initial state |0〉, the state of
the system remains unaltered with very high probability. This
is straightforward quantitative evidence that in the coherent
interaction-free protocol, the state of the system at large N
does not evolve (mostly), and still one can detect the presence
of a B pulse with very high probability, which is of course an
interaction-free detection.

B. Discussion: limits on θ

Next, we obtain the least value of B-pulse strength for
which the above approximate treatment works appropriately.
In general, for small B-pulse strength (e.g., θ ≈ φN ) the co-
herent interaction-free detection protocol may not result in
an efficient detection. We address this issue numerically by
examining the probabilities of the final state as a function of
the ratio θ/φN , as shown in Fig. 2. In this figure, the exact
numerical results based on evolving the system according
to Eq. (8) are compared with the approximate results from
Appendix A based on the treatment above. Very similar results
are obtained by the use of the simpler expressions from the
previous subsection. We have checked numerically that the
variation of probabilities p0, p1, p2 versus θ/φN is not very
sensitive to the value of N , i.e., the probability profiles remain
almost the same (as that of Fig. 2) for any arbitrary value
of N . We notice that p0 reaches close to 1 at θ/φN 
 4 and
thereafter remains close to 1 for 4 � θ/φN � 4N . At θ/φN =
4(N + 1), which means θ = 4π , it drops again to zero, re-
flecting the 4π periodicity of the system (see also [27] for

(a)

(b)

FIG. 3. The surface map for (a) p0 and (b) pdet as functions of θ

and N in an ideal case of identical B pulses. Red “x” markers corre-
spond to the threshold values of θ at p0 � 0.85 and the dashed black
line in (a) denotes the values θ = 4φN . The inset in (a) represents
ln(θ/π ) with circle symbols taken at four threshold values p0 � 0.25
(blue), p0 � 0.5 (magenta), p0 � 0.85 (red), and p0 � 0.95 (green).
For this analysis the range of N is extended to N ∈ [25, 100]. The
solid lines of the same color are the lines of best fit after taking the
natural logarithm of the power law aN−1, i.e., ln(a) − ln(N ).

the experimental observation of this effect). Thus, θ 
 4φN

is the minimum value of B-pulse strength that gives a highly
efficient interaction-free detection (see the solid blue curve
in Fig. 2). We can understand where this value comes from
by examining the approximate solutions Eqs. (18)–(20): we
see that at θ = 4φN the last sine function in these expressions
becomes zero. Further, we see that the lower and upper limits
of θ/φN , i.e., 4 and 4N respectively mark the boundaries of the
plateau later discussed in Fig. 3 and observed experimentally
in Fig. 6 in Ref. [27] extending from θ = 4φN to θ = 4NφN =
4π − 4φN . The width of the plateau is 2(2π − 2φN ), which
we have verified also by direct comparison with the numerical
data from Fig. 3. This width is therefore zero for N = 1 (p0

attains its maximum value close to 1 only at θ = 2π and has a
downward trend as θ exceeds 2π ). The limits (or the width) of
these plateaus of highly efficient interaction-free detection are
further attributed to the periodicity of the protocol in θ with a
period 4π . In the next sections, we will be more interested in
exploring the lower limit to the B-pulse strength, which can
give rise to near-unity interaction-free detection efficiency.
It is also noteworthy that the solid curves in Fig. 2 result
from numerical simulations without considering the large-N
approximation. Thus, the bounds on θ/φN obtained here rep-
resent a general characteristic of our protocol.
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IV. INFORMATION IN COHERENT
INTERACTION-FREE DETECTION

The effect of B pulses on the success probability and ef-
ficiency of each protocol is more thoroughly explored in this
section, with the goal of providing further insights into how
information on the presence of the pulses is acquired during
the protocol. We begin by considering B pulses with equal
strengths and study the behavior of the success probabilities of
both protocols at different B-pulse strengths θ and N Ramsey
sequences. Further, we explore the successive probabilities at
different N of the system evolutions for both protocols with
B pulses of strength θ = π . Finally, we provide an analysis
based on Fisher information, which demonstrates that the
precision at which we can determine a small θ obeys the
Heisenberg scaling.

A. B-pulses with equal strengths

While the coherent protocol generally has a higher success
probability than the projective protocol, it is useful to see
just how they differ at various N’s for different fixed B-pulse
strengths θ . Here we consider the success probability profiles
of each protocol for various values of N ∈ [1, 25] as a function
of θ as shown in Fig. 3, with optimal beam-splitter strengths
φ = φN . For a given N , all the B pulses are of the same
strength θ , varying linearly between [0, 2π ]. Both p0 and pdet

are symmetrical about θ = 2π , and as expected, gradually rise
from 0 to a maximum value with increasing θ and tend to stay
higher, forming a plateau with a noticeably wavy structure
for p0. This plateau gets wider with increasing N . The same
p0 can also be recognized as a quantitative measure of the
success probability of the interaction-free measurement. Thus,
the widening of the p0 plateau (close to 1) for higher values of
N allows us to conclude that setups with multiple B pulses
can perform interaction-free detection of the B pulses with
very high efficiency. Beyond a threshold θ , this efficiency
becomes almost independent of θ . This threshold θ , is rep-
resented by red markers in Fig. 3(a), plotted on top of the
p0 distribution as a function of N and θ corresponding to an
ideal case of identical B pulses. Data shown with red markers
in fact correspond to a minimum θ satisfying p0 � 0.85. The
dashed black line represents p0 at θ = 4φN , and the inset is the
log-log plot of the populations at thresholds p0 � 0.25 (blue),
p0 � 0.5 (magenta), p0 � 0.85 (red), and p0 � 0.95 (green)
when considering N ∈ [25, 100]. The circles are ln(θ/π ) at
these thresholds and the solid lines are the best fits of the form
ln (aN−1). We find that the coefficients are approximately a =
1.7, 2.2, 2.9, and 3.3 at thresholds p0 � 0.25, 0.5, 0.85, and
0.95, respectively. In Fig. 3(b), we notice that the threshold
pdet � 0.85 is considerably higher in θ than the correspond-
ing threshold of the coherent protocol. In fact, at N = 2, the
threshold is not even reached as can be seen from the lack of
a marker in the figure. Thus, the coherent protocol generally
has higher success probabilities over a wider range of θ , even
at small N .

The N−1 scaling seen in Fig. 3(a) can also be obtained from
Eq. (18) in the following manner. A fixed value of p0 not too
close to 1 (corresponding to the chosen threshold) is obtained
at relatively low values of θ by fixing the ratio θ/φN at a con-

Coherent Projective

FIG. 4. Probabilities of success. (a) pj,0 for the coherent case and
(b) pj,det for the projective case obtained at the end of the successive
jth B-pulse implementations are plotted with values varying in the
range [0,1] as shown by the colorbar. Plots (c) and (d) show the
probabilities of absorption in the coherent and projective cases, re-
spectively. All B pulses are of strength θ = π .

stant value. This immediately results in the scaling θ ∼ N−1

observed numerically. If the measurement of p0 is utilized as a
way of measuring θ , this yields Heisenberg-scaling precision.
We will further confirm this result later in this section when
analyzing the Fisher information.

B. Successive probabilities of detection and absorption

Here we further develop insights into the coherent
interaction-free and projective measurement-based protocols
by looking at the detailed map of successive probabilities
of detection and absorption at the end of each Ramsey se-
quence j when subjected to B pulses of strength θ = π . These
probabilities are denoted respectively by p j,0 and p j,2 for the
coherent case, and p j,det and p j,abs for the projective case. At
the end of the sequence j = N and we have, with the pre-
vious notations, pN,0 ≡ p0, pN,2 ≡ p2, etc. Thus, these maps
show how the probability of occupation of the three levels
evolve with successive jth Ramsey sequence implementations
(given N).

Figures 4(a) and 4(b) presents the ground-state probability
plotted for j ∈ [1, N], N ∈ [1, 25]. As N increases, pj,0 tends
to 1 very rapidly, as shown by the bright red in the color
map, while pdet manages to exceed 0.9 marginally for N = 23.
Implementing the first Ramsey sequence ( j = 1) results in the
same values p1,0 = p1,det for any arbitrary N . This is due to
the fact that the j = 1 coherent and projective sequences do
not differ in any fundamental way when performing a POVM
analysis [27].

In the coherent protocol, p j,0 increases for j � 2 and then
oscillates with j in the range: [0.85, 0.999], which further
subsides for large N . Typically, for large N , say N = 25 in
the coherent protocol, the system tends to stay in the initial
state |0〉 with a very high probability (>0.99) throughout the
sequence. Higher values of p j,det at large N with small values
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of j correspond to higher ground-state occupancy for the first
few initial steps, which should not be mistaken as higher
probability of interaction-free detection.

Similarly, Figs. 4(c) and 4(d) present the probability of
the second excited state p j,2 and the probability of B-pulse
absorption p j,abs at the end of the jth Ramsey sequence im-
plementation for a given N in the coherent interaction-free
and projective measurement protocols, respectively. Mirroring
the features of the p j,0 map, the map of p j,2 also exhibits
a pattern of oscillations with j, where the bright blue color
corresponds to p j,2 values as low as 0.01 and the dark blue
color corresponds to slightly larger values.

C. Fisher information of the protocols

Since our protocol is remarkably efficient it can in principle
be used to provide an estimate for the B-pulse strength θ . Here
we study the associated quantum Fisher information of our
protocol and that of the projective case at θ = 0 to determine
which quantum limits are reached. We imagine two situations:
one in which all three probabilities are used for evaluating θ ,
and the other in which only two probabilities, which make up
the efficiency, are used.

The Cramér-Rao bound states that

Var
(
θ̂
)
� 1

QFI(θ )
, (24)

where the variance of the parameter θ is bounded by the
Fisher information of the parameter QFI(θ ) [30]. Moreover,
the Fisher information is defined as

QFI(θ ) =
∑

i=0,1,2

[∂θ (p(i|θ ))]2

p(i|θ )
. (25)

Thus, the Fisher information of the coherent protocol is

QFIc = (∂ p0/∂θ )2

p0
+ (∂ p1/∂θ )2

p1
+ (∂ p2/∂θ )2

p2
, (26)

and for the projective protocol, it is

QFIproj = (∂ pdet/∂θ )2

pdet
+ (∂ pabs/∂θ )2

pabs

+ [∂ (1 − pdet − pabs)/∂θ ]2

(1 − pdet − pabs)
. (27)

The Fisher information of the efficiency of each protocol
characterizes how sensitive the efficiency is with respect to
a variable, e.g., θ . Explicitly, this is

QFIη(c)
= (∂η(c)/∂θ )2

η(c)
+ [∂ (1 − η(c) )/∂θ ]2

1 − η(c)
, (28)

or more compactly,

QFIη(c)
= 1

η(c)(1 − η(c) )

(
∂η(c)

∂θ

)2

. (29)

As can be seen in Fig. 5, the Fisher informations QFIc
and QFIproj each have maximum values at θ = 0 and θ = 4π ,
regardless of N . In general, QFIη and QFIηc

do not reach their
maxima exactly at θ = 0 or 4π , and these maxima converge
to θ = 0 as N → ∞. This shows that the most interesting
situation for determining θ with high precision occurs at small

FIG. 5. The quantum Fisher informations for N = 2 (a), 5 (b),
and 25 (c) for both coherent and projective cases. (c) Also contains
an inset showing a different resolution of the QFI. Each case is eval-
uated using the Fisher informations QFIc, QFIηc , QFIproj, and QFIη.
(d) Log-log plot of QFIc at θ = 0 (blue circles) along with the exact
solution of QFIc at θ = 4φN (red circles) and the corresponding ap-
proximate solution (yellow circles) using the probability amplitudes
derived in Sec. III. Each case is evaluated in the range N ∈ [25, 100].
The blue, red, and yellow solid lines are the corresponding best-fit
lines.

values (or values near 4π ). We can also see that this should in-
deed be the case by examining Fig. 3(a): there, for N 	 1 the
maximum variation of p0—which is metrologically useful—
occurs at very low values of θ .

Taking the limit of QFIc and QFIproj as θ → 0, we observe
that the projective case is precisely N/2 and that for the
coherent case the power law fitting is 0.42N2. Hence, the pro-
jective protocol reaches the standard quantum limit (SQL) and
the coherent case approaches the Heisenberg limit. Similarly,
QFIη = 0.1N + 0.05 and QFIηc = 0.024N2 (for points larger
than N = 35) as θ → 0, so the SQL and Heisenberg limit
are also respectively reached for the Fisher information of the
efficiencies.

For completion, we also investigate the quantum Fisher
information at θ = π , where the protocol tends to be less
sensitive compared to small θ , due to the formation of plateaus
of probabilities (see discussion in Secs. IIIB and IVA). At
θ = π , and for N ∈ [200, 103], QFIproj monotonically de-
creases following approximately the power law 2.5N−1, and
similarly, QFIη monotonically decreases, except at N = 1,
also following approximately the power law 2.5N−1. QFIc

oscillates in an underdamped fashion with respect to N and
converges to approximately 1.2 as N → ∞. QFIηc

at θ = π

also oscillates in an underdamped fashion and converges to
approximately 0.62 as N → ∞.

Next, we use the approximate expressions for the final state
coefficients (c0, c1, c2) obtained in the limit of large N [see
Eqs. (18)–(20) or Eqs. (A1)–(A3)] and obtain the expressions

033012-7



MCCORD, DOGRA, AND PARAOANU PHYSICAL REVIEW RESEARCH 5, 033012 (2023)

for the quantum Fisher information as a function of θ and N .
To this end, we again use the ratio θ/φN .

Based on the results in Sec. IIIB we know that we can
approach small values of θ down to θ/φN 
 4, and the ap-
proximate equations from Sec. IIIA will still be valid. Thus we
can calculate analytically the Fisher informations, under the
approximations θ/φN � N and φN � 1. For QFIηc

we obtain

QFIηc
≈ 4N2

π (θ/φN )2

[1 − cos(Nπ/2 + π/4)]2

(θ/φN )2 − [1 − cos(Nπ/2 + π/4)]2 .

(30)

This shows that QFIηc
scales as N2 for small values of θ (of

the order of φN ). One can also see that this scaling does not
hold if θ/φN becomes of the order of N (or in other words
θ becomes comparable to π ), as also seen numerically. In
the case of QFIc we can perform a similar analysis, with the
result QFIc ∝ N2 at large N . The final expressions are too
cumbersome to be reproduced here; instead we will make
some further observation based on numerical results. With
increasing N , the parameter θ to be estimated decreases with
N , while the variance in its estimation decreases with N2.
Further, it is seen that for an arbitrarily chosen fixed value of
θ , the QFIc saturates to a constant value for large N , which is
inversely proportional to the value of θ . Figure 5(d) shows the
N2 proportionality of both QFIc(θ = 0) and QFIc (θ = 4φN)
along the corresponding best-fit lines. The latter was explored
due to 4 being the lowest value of θ/φN where the efficiency
is high, as seen in Fig. 2. Thus, we see if the Heisenberg limit
is reached for these choices of θ .

To get some intuition of why the coherent protocol per-
forms better than the projective one, we can examine the
recursion relations in Appendix B. We can see that in the
projective protocol the information about θ contained in the
amplitude of state |2〉 is erased at every application of Pabs,
and what is being measured at every step and retained in the
ground and first excited state amplitudes is ≈ cos(θ/2). In
particular, for θ = π one can clearly see that each Ramsey
sequence is an exact repetition of the previous sequence,
since each sequence starts in state |0〉; due to the absence
of correlations between successive measurements, the scaling
corresponding to the standard quantum limit is expected. In
contrast, in the coherent case the information about sin(θ/2)
is stored in the amplitude of state |2〉 and then fed back into
the Ramsey sequence at the next step. The evolution is unitary,
therefore governed by Heisenberg scaling.

V. SOURCES OF ERRORS

In this section we investigate the sensitivity of the pro-
tocol when subjected to sources of errors. In particular, the
protocol’s sensitivity to beam-splitter strength is important for
assessing its effect on efficiency in the subsequent evolution.
We also study the sensitivity of the protocol when arbitrary
phases are introduced on the B pulses, as well as the effect
of having randomly placed B pulses, i.e., some of the B
pulses, which would normally occur in the Ramsey sequence
are switched off. The sensitivity of the protocol to the initial
sample temperature as well as the effects of decoherence via
relaxation and of detuning are also examined.

(a) (b)

(c)

FIG. 6. The first-excited state probability p1 (a) and the false
positive ratio FPR (b) as a function of N at various realizations of
beam-splitter strength φ at θ j = 0, i.e., no B pulses. For each N the
initial state is the ground state. (c) The sensitivity of p1 for various
values of N as φN is varied by �φ.

A. Effect of beam-splitter strength

We first consider the case θ j = 0, ϕ j = 0 and analyze the
protocol with respect to φ. The optimal choice of beam-
splitter strength φ is π/(N + 1) [5] for a protocol with N B
pulses, which can be seen along the principle diagonal in
Fig. 6. This is the choice of beam-splitter strength such that
only one of the two detectors in the projective protocol will
click, and where there is a complete probability transfer from
the initial state, i.e., ground state, to the first excited state for
our coherent protocol. Surface maps in Figs. 6(a) and 6(b)
show the variation of the first-excited state probability p1 and
false positive ratio (FPR) as a function of N and beam-splitter
angle π/(N + 1) for each N ∈ [1, 25]. Curiously, there are
other maxima in p1, which can be seen in Fig. 6. These
maxima occur after every 2(N + 1) beam-splitter unitaries
for a given protocol with N B pulses. This results from the
net rotation angle, i.e., 2(N + 1)φ = 2π , which after every
2(N + 1) implementations brings the system back to the ini-
tial ground state with a phase of eiπ .

From Fig. 6(b), we see that FPR is high at low values of φ.
In other words, it is not always advantageous to have small φ.

The sensitivity of the first-excited state probability p1 to
beam-splitter strength φN ± �φ is shown in Fig. 6(c) for
strength θ = 0. For θ = 0 and p2 = 0, p1 and p0 are sym-
metrical about φN , i.e., p1(φN + �φ) = p1(φN − �φ). This
behavior is independent of the chosen N . We can also see that
for low errors δφ the first derivative of p1 is zero, which makes
p1 sensitive only to second order in �φ errors. For θ �= 0, we
have pi(φN + �φ) �= pi(φN − �φ), i ∈ {0, 1, 2}, and is no
longer independent of N .
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For the case θ = π , the projective protocol has a detection
probability analytically expressed as

pdet =
[

cos2 φ

2

](N+1)

(31)

and an absorption probability expressed by

pabs = sin2 φ

2

N∑
j=1

[
cos2 φ

2

]( j−1)

= sin2 φ

2

1 − [
cos2 φ

2

]N

1 − cos2 φ

2

.

(32)

These formulas can be obtained in a straightforward way from
of Eqs. (12) and (13) and they coincide with those derived for
Mach-Zehnder based experiments in quantum optics [5–8]. It
is worth pausing and analyzing the meaning of these relations,
as anticipated to some extent in the comment subsequent to
Eqs. (12) and (13). Starting in |0〉, the system remains in
this state with probability cos2(φ/2) after the application of
the first beam-splitter S(φ). If there is no absorption on state
|2〉 after the B pulse, it means that the second beam-splitter
sees the system again in state |0〉. After N + 1 applications
of the beam-splitter, the probability to find the system in the
state |0〉 is [cos(φ/2)]2(N+1). In the case of absorption, pabs is
obtained by summing over probabilities of absorption at each
application j of the B pulse, which are given by the proba-
bility [cos(φ/2)]2( j−1) that the pulse was not absorbed in the
previous j − 1 steps multiplied by the probability sin2(φ/2)
that the system is in the state |1〉 from which absorption to
state |2〉 is possible.

If φ = φN = π/(N + 1), the detection probability be-
comes 1 in the limit of large N , which is a manifestation
of localization on the state |0〉 (suppressing the evolution in
the rest of the Hilbert space) by the quantum Zeno effect.
Indeed we have cos2(φN/2) ≈ 1 − φ2

N/4 and by applying the
binomial formula we obtain

pdet ≈ 1 − (N + 1)
φ2

N

4
≈ 1 − π2

4N
(33)

and

pabs ≈ N
φ2

N

4
≈ π2

4N
, (34)

which yields the efficiency η ≈ pdet. We can now see that,
in contrast to the coherent case [see Eq. (A5)], the scaling
with N of these probabilities is slower ∼1/N , indicative of the
standard quantum limit.

In Figs. 7(a) and 7(b), the efficiencies resulting from the
coherent protocol (ηc) and projective protocol (η) are respec-
tively plotted as functions of beam-splitter strength φ and
N (similar to that of Fig. 6) at B-pulse strength θ = π . In
the upper triangular region where φ > π/(N + 1) and near
φ = π/2, ηc is marginally higher ≈1 − 2% than the optimal
value of ηc at φ = π/(N + 1) only for a few values of N
(10, 14, 18, 21, 22, 25). Lower values of η in Fig. 7(a) for
φ > π/(N + 1) are mainly the result of a higher probability
of occupation of the state |1〉, which further results in a higher
probability for pabs.

In the lower triangular section with φ < π/(N + 1) the ef-
ficiency reaches high values, since the beam-splitter unitaries

(c)

FIG. 7. (a) The efficiency of the coherent protocol ηc and (b) the
projective protocol η as functions of N at various realizations of φ

at θ j = π , ϕ j = π/2. For each N the initial state is the ground state.
(c) The efficiencies along the diagonal φ = π/(N + 1) as a function
of N .

are not capable of transferring the ground-state probability to
the first excited state. This results in higher p0 and hence an
apparently higher ηc (as well as η) as per the lower triangular
region of Figs. 7(b) and 7(a). However, one can see from
Figs. 6(a) and 6(b) that the FPR increases to large values,
making the protocol unusable.

Once again, we insist that φ = π/(N + 1) is the optimal
beam-splitter strength for a given N . A neat comparison of the
efficiencies η (in red) and ηc (in blue) are presented in Fig. 7(c)
for optimal values of the beam-splitter angle. Clearly, ηc al-
ready exceeds 0.95 for N > 5, while η is below 0.9 even for
N = 25, depicting a highly efficient coherent interaction-free
measurement protocol as compared to that of the projective
protocol.

An interesting situation is the case θ = 2π . From
Eq. (6) we can see that the matrix at this choice of θ

has 1 followed by two −1’s on the diagonal, and zero
on the off-diagonal (thus making the phases ϕ irrele-
vant). Classically, this is a 360o rotation that should have
no effect, yet quantum mechanically, due to the appear-
ance of the minus signs, it has a dramatic effect. Indeed,
B(θ = 2π )S(φ)|0〉 = cos φ

2 |0〉 − sin φ

2 |1〉. We can see that
the probability of absorption is zero! Further, after another
application of S, we obtain S(φ)B(θ = 2π )S(φ)|0〉 = |0〉,
therefore achieving a perfect interaction-free detection. Sur-
prisingly, we have a situation where the efficiency of detecting
a pulse that produces no absorption is maximal! Indeed, a
detector based say on absorption of the pulse by a two-level
system and the subsequent measurement of the excited-state
probability would not be able to detect this pulse at all.
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(a)

(b) (c)

FIG. 8. (a) The efficiency resulting from the coherent protocol ηc

as a function of B-pulse strength θ ∈ [0, 4π ] and phase difference δϕ

for N = 2, 5, and 25, (b) One-dimensional traces of ηc for δϕ = 0 are
plotted for N = 2 (in green), N = 5 (in red), and N = 25 (in black)
with solid lines, while dotted lines in respective colors represent the
efficiency of the projective protocol (η) as a function of θ for the
same values of N . (c) Variation of mean efficiency resulting from
the coherent protocol (ηM

c ) is plotted as a function of N . The solid
black (magenta) curve corresponds to ηc (η) with θ j = π and δϕ = 0,
where j ∈ [1, N]. The red solid (dotted) curve with circular mark-
ers corresponds to constant B-pulse strengths θ j = π and randomly
chosen B-pulse phases Rϕ such that ϕ j ∈ [0, π/4] (ϕ j ∈ [0, π ]). The
dashed blue (magenta) curve corresponds to the coherent (projective)
mean efficiencies with randomly chosen B-pulse strengths Rθ such
that θ j ∈ [0, π ], and with fixed ϕ j , i.e., ϕ j = 0. The solid (dotted)
blue curve with triangular markers corresponds to Rθ ∈ [0, π ] and
Rϕ ∈ [0, π/4] (Rϕ ∈ [0, π ]). All of these plots are simulated with
beam-splitters of strength φ = π/(N + 1).

B. B-pulses with a variable phase

Next, we consider the situation when both the B-pulse
strength θ j and phase ϕ j are nonzero. Here, we investigate
the efficiency of the coherent protocol at different N when
subjected to various θ j and ϕ j , where j ∈ [1, N].

First, it is straightforward to verify that the results do
not depend on the phase ϕ j in the projective case. This can
be shown immediately by examining a sequence of Ramsey
pulses with the measurement operators inserted after each B
pulse. The phase appears only on the state |2〉, and therefore it
is eliminated when the nonabsorptive result is obtained—that
is, from the application of Eq. (10), Pabs = |0〉〈0| + |1〉〈1|.

In the coherent case, however, there is a change in effi-
ciency when either θ or the difference between the phases of
consecutive B pulses δϕ ≡ ϕ j+1 − ϕ j is varied. Figure 8(a)
shows ηc surface plots as a function of δϕ and B-pulse strength
θ at N = 2, N = 5, and N = 25. It is clear from these surface
maps that for a wide range of δϕ values, we obtain wide
plateaus of high efficiencies. It is also noteworthy that small
values of δϕ do not cause any significant drop in the efficiency
as compared to that of δϕ = 0. The worst case corresponds to
δϕ = π , where these high efficiency plateaus are significantly
narrowed. The surface maps for ηc as a function of δϕ and

θ j = θ are shown only for a few values of N , the behavior
however is similar for other values of N . The best case, i.e.,
wide region of high ηc for arbitrary N corresponds to δϕ = 0,
which is plotted as solid lines in Fig. 8(b).

Moreover, Fig. 8(b) shows cross sections of the afore-
mentioned surface maps at δϕ = 0 as well as the projective
efficiency η as a function of θ . Dotted lines in Fig. 8(b) are
the corresponding efficiency plots for the projective case, with
green, red, and black colors representing cases with N = 2, 5,
and 25 respectively. Clearly, as N increases, higher efficien-
cies are attained over a broader range of θ .

Next, we used the coherent efficiency ηc as a probe for per-
forming detailed analysis of the protocol for arbitrary B pulses
with randomly chosen strengths and phases. Figure 8(c) shows
the mean efficiency (ηM

c ) vs N for various choices of θ j and ϕ j

with j ∈ [1, 25]. The mean efficiency for each N is obtained
from 104 repetitions, each with a realization of θ j and ϕ j .

The final probabilities and hence ηc are independent of the
B-pulse phase ϕ if for a given N all the B pulses have the same
phases, i.e., ϕ j+1 = ϕ j , such that δϕ = ϕ j+1 − ϕ j = 0 where
j ∈ [1, N − 1]. This is verified numerically for various values
of N with arbitrarily chosen values of θ j ∈ [0, π ] and ϕ j = ϕ,
where ϕ is chosen arbitrarily from the range [0, π ].

As a first check, we took θ j = π and δϕ = 0 and repro-
duced the blue curve representing ηc in Fig. 7(c) for different
values of ϕ. This is represented as a solid black line in
Fig. 8(c). Note that the solid magenta curve represents the
efficiency of the projective case at θ j = π , i.e., identical to the
red curve in Fig. 7(c). We also numerically verified that this
property is extended for arbitrary values of B-pulse strengths
θ j . This observation in fact relaxes the specifications for the B
pulse. However, as previously seen in Fig. 8(a), the relative
values of consecutive B-pulse phases (δϕ �= 0) can signifi-
cantly alter the final probability profiles, and thus ηc.

Further, we studied ηM
c when the phase is constant and the

strengths are randomly varied such that θ j ∈ [0, π ] (denoted
as Rθ ). Since we have established that the behavior of effi-
ciency is not affected by a fixed value of phase, i.e., ϕ j = ϕ,
we select ϕ = 0, as indicated in Fig. 8(c). The blue dashed
line in the figure shows this case for the coherent protocol,
and the magenta dashed line shows the corresponding mean
efficiency ηM for the projective case.

The red solid line with circular markers represents ηM
c

when θ j = π , and the phases are randomly varied such that
ϕ j ∈ [0, π/4] (labelled as Rϕ). Clearly, ηM

c sits near the solid
black line and is thus mostly insensitive to phase in this case.
However, the efficiency is lower when the range of randomly
varied phase is extended such that Rϕ ∈ [0, π ]. This is rep-
resented by the dotted red curve with circular markers in
Fig. 8(c). Nevertheless, we conclude that small errors in the
values of δϕ are tolerable without much compromise in the
efficiency, which makes the coherent protocol more robust.

Further, there is a marked decrease in ηM
c when the B-pulse

strengths are also random. In fact, the lowest mean efficien-
cies for the coherent protocol are when Rθ ∈ [0, π ] and Rϕ ∈
[0, π ]. This is shown as the blue dotted line with triangular
markers. Only the projective cases shown in Fig. 8(c) tend to
be lower than this case as N becomes large. In particular, the
mean projective efficiencies at Rθ ∈ [0, π ], and ϕ = 0 is con-
sistently less than ηM

c (Rθ , Rϕ ) for Rθ ∈ [0, π ] and Rϕ ∈ [0, π ],
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FIG. 9. Positive (solid) and negative (dot-dashed) ratios are plot-
ted for (a) projective, and (b) coherent cases. On the legend (top of
figures) we show the percentages of B pulses placed at random slots.
The simulations are repeated 400 times.

and the projective efficiencies at θ j = π and ϕ j = 0 is also
less than the lowest mean efficiencies of the coherent protocol
after N = 8. Remarkably this means that the coherent protocol
is on average more efficient than the maximum efficiencies
of the projective protocol even when subjected to random
B-pulse strengths and phases in the full range [0, π ].

The mean efficiencies when Rθ ∈ [0, π ] and Rϕ ∈ [0, π/4]
is represented as the solid blue curve with the triangular
markers, and is significantly larger than when Rθ ∈ [0, π ] and
Rϕ ∈ [0, π ]. Thus, as expected, the mean value ηM

c (Rθ , Rϕ )
lies close to the probabilities obtained with all B pulses of
strength π and δϕ = 0 for large N [27].

C. Interaction-free detection with randomly placed B-pulses

In this section, we consider N consecutive Ramsey se-
quences with randomly placed B pulses. In each Ramsey
sequence, the B-pulse slot can either have a B pulse with
θ = π , i.e., maximum strength, or θ = 0 (no B pulse). In
other words, this situation corresponds to arbitrarily placing
maximum-strength B pulses in the N Ramsey slots with a
certain probability. Here we consider four cases where each
B-pulse slot can have a pulse with probabilities 1, 1/2, 1/4,
and 1/8. Depending upon the arrangements of the B pulses
in the full pulse sequence, the results can vary significantly.
Suppose that out of N B-pulse slots, n have B pulses with
maximum strength while N-n are vacant. The number of
combinations is N!/(n!(N − n)!) where n ∈ [0, N]. The to-
tal number of combinations can reach a maximum of 107

at n = N/2 and N = 25. Figure 9 shows the calculations of
the Positive ratio and Negative ratio for (a) projective and
(b) coherently interrogated detection schemes with different
percentages of B pulses. Different curves in fact plot the
average of PR and NR values obtained from 400 repetitions

with random combinations of vacant and occupied slots for
the B pulses. As shown in Fig. 9, curves in blue correspond
to a situation with all B pulses of strength π , which means
that there is a very large flux of microwave photons resonant
with |1〉 − |2〉 transition. Due to this large flux, whenever level
|1〉 acquires some population at the end of a beam-splitter
operation, it is highly likely that our three-level system will
transit to its second excited state. Despite the absorption of
a fraction of photons, the positive ratio PR(θ ) approaches 1,
while the NR(θ ) approaches 0. It is interesting to note that as n
decreases, the probability of absorption of photons increases.
This counterintuitive behavior is due to the abrupt and rapid
decrease in the norm p0 + p1. PR and NR are highly depen-
dent upon the combinations, therefore it is more useful to look
at their average behaviors. Consistent with these observations,
it is also noteworthy that as n decreases to N/2, events leading
to the absorption of photons increase, which further increases
for large N values as n decreases to N/4 and N/8 respectively.

D. Initialization on thermal states

The initial state of a real device is sometimes not perfectly
thermalized to the ground state. For a real device such as
the transmon, the initial state can have a rather high initial
temperature, of the order of 50–100 mK [31].

For a general three-level system in thermal equilibrium, the
density matrix is of the form

ρ = p0|0〉〈0| + p1|1〉〈1| + p2|2〉〈2|, (35)

where the probabilities are

pi = 1

Z
e− Ei

kBT , i ∈ {0, 1, 2}, E0 = 0, (36)

and the canonical partition function is

Z =
∑

i

exp [−Ei/kBT ] = 1 + e−h̄ω01/kBT + e−h̄ω02/kBT .

By populating our initial state in accordance with Eq. (35)
using qutrit transition frequencies ω01/(2π ) = 7.20 GHz,
ω12/(2π ) = 6.85 GHz, and with initial temperatures T ∈
[0, 100] mK, we see in Fig. 10 that the efficiencies are less
sensitive at lower initial temperatures, and that the coherent
protocol is overall more efficient than the projective case for
a given N . In fact, at the modest N = 25, the efficiency
of the coherent protocol is greater than the efficiency of the
projective case η at N = 250.

The dark count probabilities across this range of initial
sample temperatures are determined by p0(θ = 0) at each of
the temperatures. The dark count probabilities monotonically
increase with temperature and are small across this range,
less than 10−6 until 30 mK, and reach approximately 0.031
at 100 mK. These values are the same for both the coherent
and projective protocols, as the dark count probabilities are
necessarily computed at θ = 0. Consequently, the dark count
probabilities are also independent of N since we consistently
choose φ = π/(N + 1), i.e., φN .

E. Effects of decoherence

In real systems such as transmons, the action of the beam-
splitters and the B pulses is modified due to decoherence. To
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FIG. 10. Efficiencies for the two protocols vs initial temperatures
T ∈ [0, 100] mK, with each B-pulse strength at θ = π and no phase
variation between consecutive B pulses. Plots are shown for N = 25
and N = 250 for each protocol. The typical base temperature of a
dilution fridge (10 mK) is indicated with the black dotted line.

account for this effect, we consider a model where the first
and second levels can relax to the ground and first excited
state respectively with rates �10 and �21 [32,33].

The action of the beam-splitter on the density matrix is
obtained from

ρ̇ = − i

h̄
[H01, j (t ), ρ] +

∑
l=0,1;k=l+1

�klD[σlk]ρ, (37)

while for the B pulse we have

ρ̇ = − i

h̄
[H12, j (t ), ρ] +

∑
l=0,1;k=l+1

�klD[σlk]ρ (38)

with H01, j and H01, j as introduced in Sec. II, and D[L]ρ =
LρL† − 1

2 {L†L, ρ} defining the Lindblad super operator with
jump operators L. Also note that for the transmon direct re-
laxation from the second excited state to the ground state is
suppressed by selection rules.

In Fig. 11, we study the effect of various relaxation rates
�10, �21 ∈ [0, 0.2] MHz on the efficiencies of the coherent (a)
and projective (b) protocols at θ = π . The dashed black line
in both plots corresponds to the particular case of a transmon
device, where these rates are related as, i.e., �21 = 2�10.

We see from Fig. 11 that ηc is consistently greater than
η, where their mean values from Fig. 11 are approximately
0.9959 and 0.9125, respectively. We also note from the slope
of the contour lines that the coherent case appears less sen-
sitive to variation in �10 compared to the projective protocol.
The dark count probabilities, i.e., FPRs are also reasonably
low, having a maximum value of 27.4% for the worst-case
scenario of a transmon with relatively large relaxation �10 =
0.2 MHz.

A remarkable feature of the protocol is the robustness
against decoherence acting on the 1–2 subspace. One can see
from Fig. 11(a) that a change in �21 produces a much smaller
change in efficiency than a change in �01 (equal-efficiency
white lines are nearly vertical), which is not the case for
the projective protocol. To illustrate this point, in Fig. 12
we present p0(θ = π ) and p1(θ = 0) for �10 = 0.1 MHz and

FIG. 11. The efficiencies of the protocols (a) ηc and (b) η at θ =
π and N = 25 as functions of relaxation rates �10 and �21, both in
MHz. The dashed line is along �21 = 2�10, i.e., corresponding to
transmons.

�12 = 10 MHz and N from 1 to 50. Note that �21 is 100
times larger than �10 and yet the protocol is usable, with
the limitation coming from the increase in the dark counts
(FPR) p0(θ = 0) = 1 − p1(θ = 0) at large N . At N = 50,
p0(θ = π ) = 0.977, and pdet (θ = π ) = 0.937—whereas, the
dark count is p0(θ = 0) = 1 − p1(θ = 0) = 0.263. Clearly
the pdet of the projective protocol is more sensitive to �21

This difference is even more prominent at smaller values
of θ : We find numerically that as θ decreases both p0(θ )

FIG. 12. Probability vs N ∈ [0, 50] for the coherent and projec-
tive protocols at relaxation rates �10 = 0.1 MHz, �21 = 10 MHz. In
particular, p0 and pdet are evaluated at θ = π , and p1 and pdet , as well
as their complements (1 − p1 and 1 − pdet) are evaluated at θ = 0.
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and pdet (θ ) curves move to lower values maintaining a gap
between them, and with the latter approaching faster the
pdet (θ = 0) = p0(θ = 0) line. Also, the duration of the B
pulses used is 112 ns, while that of beam-splitter pulses is
56 ns, therefore 50 pulses take 8.5 µs, much longer than the
relaxation time �−1

21 = 100 ns of the state |2〉. This can be
understood by the fact that the B pulse and the relaxation act
jointly as a disturbance of the interferometry pattern. It also
shows that, in order to apply our protocol, one only needs
a good two-level system: even if the third state is affected
by large decoherence, the protocol will still work. Also note
that, even if the FPR is affected in a relatively stronger way
by the relaxation in the 0–1 subspace due to the increase in
the dark count probability p0(θ = 0), this detrimental effect is
still slightly weaker than what one would expect from a naive
estimation of probabilities decaying exponentially with a rate
�−1

10 during the total duration of the protocol.

F. Detuned B-pulses

We now examine the effect of a detuning δ of the B
pulse with respect to the second transition. For simplicity
we consider identical pulses, implemented by the Hamilto-
nian H12(t ) = h̄[�12(t ) exp(−iϕ)/2]|1〉〈2| + H.c. − h̄δ|2〉〈2|.
With the usual notation θ = ∫ ∞

−∞ �12(t )dt and with χ = δτ ,
where τ is the duration of the B pulse, we find that B(θ, ϕ, χ )
takes the form

B(θ, ϕ, χ ) =
(

1 O1×2

O2×1 eiχ/2B

)
, (39)

where again On1×n2 is the null matrix of dimension n1×n2 and
the submatrix B has elements

B11 = B∗
22 = cos

√
θ2 + χ2

2
− iχ√

θ2 + χ2
sin

√
θ2 + χ2

2
,

(40)

and

B12 = −B∗
12 = − iθe−iϕ√

θ2 + χ2
sin

√
θ2 + χ2

2
. (41)

In Figs. 13(a) and 13(b) we present the results of simulating
the protocol up to N = 25 for θ = π/2. Remarkably, for the
coherent case as N gets larger, the B pulse can be detected
even for relatively large values of χ . In other words, the
small effect on the interference pattern at small values of N
gets amplified at larger N . In contrast, this effect is not so
prominent for the projective case. The detection bandwidth
of p0 appears to linearly increase symmetrically about χ = 0
producing a fan-out structure, whereas pdet has less defined
features and lower values.

To show how dramatically different this situation is from
the two-level case, consider what would happen if we aim to
detect the pulse by measuring the off-resonant Rabi oscillation
produced by a pulse B acting N times on an initial state with
maximum population on one of the levels. Figure 13(c) shows
the population on the other level, which can be used as a
detection signal and is explicitly

θ2

θ2 + χ2
sin2 N

√
θ2 + χ2

2
. (42)

FIG. 13. The success probabilities as functions of detuning χ and
N Ramsey sequences for (a) the coherent case and (b) the projective
case at θ = π/2. (c) also shows the success probability at θ = π/2
as a function of χ and N , but when the system is restricted to two
levels and the evolution is solely governed by B acting on the state(

0
1

)
, N times.

We can see that the detection bandwidth does not increase
with N .

VI. CONCLUSIONS

We have investigated a protocol for interaction-free mea-
surements in a three-level system that uses coherent unitary
evolution instead of projective measurements. We found that
the coherent scheme is generally more efficient than the pro-
jective protocol, and we derived asymptotic analytical results
that demonstrate conclusively the existence of this enhance-
ment. When considering the large N limit, we determined
the minimum value of B-pulse strength, which yields opti-
mal success probability and efficiency to be approximately
four times the beam splitter strength. From the analysis of
Fisher information, we found that for weak B pulses our
coherent interaction-free detection scheme reaches the
Heisenberg limit while the projective scheme may only reach
the standard quantum limit. We have explored numerically the
sensitivity of our coherent interaction-free detection scheme
under various imperfections and realistic conditions and com-
pared it with the projective one. We find that the coherent
protocol remains robust under experimentally-relevant vari-
ations in beam-splitter strengths, temperature, decoherence,
and detuning errors. Our results open up a route towards quan-
tum advantage by proposing a task that cannot be achieved
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classically and by using coherence as a quantum resource to
achieve it efficiently.
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APPENDIX A: DETAILS ABOUT THE DERIVATION
OF ANALYTICAL RESULTS IN THE LARGE-N LIMIT

Here we give more details about the diagonalization of
the operator S(φN )B(θ ). We expand det[S(φN )B(θ ) − λI3]
in powers of φ/2 and retain terms up to second order,
obtaining

det[S(φN )B(θ ) − λI3] ≈ (1 − λ)[λ2 − 2λ cos(θ/2) + 1

− 1

2
(φN/2)2(1 − λ cos(θ/2))]

− 1

2
(φN/2)2[λ2 − 2λ cos(θ/2) + 1]

+ (φN/2)2[1 − λ cos(θ/2)].

Next, we neglect terms of the type (φN/2)2 cos(θ/2). Note
that this is a better approximation than just working around
θ ≈ π , allowing us to retain cos(θ/2) in the expression
above whenever it does not get multiplied by the small
factor (φN/2)2. In this approximation, after some algebra
we obtain the eigenvalues λ0 = 1, λ± = ± exp(±iθ/2)

with corresponding eigenvectors |v0〉 =
( 1

tan(φN /4)
tan(φN /4) cot(θ/4)

)
,

|v±〉 =
(

sin(φN /2)
a ∓ ib

∓ia − b

⎞
⎟⎟⎠, where a = cos(θ/2) cos(φN/2) − 1

and b = sin(θ/2) cos(φN/2). Note that |v±〉 = |v∗
∓〉.

We get

[S(φN )B(θ )]N+1=M ·
⎛
⎝1 0 0

0 e−i(N+1)θ/2 0
0 0 ei(N+1)θ/2

⎞
⎠ · M−1,

where

M =
⎛
⎝ 1 sin(φN/2) sin(φN/2)

tan(φN/4) a + ib a − ib
tan(φN/4) cot(θ/4) ia − b −ia − b

⎞
⎠.

Using the above expressions, we obtain an approximate final
state (c0|0〉 + c1|1〉 + c2|2〉) of the three-level system,

c0 = 1

N

[
(a2 + b2) sin

θ

4
+ + tan

φN

4
sin

φN

2

×
(

a sin
(2N + 1)θ

4
+ b cos

(2N + 1)θ

4

)]
, (A1)

and

c1 = 2(a2 + b2)

N tan
φN

4
sin

(N + 1)θ

4
cos

Nθ

4
, (A2)

c2 = 2(a2 + b2)

N tan
φN

4
sin

(N + 1)θ

4
sin

Nθ

4
, (A3)

where N = (a2 + b2) sin(θ/4) − tan(φN/4) sin(φN/2)[a sin
(θ/4) − b cos(θ/4)].

Note that here we have approximated sin(φN/2) ≈ φN/2
and cos(φN/2) ≈ 1 − (φN/2)2/2 when calculating the eigen-
values, but we have chosen to keep the full trigonometric
expressions for the eigenvalues (and subsequently in the ex-
pressions for the matrix M and for the coefficients c0, c1, and
c2). Compared to the case in the main text, where everything
has been Taylor expanded in φN/2, this this leads to a slightly
better approximation, especially at low values of θ , albeit at
the expense of more complicated analytical expressions.

The probability amplitudes Eqs. (A1)–(A3) agree well
with the probability amplitudes derived in the main text,
i.e., Eqs. (18)–(20). For instance, at θ = π and N = 5,
these are c0 = 0.933 (0.931), c1 = 0.254 (0.262), and c2 =
0.254 (0.262), where the values in parenthesis correspond to
Eqs. (18)–(20), respectively. At θ = π and N = 25, these are
c0 = 0.996 (0.996), c1 = 0.0603 (0.0604), and c2 = 0.0603
(0.604).

The coherent detection efficiency of the protocol is given
by

ηc = p0

p0 + p2
= |c0|2

|c0|2 + |c2|2 , (A4)

which, at θ = π , is approximated to be

ηc(θ = π ) = 1 − φ2
N

16

[
1 −

√
2 cos

(
Nπ

2
+ π

4

)]2

. (A5)

This is in agreement with the results in the main text.

APPENDIX B: RECURSION RELATIONS

In this Appendix, we detail how the state at each step is
related recursively to the previous Ramsey sequence. Let us
consider N Ramsey sequences with the beam-splitter strength
φ, B-pulse strength θ j . and phase ϕ j , where j ∈ [1, N].

For the projective case, the state after the application of
j sequences is S(φ)

∏ j
i=1[PabsB(θi, ϕi )S(φ)]|0〉. Let us denote

this state generically by c j,0|0〉 + c j,1|1〉 + c j,2|2〉. Therefore
the (unnormalized) probability amplitudes are recursively re-
lated to the subsequent values at j + 1 as follows:

c j+1,0 = cos
φ

2
c j,0 − sin

φ

2
cos

θ j+1

2
c j,1, (B1)

c j+1,1 = sin
φ

2
c j,0 + cos

φ

2
cos

θ j+1

2
c j,1, (B2)

c j+1,2 = c j,2 = 0. (B3)

For the coherent case, the state after applying j Ram-
sey sequences is given by S(φ)

∏ j
i=1[B(θi, ϕi )S(φ)]|0〉. Let

us similarly denote this wavefunction as c j,0|0〉 + c j,1|1〉 +
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c j,2|2〉. Then the probability amplitudes c j,0, c j,1, and c j,2

satisfy the following recursion relations:

c j+1,0 = cos
φ

2
c j,0 − sin

φ

2
cos

θ j+1

2
c j,1

+ ie−iϕ j+1 sin
φ

2
sin

θ j+1

2
c j,2, (B4)

c j+1,1 = sin
φ

2
c j,0 + cos

φ

2
cos

θ j+1

2
c j,1

− ie−iϕ j+1 cos
φ

2
sin

θ j+1

2
c j,2, (B5)

c j+1,2 = −ieiϕ j+1 sin
θ j+1

2
c j,1 + cos

θ j+1

2
c j,2. (B6)

With these notations, we also have at the end of the
sequences that c0 ≡ cN,0, c1 ≡ cN,1, c2 ≡ cN,2, to make the

connection with the previous usage of coefficients c0, c1, and
c2.

In both cases we can now see the mechanism by which
the probability corresponding to the ground state increases
under successive sequences. Indeed, if at some j we have
|c j,0| ≈ 1 (and consequently |c j,1| � 1, |c j,2| � 1), in the
next step c j+1,1 we will acquire a contribution sin(φ/2)c j,0,
which is very small since φ � 1. We will also acquire a
contribution from the very small previous values c j,1 and c j,2

(in the coherent case). In contrast, α j+1 acquires a contribution
cos(φ/2)c j,0 ≈ 1, therefore remaining the dominant proba-
bility amplitude. At the end of the sequence and for N 	 1
the state will be |0〉, in agreement with the observations from
Sec. III A related to Eq. (23).

Numerical simulations of the probabilities of success
[p0( j, N ), pdet ( j, N )] and of absorption [p2( j, N ), pabs( j, N )]
shown in Fig. 4 directly correspond to the absolute
squares of the corresponding complex coefficients discussed
above.
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