
This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail.

Powered by TCPDF (www.tcpdf.org)

This material is protected by copyright and other intellectual property rights, and duplication or sale of all or
part of any of the repository collections is not permitted, except that material may be duplicated by you for
your research use or educational purposes in electronic or print form. You must obtain permission for any
other use. Electronic or print copies may not be offered, whether for sale or otherwise to anyone who is not
an authorised user.

Gupta, Chetan; Latypov, Rustam; Maus, Yannic; Pai, Shreyas; Särkkä, Simo; Studený, Jan;
Suomela, Jukka; Uitto, Jara; Vahidi, Hossein
Fast Dynamic Programming in Trees in the MPC Model

Published in:
SPAA 2023 - Proceedings of the 35th ACM Symposium on Parallelism in Algorithms and Architectures

DOI:
10.1145/3558481.3591098

Published: 17/06/2023

Document Version
Publisher's PDF, also known as Version of record

Published under the following license:
CC BY

Please cite the original version:
Gupta, C., Latypov, R., Maus, Y., Pai, S., Särkkä, S., Studený, J., Suomela, J., Uitto, J., & Vahidi, H. (2023).
Fast Dynamic Programming in Trees in the MPC Model. In SPAA 2023 - Proceedings of the 35th ACM
Symposium on Parallelism in Algorithms and Architectures (pp. 443-453). ACM.
https://doi.org/10.1145/3558481.3591098

https://doi.org/10.1145/3558481.3591098
https://doi.org/10.1145/3558481.3591098

Fast Dynamic Programming in Trees in the MPC Model
Chetan Gupta

Aalto University

Espoo, Finland

chetan.gupta@aalto.fi

Rustam Latypov

Aalto University

Espoo, Finland

rustam.latypov@aalto.fi

Yannic Maus

TU Graz

Graz, Austria

yannic.maus@ist.tugraz.at

Shreyas Pai

Aalto University

Espoo, Finland

shreyas.pai@aalto.fi

Simo Särkkä

Aalto University

Espoo, Finland

simo.sarkka@aalto.fi

Jan Studený

Aalto University

Espoo, Finland

jan.studeny@aalto.fi

Jukka Suomela

Aalto University

Espoo, Finland

jukka.suomela@aalto.fi

Jara Uitto

Aalto University

Espoo, Finland

jara.uitto@aalto.fi

Hossein Vahidi

Aalto University

Espoo, Finland

hossein.vahidi@aalto.fi

ABSTRACT
We present a deterministic algorithm for solving a wide range of

dynamic programming problems in trees in 𝑂 (log𝐷) rounds in the

massively parallel computation model (MPC), with 𝑂 (𝑛𝛿) words
of local memory per machine, for any given constant 0 < 𝛿 < 1.

Here 𝐷 is the diameter of the tree and 𝑛 is the number of nodes—we

emphasize that our running time is independent of 𝑛.

Our algorithm can solve many classical graph optimization prob-
lems such as maximum weight independent set, maximum weight

matching, minimum weight dominating set, and minimum weight

vertex cover. It can also be used to solve many accumulation tasks

in which some aggregate information is propagated upwards or

downwards in the tree—this includes, for example, computing the

sum, minimum, or maximum of the input labels in each subtree, as

well as many inference tasks commonly solved with belief propa-

gation. Our algorithm can also solve any locally checkable labeling
problem (LCLs) in trees. Our algorithm works for any reasonable

representation of the input tree; for example, the tree can be rep-

resented as a list of edges or as a string with nested parentheses

or tags. The running time of 𝑂 (log𝐷) rounds is also known to be

necessary, assuming the widely-believed 2-cycle conjecture.

Our algorithm strictly improves on two prior algorithms:

(1) Bateni, Behnezhad, Derakhshan, Hajiaghayi, and Mirrokni

[ICALP’18] solve problems of these flavors in𝑂 (log𝑛) rounds,
while our algorithm is much faster in low-diameter trees.

Furthermore, their algorithm also uses randomness, while

our algorithm is deterministic.

(2) Balliu, Latypov, Maus, Olivetti, and Uitto [SODA’23] solve

only locally checkable labeling problems in𝑂 (log𝐷) rounds,
while our algorithm can be applied to a much broader family

of problems.

This work is licensed under a Creative Commons Attribution

International 4.0 License.

SPAA ’23, June 17–19, 2023, Orlando, FL, USA
© 2023 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-9545-8/23/06.

https://doi.org/10.1145/3558481.3591098

CCS CONCEPTS
• Theory of computation→ Parallel computing models; Dis-
tributed computing models; Dynamic programming; • Com-
puting methodologies→Massively parallel algorithms.

KEYWORDS
massively parallel model, MPC, trees, dynamic programming, accu-

mulation, aggregation, locally checkable labeling, LCL, statistical

inference, graphical models

ACM Reference Format:
Chetan Gupta, Rustam Latypov, Yannic Maus, Shreyas Pai, Simo Särkkä,

Jan Studený, Jukka Suomela, Jara Uitto, and Hossein Vahidi. 2023. Fast

Dynamic Programming in Trees in the MPC Model. In Proceedings of the
35th ACM Symposium on Parallelism in Algorithms and Architectures (SPAA
’23), June 17–19, 2023, Orlando, FL, USA. ACM, New York, NY, USA, 11 pages.

https://doi.org/10.1145/3558481.3591098

1 INTRODUCTION
In this work we present a general, unified algorithm framework for

solving a very wide variety of computational problems related to

tree-structured data in a massively parallel setting. Some examples

of tasks that can be solved with our algorithm include:

• Solving traditional graph optimization problems in trees (e.g.,

finding a maximum-weight independent set or minimum-

weight dominating set).

• Solving constraint-satisfaction problems in trees (e.g., find-

ing a solution to any locally checkable labeling problem [23],

as well as many generalizations of the theme).

• Analyzing large text documents with tree-structured data

(e.g., processing large XML [10] documents).

• Aggregating information in trees (e.g., calculating the sum

of inputs in each subtree [15]—this is a generalization of the

classical prefix sum operation [22] from directed paths to

rooted trees).

• Performing statistical inference in tree-structured graphical

models (e.g., computations that are in the classical sequential

setting commonly done with belief propagation [21]).

443

https://orcid.org/0000-0002-0727-160X
https://orcid.org/0000-0001-7124-3067
https://orcid.org/0000-0003-4062-6991
https://orcid.org/0000-0003-2409-7807
https://orcid.org/0000-0002-7031-9354
https://orcid.org/0000-0002-9887-5192
https://orcid.org/0000-0001-6117-8089
https://orcid.org/0000-0002-5179-5056
https://orcid.org/0000-0002-0040-1213
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3558481.3591098
https://doi.org/10.1145/3558481.3591098
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3558481.3591098&domain=pdf&date_stamp=2023-06-17

SPAA ’23, June 17–19, 2023, Orlando, FL, USA Chetan Gupta et al.

1.1 Setting: MPC Model
We work in the usual massively parallel computation model (MPC)

[20]. The size of the input is 𝑛 words—here 𝑛 is much larger than

what fits in the local memory of a single computer, and therefore the

input is distributed among multiple computers. The local memory

of each computer is Θ(𝑛𝛿) words, for some constant 0 < 𝛿 < 1. We

have got Θ(𝑛1−𝛿) computers that take part in the computation, and

hence in total Θ(𝑛) words of distributed memory.

We will assume that the key bottleneck is communication be-

tween computers, and hence the time complexity is measured in the

number of communication rounds. We will assume that in one round

each computer can send up to Θ(𝑛𝛿) words to other computers and

receive up to Θ(𝑛𝛿) words from other computers. In essence, you

can send everything you have in your local memory to someone

else, and you can receive whatever fits in your local memory. When

we refer to the running time in this work, we always refer to the

number of communication rounds (but we point out already here

that in our algorithms local computation will also be lightweight).

1.2 Prior Work: Solving LCL Problems Fast
In a recent work, Balliu, Latypov, Maus, Olivetti, and Uitto [4] pre-

sented efficient MPC algorithms for finding connected components,

rooting trees, and solving so-called locally checkable labeling prob-
lems (LCLs) in forests. As we directly build on their work, we will

first briefly discuss their contributions.

LCL problems were first formalized by Naor and Stockmeyer

[23]. These are graph problems that can be specified by listing a

finite set of feasible local neighborhoods. For example, “5-coloring

a graph of maximum degree 4” is an example of an LCL problem;

we can list all properly 5-colored neighborhoods that may occur

in a graph of maximum degree 4. Typically, constraint satisfaction

problems are LCLs (as long as we have bounded degrees and a finite

label set), while global optimization problems likemaximum-weight

independent set are not LCLs.

The algorithms in [4] run in 𝑂 (log𝐷) rounds, where 𝐷 is the

diameter of the input graph, with no asymptotic global memory

overhead. Finding connected components and rooting are their

main contributions, but here we are primarily interested in the part

that solves LCL problems.

The algorithm for solving LCL problems consists of phases that

compress the input graph; there are 𝑂 (1) phases and each phase

takes 𝑂 (log𝐷) rounds. After phase 𝑖 , they define a new LCL prob-

lem on the compressed graph such that its solution can be expanded

into a solution for the LCL problem defined on the graph of phase

𝑖 − 1. After performing 𝑂 (1) phases the graph is compressed into

a single node (the root of the tree) for which any LCL problem is

trivially solved. The algorithm then finishes off with 𝑂 (1) reversal
phases that decompress all compressed parts while simultaneously

spreading the correct LCL solution to the decompressed parts of

the graph.

1.3 Key New Contributions: Unified Framework
for Dynamic Programming Problems

We build on [4] and present a new algorithm framework, with the

following main features:

Table 1: Examples of problems solved with our framework
and the prior work [4].

Problem Prior This

[4] work

Vertex coloring ✓ ✓
Edge coloring ✓ ✓
Maximal independent set ✓ ✓

Maximum weight independent set — ✓
Maximum weight matching — ✓
Minimum weight dominating set — ✓
Minimum weight vertex cover — ✓
Weighted max-SAT problem — ✓
Longest path problem — ✓
Sum coloring problem — ✓
Counting matchings modulo 𝑘 — ✓

Tree median problem — ✓
Inference in Bayesian graphical models — ✓
Evaluating arithmetic expressions — ✓
Verifying the structure of

XML-like documents — ✓
Computing the sum, minimum, or maximum

of the input labels in each subtree — ✓

(1) We are able to solve a much broader family of problems in

𝑂 (log𝐷) time—instead of solving only LCL problems, we

can solve a much more general family of so-called dynamic
programming problems (see Definition 1). We refer to Table 1

for some examples of the applicability of our framework in

comparison with [4].

(2) The prior algorithm [4] intermixes the tasks of compressing

the tree and constructing the solution for an LCL. We show

that it is possible to separate the concerns, as we will outline

in Section 1.4. In particular, we can first use𝑂 (log𝐷) rounds
to construct a hierarchical clustering of the graph, and then

with the help of the clustering, we can solve any dynamic

programming problem in 𝑂 (1) rounds.
The fastest prior algorithm for dynamic programming in the MPC

model was the algorithm by Bateni, Behnezhad, Derakhshan, Ha-

jiaghayi, and Mirrokni [5, 6], but the running time of their algo-

rithm is 𝑂 (log𝑛), which can be much worse than 𝑂 (log𝐷) in low-

diameter trees, and moreover their algorithm is randomized while

our algorithm is deterministic.

1.4 Simple Three-Step Approach
Our algorithm framework proceeds in three steps:

(1) We turn the input into a standard representation; the run-
ning time of this phase is 𝑂 (log𝐷) rounds. We work with

tree-structured data, but such data can be represented in

different forms: we might have e.g. an unrooted tree that is

represented as a long list of undirected edges, or we might

have a rooted tree that is represented as a very long string

(e.g. a string with nested parentheses or nested pairs of open-

ing and closing tags). We will turn any such representation

444

Fast Dynamic Programming in Trees in the MPC Model SPAA ’23, June 17–19, 2023, Orlando, FL, USA

into a more convenient standard form: we will have a rooted
tree that is represented as list of directed edges. We show

that for a wide range of commonly-used representations of

tree-structured data, this can be solved in 𝑂 (log𝐷) rounds.
This is the only step that depends on the precise input rep-

resentation. We will give the details in Section 3.

(2) We construct a hierarchical clustering of the tree; the run-

ning time of this phase is𝑂 (log𝐷) rounds. We will introduce

the properties of the hierarchical clustering in Section 1.5.

We will show that such a clustering can be computed in

𝑂 (log𝐷) rounds. This step is fully generic—it depends nei-

ther on the input representation nor on the problem that we

are solving. We will give the details in Section 4.

(3) We solve the problem of interest; the running time of

this phase is𝑂 (1) rounds. We show that we can solve a very

wide variety of problems related to tree-structured data in

𝑂 (1) rounds, given the hierarchical clustering. We will give

the details in Section 5.

Overall, this approach makes it possible to solve various compu-

tational problems in 𝑂 (log𝐷) rounds in trees. Furthermore, this

results in algorithms that are conditionally optimal: many problems

that can be solved with this framework require Ω(log𝐷) rounds,
assuming the (widely-believed) two-cycle conjecture [1, 2, 14, 24].

The conjecture states that Ω(log𝑛) MPC-rounds are required to

decide whether an input graph consists of a cycle of length 𝑛 or two

cycles of length 𝑛/2, even if a polynomial number of machines is

available. It is known that this conjecture implies that finding con-

nected components requires Ω(log𝐷) rounds [7, 11], which in turn

can be used to show that solving a subset of dynamic programming

problems on trees requires Ω(log𝐷) rounds [4].
The main conceptual message of our work is this:

There exists a single, convenient, universal representation that

one can use as a starting point for designing very efficient

massively parallel algorithms for tree-structured data.

We emphasize that the hierarchical clustering needs to be computed

only once for a given input topology, and it can be reused for any

dynamic programming problem and any input values.

1.5 Hierarchical Clustering
Our hierarchical clustering is illustrated in Fig. 1. For convenience,

we assume that all nodes of the tree have outdegree 1; to ensure

this we add at the root an additional virtual edge pointing outside

the tree—this edge will be ignored when solving the problem of

interest.

To construct the hierarchical clustering, we start with the original

tree (this is our layer 0). To obtain layer 𝑖 + 1, we contract a cluster
of nodes into one node. The key properties that we ensure are:

• Each cluster contains only 𝑂 (𝑛𝛿) nodes.
• Each cluster has outdegree 1.

• Each cluster has indegree 0 or 1.

• There are only 𝑂 (1) layers, and the topmost layer consists

of only one cluster.

Layer 1

Layer 2 Layer 3

Layer 4
(top)

indegree-0
cluster

indegree-1
cluster

indegree-0
cluster

indegree-0
cluster

Layer 0
(input)

Figure 1: Our hierarchical clustering consists of constantly
many layers. Layer 0 is the input tree. At each layer we com-
press some disjoint collection of clusters so that eventually
we have got only one node left. Each cluster contains at most
𝒏𝜹 nodes, each cluster has got exactly one outgoing edge, and
there are zero or one incoming edges.

445

SPAA ’23, June 17–19, 2023, Orlando, FL, USA Chetan Gupta et al.

Given the dynamic
programming tables
for these parts …

… we can compute
the table for this cluster

Layer 1

Layer 2

Figure 2: From bottom to top: given the summaries inside
a cluster, we assume we can compute the summary for the
entire cluster.

We formally define the hierarchical clustering in Section 4, and we

further show that it not only exists, but can also be computed in

𝑂 (log𝐷) rounds in the MPC model.

1.6 Dynamic Programming Problems
Our main focus is on problems that we will call dynamic program-
ming problems; as we will see in Section 1.6.1, it is straightforward

to adapt many typical optimization problems into this framework:

Definition 1. A dynamic programming problem (DP problem) is

a computational problem in trees with the following properties:

(1) The task is to compute a label for each edge.

(2) We can summarize each cluster 𝐶 with a dynamic program-
ming table 𝑓 (𝐶) that can be represented with 𝑂 (1) words.

(3) Given such summaries for all nodes that form a cluster 𝐶 ,

we can compute in the dynamic programming table 𝑓 (𝐶),
using only 𝑂 (|𝐶 |) words of additional space; see Fig. 2.

(4) We can compute the label for the outgoing edge of the top-

level cluster 𝐶 given 𝑓 (𝐶).
(5) Assuming that we know the labels of the incoming and out-

going edges of a cluster 𝐶 and the dynamic programming

tables for each component of 𝐶 , we can also compute the

labels of all internal edges of cluster 𝐶 , using only 𝑂 (|𝐶 |)
words of additional space; see Fig. 3.

Here the labels of the edges are an abstraction of whatever is the

specific task we are solving, while the dynamic programming tables

are auxiliary data structures needed during the algorithm.

1.6.1 Example: Maximum-Weight Independent Set. We will use the

maximum-weight independent set problem (MaxIS) as a running

… and the dynamic
programming tables
for these parts …

Given the labels
of these boundary
edges…

… we can compute
the labels of the
internal edges

Layer 1

Layer 2

Layer 1

Figure 3: From top to bottom: given the solutions at the
boundary edges, we assume we can compute the solution
also for the internal edges.

example: in our input, each node has a nonnegative weight, and

the task is to find a maximum-weight subset of nodes 𝑋 ⊆ 𝑉 such

that there is no edge (𝑢, 𝑣) ∈ 𝐸 with 𝑢 ∈ 𝑋 and 𝑣 ∈ 𝑋 .

Now the MaxIS problem is an example of a DP problem, with

the following interpretation:

• The label of the edge (𝑢, 𝑣) indicates whether 𝑢 ∈ 𝑋 .

• Let 𝐶 be an indegree-0 cluster, where (𝑢, 𝑣) is the outgoing
edge. Then 𝑓 (𝐶) is a table with two elements: (1) the weight

of the heaviest independent set in 𝐶 such that 𝑢 ∈ 𝑋 , and
the (2) the weight of the heaviest independent set in 𝐶 such

that 𝑢 ∉ 𝑋 .

446

Fast Dynamic Programming in Trees in the MPC Model SPAA ’23, June 17–19, 2023, Orlando, FL, USA

• Let 𝐶 be an indegree-1 cluster, where (𝑢, 𝑣) is the outgoing
edge and (𝑠, 𝑡) is the incoming edge. Now 𝑓 (𝐶) is a table

with four elements: the weight of the heaviest independent

set in 𝐶 for all combinations of 𝑢 ∈ 𝑋 vs. 𝑢 ∉ 𝑋 and 𝑡 ∈ 𝑋
vs. 𝑡 ∉ 𝑋 .

It is now easy to work out the details of the bottom-up and top-

down phases. Note that the way we handle indegree-0 clusters is, in

essence, identical to the classical centralized, sequential algorithm

that solves MaxIS in trees (see e.g. [13, Sect. 6.7]). The way we

handle indegree-1 clusters can be seen as a special case of the

centralized, sequential algorithm that solves MaxIS in bounded-

treewidth graphs [9]: we can summarize clusters with a constant

number of interfaces to the rest of the graph, and we can merge

such clusters.

1.6.2 Beyond Dynamic Programming. While we use the term dy-
namic programming here to capture the problem family of interest,

we would like to emphasize that there is a broad range of prob-

lems that are compatible with this framework even if one does

not usually think that they have got anything to do with dynamic

programming (recall Table 1).

1.7 Technicality: Very High Degrees
So far we have ignored one technical difficulty: what if our input

tree has nodes of degree more than𝑛𝛿 . In such a case it is impossible

to find small clusters, as the cluster that contains node 𝑣 will also

contain all of its children.

Fortunately, for many problems such as MaxIS, we can easily

modify the input and the problem slightly, so that we replace each

node 𝑣 of degree more than 𝑛𝛿/2 with an 𝑂 (1)-depth tree 𝑇𝑣 . The

new edges are equipped with additional labels so that we can handle

them correctly in the dynamic programming algorithm and ensure

that all nodes in 𝑇𝑣 make the same consistent choice.

We discuss this in more detail in Sections 4.4 and 5.3. To summa-

rize, we can solve in any DP problem (Definition 1), as long as we

have degrees at most 𝑛𝛿/2 or we can reduce the degree as needed

by replacing high-degree nodes with low-degree trees.

1.8 Further Discussion on Related Work
1.8.1 Bateni, Behnezhad, Derakhshan, Hajiaghayi, and Mirrokni.
The prior work [5, 6] presents an MPC algorithm for dynamic

programming in trees in𝑂 (log𝑛) rounds in the MPC model. While

the precise family of problems that they handle is phrased somewhat

differently, the spirit is the same—they can also solve problems

similar to the MaxIS problem.

Our work strictly improves on their work in two ways: our

running time is 𝑂 (log𝐷), which is conditionally optimal, while

their running time is 𝑂 (log𝑛), and our algorithm is deterministic,

while their algorithm uses randomness.

In the full version of this work, we also show how to solve a

problem called tree median using our framework. This is a problem

engineered so that it does not satisfy the property of binary adapt-
ability, which is a technical requirement used in [5, 6]. Informally, in

binary adaptable problems one can replace high-degree nodes with

binary trees, and hence it is sufficient to solve dynamic program-

ming problems in bounded-degree trees; however, the tree median

problem does not admit such a straightforward degree reduction.

We hope this problem serves as a demonstration of the broad ap-

plicability of our framework, also beyond what was considered in

prior work.

1.8.2 Balliu, Latypov, Maus, Olivetti, and Uitto. The prior work [4]

presents an MPC algorithm for solving locally checkable labeling

problems (LCLs) in trees in 𝑂 (log𝐷) rounds in the MPC model.

Our running time is the same, but we solve a much broader family

of problems (recall Table 1).

We make use of many subroutines and ideas developed in [4].

For example, we make use of their algorithm for rooting a tree, and

the idea of the hierarchical clustering as well as its key properties

are due to them.

From the conceptual perspective, the key difference is that their

work presents a single (arguably rather complicated) algorithm that

intermixes the tasks of clustering the tree and constructing the

solution for an LCL. The hierarchical clustering is rather implicit,

and it has got properties that make it not directly applicable for

solving a broad variety of problems: for example, arbitrarily long

paths are compressed into one cluster, which will then no longer

fit in the memory of one computer, and leaf nodes are aggressively

eliminated, which is not compatible with all dynamic programming

problems. In our algorithm the hierarchical clustering is built first,

explicitly, and our clustering has got convenient properties that

allow us to do per-cluster computations locally inside one computer,

and it also allows us to tackle a broad range of problems.

1.8.3 Other Related Work. While our technique is conditionally

optimal for the family of dynamic programming problems, there

are many problems that allow faster algorithms in certain cases. For

example, Balliu, Brandt, Fischer, Latypov, Maus, Olivetti, and Uitto

[3] consider classes of LCL problems that are local in nature, such

as the MIS problem. For many classes of natural problems, they

give MPC algorithms that are much more efficient than Θ(log𝐷)
for high diameter graphs.

Im, Moseley, and Sun [19] consider dynamic programming in

the MPC model for problems that are not directly related to tree-

structured inputs.

There is a related yet more powerful model called AMPC in

which machines, in addition to the regular MPC operations, can

perform a sublinear number of (adaptive) queries to a distributed

hash table per round. In the AMPCmodel, the problem of computing

subtree sizes can be solved in 𝑂 (1) rounds [8].
In the classic PRAM model, problems of the same flavor have

been studied already in the 1990s—for example, Gibbons, Cai, and

Skillicorn [15] present an algorithm for upwards and downwards

accumulation in trees that runs in 𝑂 (log𝑛) time. We emphasize

that while Ω(log𝑛) is a natural lower bound for all such problems

in the PRAM model, we can nevertheless achieve a running time of

𝑂 (log𝐷) in the MPC model.

2 PRELIMINARIES
We make use of the following primitives: sorting an array of 𝑛

elements and computing prefix sums in an array of 𝑛 elements.

Both of these operations can be solved in the MPC model with a

deterministic algorithm in 𝑂 (1) rounds, see [12, 16, 17].

447

SPAA ’23, June 17–19, 2023, Orlando, FL, USA Chetan Gupta et al.

1

2

3

4

5

Figure 4: Tree 𝑻 used as an example in Section 3.1.

3 INPUT REPRESENTATIONS
Our algorithm in Sections 4 and 5 will assume that the input tree is

rooted and it is given as a set of directed edges such that each edge

goes from a child to its parent node. However, in addition to this

standard representation there are various other ways to represent

a tree using an array. In this section, we define other commonly

used representations and show that we can transform the input

from any of these representations to an array of directed edges in

𝑂 (1) rounds—in the full version of this work we will also show how

our algorithm framework makes it possible to turn the standard

representation back to any of these representations.

3.1 Definitions
We consider tree-structured data represented in one of the following

forms; we use the tree 𝑇 illustrated in Fig. 4 as an example:

• List-of-edges: This is the representation that our algorithm

works with. Each element in the input array contains a pair

of integers that represents a directed edge in a tree going

from a child to its parent. Tree𝑇 can be described as an array

[(1, 4), (2, 3), (5, 4), (4, 3)], if we use the labeling of the nodes
given in Fig. 4.

• String-of-parentheses: In this representation, the tree is

given as an array of properly nested parentheses or, equiv-

alently, opening and closing tags. Each node in the tree is

represented by two parentheses “(” and “)”. We can inter-

pret the array as a rooted tree in a bottom-up manner, with

the leaf nodes represented as an empty pair of parenthe-

ses “()”. The outermost pair of parentheses represents the

root node. For example, 𝑇 can be represented as an array

[(, (, (,), (,),), (,),)].
• BFS-traversal: The array represents the BFS-traversal of

the tree: the indices of the array denote the nodes in the tree

in the BFS order, and an array element contains the index of

the parent node. Tree 𝑇 can be represented as [−, 1, 1, 2, 2].
• DFS-traversal: Similar to the above, the tree is given as an

array that represents a DFS traversal of the tree. Tree 𝑇 can

be represented as [−, 1, 2, 2, 1].
• Pointers-to-parents: Similar to the above, but the nodes are

ordered arbitrarily. Tree𝑇 can be represented as [4, 3,−, 3, 4],
if we order the nodes according to their labels in Fig. 4.

3.2 Normalizing the Representation
If the tree is originally given as a list of undirected edges, we can

first root the tree at an arbitrary node and orient the edges in

𝑂 (log𝐷) rounds, using the algorithm from [4].

BFS-traversal, DFS-traversal, and pointers-to-parents already

represent the input as a set of directed edges in different manners,

and hence it is easy to turn them into a list-of-edges representation.

The nontrivial part is to prove that we can obtain the list-of-edges
representation from string-of-parentheses in 𝑂 (1) rounds in
the MPC model.

For brevity, we will show how we can do this transformation

for 𝛿 = 1/2, i.e., assuming there are𝑚 =
√
𝑛 computers each with

𝑂 (
√
𝑛) memory—in the full version of this work we will present

the details of how to generalize the same strategy to any 𝛿 .

Let 𝐴 be the array that contains properly nested parentheses.

We assume that each opening parentheses “(” in 𝐴 will represent a

node in the tree. Now for each open parenthesis, we need to find

its parent open parenthesis.

Initially,𝐴 is evenly distributed over

√
𝑛 computers 𝑁0, . . . 𝑁𝑚−1

such that 𝑁𝑖 contains the elements𝐴[𝑖
√
𝑛], . . . , 𝐴[(𝑖+1)

√
𝑛−1]. Let

𝐴[𝑖] and𝐴[𝑗] be two opening parentheses such that 𝑖 < 𝑗 . We know

that 𝐴[𝑖] is the parent of 𝐴[𝑗] if all the parentheses from 𝐴[𝑖 + 1]
to 𝐴[𝑗 − 1] are properly nested. If 𝐴[𝑖] is the parent of 𝐴[𝑗] and
both of them are stored in the same computer, then the computer

can easily identify 𝐴[𝑖] as the parent of 𝐴[𝑗]. The challenge is to
identify the parent node if 𝐴[𝑖] and 𝐴[𝑗] are stored in different

computers.

Notice that if 𝐴[𝑝] and 𝐴[𝑞] are a pair of opening and closing

parentheses that denote the same node and both are stored in some

computer 𝑁𝑖 then 𝐴[𝑝] cannot be the parent of 𝐴[𝑘] if 𝐴[𝑘] is
stored in some other computer. Thus, let us cancel out properly
nested pairs of parentheses stored in a single computer. Now the

remaining parentheses inside each computer 𝑁𝑖 , will be nothing

but a (possibly empty) sequence of closing parentheses followed by

a (possibly empty) sequence of opening parentheses, for example,

“)))))(((”. Let 𝑆𝑖 be the array of remaining parentheses in 𝑁𝑖 .

Computer 𝑁𝑖 computes a pair (𝑐𝑖 , 𝑜𝑖) where 𝑐𝑖 and 𝑜𝑖 is the

number of closing and opening parentheses in 𝑆𝑖 , and broadcasts it

to all the other computers. Using this information, for each node

we can identify the array 𝑆𝑖 that contains its parent and also the

index of the parent in 𝑆𝑖 as follows. For each open parentheses𝐴[𝑗]
stored at 𝑁𝑖 , 𝑁𝑖 locally computes 𝑙 𝑗 and 𝑟 𝑗 that denote the number

of closing and opening parentheses on the left and right side of

𝐴[𝑗], respectively, in 𝑆𝑖 . Then 𝑆 [𝑗] (stored in 𝑁𝑎) is the parent of

𝐴[𝑘] (stored in 𝑁𝑏) where 𝑗 < 𝑘 and 𝑎 < 𝑏, if 𝑎 is the largest integer

such that

𝑟 𝑗 +
𝑏∑︁

𝑥=𝑎+1
(𝑜𝑥 − 𝑐𝑥) − 𝑙𝑘 = 0,

which can be computed in 𝑂 (1) rounds by 𝑁𝑏 .

To identify the index of the parent of a node in 𝐴, we need to do

some more calculations. For each node 𝑣 we produce two tuples:

• Type 1: [𝑖, 𝑗, 1, 𝑣] denotes that node 𝑣 is stored at the 𝑗 th index
of 𝑆𝑖—this information is readily available for the computer

that holds node 𝑣 .

• Type 2: [𝑖, 𝑗, 2, 𝑣] denotes that the parent of node 𝑣 is stored
at the 𝑗th index of 𝑆𝑖—this information can be computed as

described above by the computer that holds node 𝑣 .

This way we will have 𝑛 tuples in total in the system, and we

can sort them in 𝑂 (1) rounds. Once sorted, in the array there will

always be one tuple of type 1, representing a node 𝑣 , followed by

zero or more tuples of type 2, representing the children of 𝑣 . This

way we can identify all parent–child edges in 𝑂 (1) rounds.

448

Fast Dynamic Programming in Trees in the MPC Model SPAA ’23, June 17–19, 2023, Orlando, FL, USA

4 HIERARCHICAL CLUSTERING
In this section we present an 𝑂 (log𝐷)-round algorithm that com-

putes the hierarchical clustering required for our dynamic program-

ming algorithm (see Section 5). Note that the clustering does not

depend on the problem that we want to solve afterwards.

4.1 Definitions
We will now formalize the idea of hierarchical clustering that we

introduced in Section 1.5; see Fig. 1 for an illustration.

Definition 2 (cluster). A cluster 𝐶 is a set such that each element

is either a node 𝑢𝑖 or another cluster 𝐶𝑖 . We recursively define the

set of nodes that participate in 𝐶 as

𝑉 (𝐶) =
⋃
𝐶𝑖 ∈𝐶

𝑉 (𝐶𝑖) ∪ {𝑢𝑖 | 𝑢𝑖 ∈ 𝐶}.

We require that the cluster𝐶 contains at most 𝑛𝛿 elements, and the

set of cut edges (𝑉 (𝐶),𝑉 \ 𝑉 (𝐶)) ⊆ 𝐸 has exactly one outgoing

edge and at most one incoming edge.

We classify clusters into two types based on the number of

incoming edges: indegree-zero and indegree-one.

Definition 3 (hierarchical clustering). A hierarchical clustering of

a rooted tree 𝑇 = (𝑉 , 𝐸) is a collection of sets 𝑆0, 𝑆1, . . . , 𝑆𝐿 called

layers such that 𝐿 = 𝑂 (1) and the following are satisfied

(1) each 𝑆𝑖 consists of nodes or clusters,

(2) 𝑆0 = 𝑉 ,

(3) For 𝑖 ≥ 1, (i) the nodes in 𝑆𝑖 are also nodes in 𝑆𝑖−1 and (ii)

the clusters of 𝑆𝑖 form a partition of the remaining elements

of 𝑆𝑖−1,
(4) 𝑆𝐿 contains one element which is a cluster.

While it is easiest to grasp the clustering as a standalone graph-
theoretic concept in order to use it algorithmically, we need to assign

cluster IDs and store certain pointers between a cluster and its

nodes/clusters, etc. More formally, we give each cluster 𝐶 ∈ 𝑆𝑖 a
unique cluster ID, and pointers to and from the clusters and nodes

of 𝑆𝑖−1 that are contained in 𝐶 . Since a cluster has exactly one

outgoing and at most one incoming edge, we can contract each

cluster in 𝑆𝑖 into a node, such that the resulting graph forms a tree

𝑇𝑖 where each edge corresponds to an edge of the original tree.

4.2 Constructing the Clustering
As discussed in Section 3, we can without loss of generality assume

that the input is a rooted tree 𝑇 = (𝑉 , 𝐸) with 𝑛 nodes, represented

as a list of edges.Wewill further assume that themaximumdegree is

𝑛𝛿/2, but we will see how to overcome this limitation in Section 4.4.

By sorting the edges, we can also assume that each node and its

incident edges are hosted on the same machine. Our goal is to

construct a hierarchical clustering as in Definition 3.

4.2.1 High-Level Idea. We will mostly follow the same ideas as

what happens in the algorithm of [4]. However, there are two key

differences that we will highlight in what follows, and we will

also need to prove that the number of layers is still bounded by a

constant.

We say that a subtree is a caterpillar if it is a tree containing a
central path and all other nodes are within distance 1 from the path.

We will alternate between two steps, for 𝑂 (1) iterations:
(1) Create indegree-zero clusters: we identify nodes 𝑣 such that

we can replace the entire subtree 𝑇 (𝑣) rooted at 𝑣 with a

cluster.

(2) Create indegree-one clusters: we identify a disjoint set of

caterpillars that we can replace with clusters.

In [4], they entirely removed what we call indegree-zero clusters,

and then they only needed to contract long paths. Furthermore,

they contracted arbitrarily long paths, while our clusters cannot be

too large. Nevertheless, we can show that we make enough progress

and we can finish after 𝑂 (1) pairs of such steps.

In our algorithm we will color the nodes that correspond to

indegree-zero clusters instead of removing them. Then we can

largely follow the process and the analysis of [4] for the uncolored

parts of the tree. As the colored nodes are always leaf nodes, and

as each node can have at most 𝑛𝛿/2 neighbors, if we put into each

cluster up to 𝑛𝛿/2 uncolored nodes, together with their colored

neighbors the size of a cluster will be bounded by 𝑛𝛿 , as needed.

4.2.2 Creating Indegree-Zero Clusters. Following [4], we define

that a node 𝑣 with more than 𝑛𝛿/2 uncolored nodes in its subtree

𝑇 (𝑛) is called heavy, and the rest of the nodes are light.
We apply the following result from Lemma 6.13 of [4] to the

uncolored subgraph (i.e., the subgraph induced by the uncolored

nodes): there exists a deterministic optimal space 𝑂 (log𝐷)-time

MPC algorithm (CountSubtreeSizes) in which every node 𝑣 learns

either the exact size of 𝑇 (𝑣) or that |𝑇 (𝑣) | > 𝑛𝛿/2.
With this information, we can identify each node𝑢 such that𝑢 is

light but its parent 𝑣 is heavy. We apply Lemma 6.14 from [4]: there

exists a deterministic optimal space 𝑂 (log𝐷)-time MPC algorithm

(GatherSubtrees) to collect𝑇 (𝑢) into the machine hosting𝑢 for each

such node 𝑢. Then, we replace 𝑇 (𝑢) with an indegree-zero cluster,

which is then represented as a colored node—see Fig. 5. The overall

running time is 𝑂 (log𝐷). The size of the cluster will be bounded
by 𝑛𝛿 , as there were only 𝑛𝛿/2 uncolored nodes, each with at most

𝑛𝛿/2 colored leaf nodes attached to it.

4.2.3 Creating Indegree-One Clusters. Now we are ready to de-

scribe the second step: creating indegree-one clusters. The idea is

to identify long paths in the uncolored subgraph. A long path in

the uncolored subgraph corresponds to a caterpillar if we also take

into account the colored nodes.

We apply Lemma 6.17 from [4] to the uncolored subgraph: there

exists a deterministic 𝑂 (log𝐷)-time MPC algorithm (CountDis-

tances) in which each degree-2 node knows its distance to both

endpoints of the path formed by degree-2 nodes—see Fig. 5.

Using the distances, we will split each path 𝑃 formed by degree-2

nodes in the uncolored subgraph into sub-paths of length at most

𝑛𝛿/2 (i.e., nodes with distance value 1, . . . , 𝑛𝛿/2 form the first sub-

path and so on). We call these sub-paths path fragment 𝑃 ′. We

collect each fragment in a single machine and form a cluster 𝐶 by

including also all colored nodes connected to 𝑃 ′. This will result
in a caterpillar 𝐶 , and as the maximum degree of the graph was

𝑛𝛿/2, the size of the cluster is at most 𝑛𝛿 , as required. The overall

running time of this step is 𝑂 (log𝐷).

449

SPAA ’23, June 17–19, 2023, Orlando, FL, USA Chetan Gupta et al.

heavy node

light node

heavy node

light node

colored node

uncolored node

indegree-0
cluster

1, 1

1, 3

2, 2

3, 1

degree-2 node
in the uncolored

subgraph

(a) (b)

Figure 5: (a) Creating indegree-zero clusters. (b) Creating indegree-one clusters: we identify paths formed by degree-2 nodes in
the subgraph induced by uncolored nodes and calculate their positions in the path both upwards and downwards.

4.3 Number of Layers
By construction, all clusters are sufficiently small. We still need to

show that the number of layers is bounded by a constant:

Lemma 4. The number of layers in the hierarchical clustering we
created is 𝑂 (1).

To prove Lemma 4, consider first an alternative processΠ1 where

we delete indegree-zero clusters instead of marking them colored,

and inwhichwe replace arbitrarily long pathswith one edge, similar

to [4]. We can show:

Lemma 5. Each iteration of process Π1 makes the tree smaller by a
factor of Ω(𝑛𝛿/2).

Proof. Say we start with a tree 𝑇0 with 𝑛0 nodes. Let there be

𝑛1 nodes in the tree 𝑇1 obtained after we delete the indegree-zero

clusters and replace all paths with a single indegree-one cluster.

This means that all paths are of length at most 1. Consider a tree

𝑇 ′
1
, which is 𝑇1 except all paths are replaces with an edge. Notice

that |𝑇 ′
1
| ≥ 𝑛1/2, and 𝑇1 has the same number of leaves as 𝑇 ′

1
. Now,

in 𝑇 ′
1
there are no nodes with degree 2. And since any tree has at

least as many leaves as nodes of degree 3 or more, 𝑇 ′
1
has at least

|𝑇 ′
1
|/2 leaves, which means that there are at least 𝑛1/4 leaves in 𝑇1.
Consider a leaf node 𝑣 . Since 𝑣 was not removed, it must have

been heavy, and hence the subtree rooted at 𝑣 has size > 𝑛𝛿/2.
Hence, the number of nodes before we started our process clustered

was 𝑛0 ≥ (𝑛1/4) · 𝑛𝛿/2. Therefore, the number of nodes in each

clustering step falls by a factor of 𝑛𝛿/2. □

Then slightly modify the process; let Π2 be a process in which we

still delete indegree-zero clusters instead of marking them colored,

but we replace arbitrarily long paths with one node and two edges.

Lemma 6. Each iteration of process Π2 makes the tree smaller by a
factor of Ω(𝑛𝛿/2).

Proof. In essence, Π2 behaves as if we first performed one iter-

ation of Π1 and then subdivided some edges. The subdivision only

increases the number of nodes by a factor of two. □

Finally, let Π3 be a process in which we still delete indegree-zero

clusters instead of marking them colored, but we replace long paths

with a sequence of clusters, each with at most 𝑛𝛿/2, similar to our

real process. We can show:

Lemma 7. 𝑂 (1) iterations of process Π3 makes the tree smaller by
a factor of Ω(𝑛𝛿/2).

Proof. If we iterate Π3 for more than 2/𝛿 iterations, each path

gets contracted into a pathwith only one node. Hence, 2/𝛿 iterations
of Π3 makes at least as much progress as one iteration of Π2. □

Lemma 4 now follows by observing that Π3 describes accurately

what happens in the uncolored subgraph in our real process:

Proof of Lemma 4. By applying Lemma 7 iteratively for 𝑂 (1)
times to the uncolored subgraph, we can see that the uncolored part

gets contracted into one node, and at that point the entire graph

will fit in one indegree-zero cluster. □

4.4 Handling High-Degree Nodes
So farwe have assumed that the tree that is given as input has degree

at most 𝑛𝛿/2. The general solution to overcome this limitation is to

replace high-degree nodes with 𝑂 (1)-depth subtrees.

Let us now briefly describe how to implement it in 𝑂 (1) rounds
in the MPC model. We can sort the original list of edges by the

parent node identifier. Now whenever a single machine holds more

than 𝑛𝛿/2 edges with the same parent 𝑢, it introduces new nodes

whose parent is 𝑢 and these new nodes become the new parent of

𝑛𝛿/2 children of𝑢. We repeat this for𝑂 (1) steps until all nodes have
sufficiently low degrees. Throughout the process, we keep track of

the type of the edge: whether it is an original edge or an auxiliary
edge created while splitting high-degree nodes—this information is

needed then later when we solve the DP problem (see Section 5.3).

This process will increase the number of nodes and the diameter

by only a constant factor. Hence, if we now apply the clustering

algorithm, the running time is still 𝑂 (log𝐷) rounds, where 𝐷 is

the diameter of the original tree.

450

Fast Dynamic Programming in Trees in the MPC Model SPAA ’23, June 17–19, 2023, Orlando, FL, USA

5 SOLVING DP PROBLEMS
Now we will show how we can use the hierarchical clustering

computed in Section 4 to solve dynamic programming problems

(recall Definition 1).

5.1 From Bottom to Top
Let 𝐿 = 𝑂 (1) be the number of layers in the hierarchical cluster-

ing. We fill in the dynamic programming tables in 𝐿 iterations, by

maintaining the following invariant:

Definition 8 (bottom-up invariant). After iteration 𝑖 = 0, 1, . . . , 𝐿,

each cluster 𝐶 of layer 𝑖 is labeled with its dynamic programming

table 𝑓 (𝐶), and all other nodes are labeled with their original inputs.

This invariant is trivial to satisfy in the beginning, as layer 0 is

our input tree and there are no clusters yet.

Now assume that we satisfy the invariant before iteration 𝑖 > 0.

Now each node that still participates in the computation knows

both its cluster identifier for layer 𝑖 and either its input or its dy-

namic programming table. Furthermore, this information fits by

assumption in 𝑂 (1) words. We can now sort the array of cluster

identifiers and node labels and this way ensure that data related to

one cluster is stored consecutively. Now one cluster spans at most

two machines; with one additional routing step we can ensure that

each cluster is fully contained inside one machine.

Now we can locally summarize each cluster 𝐶 , by applying the

sequential algorithm that we assumed exists. Finally, we have a

summary 𝑓 (𝐶) for each cluster. We can then apply sorting again to

move the summary 𝑓 (𝐶) back to the array location that we use to

store information for cluster 𝐶 . In essence, this enables us to solve

the operation illustrated in Fig. 2 for each cluster in parallel.

Eventually, we have computed the dynamic programming tables

for all clusters at all layers.

5.2 From Top to Bottom
Now we proceed to solve the problem, i.e., to fill in the labels of

the edges. We proceed through the layers now in the reverse order,

maintaining the following invariant:

Definition 9 (top-down invariant). After iteration 𝑖 = 𝐿, 𝐿−1, . . . , 0,
we have computed the labels of all edges (𝑢, 𝑣) in the tree that

corresponds to layer 𝑖 , and this information is stored together with

node 𝑢.

This invariant can be satisfied for 𝑖 = 𝐿: there is only one edge

in the tree, the outgoing edge of the topmost cluster 𝐶 , and by

assumption given 𝑓 (𝐶) we can label this edge.

Now assume we satisfy the invariant before iteration 𝑖 < 𝐿. Now

if𝐶 is a cluster that appears in layer 𝑖 , we can use sorting to ensure

that the 𝐶 is aware of both the label of its outgoing edge and the

label of its incoming edge (if any). Then we again to reorganize data

so that the nodes of layer 𝑖 − 1 that form a cluster 𝐶 at layer 𝑖 are

stored in the same computer. We can apply the sequential algorithm

to now label all internal edges of 𝐶 . In essence, this enables us to

solve the operation illustrated in Fig. 3 for each cluster in parallel.

Eventually, we have computed the labels of all edges in layer 0,

i.e., solved the original problem.

5.3 Handling High-Degree Nodes
In Section 4.4 we replaced high-degree nodes with 𝑂 (1)-depth
subtrees; we will have both original and auxiliary edges in the

tree. In general, this will result in a new DP problem, with possibly

different rules for different edges. For our running example, MaxIS,

the rules can be specified as follows:

• Original edge (𝑢, 𝑣): if we have 𝑢 ∈ 𝑋 , we must have 𝑣 ∉ 𝑋 ,

and vice versa.

• Auxiliary edge (𝑢, 𝑣): if we have 𝑢 ∈ 𝑋 , we must have 𝑣 ∈ 𝑋 ,

and vice versa.

In essence, this ensures that all new nodes that represent one origi-

nal node make the same consistent choice. A similar strategy works

for a wide range of graph problems.

6 APPLICATION: BAYESIAN TREE INFERENCE
Probabilistic or Bayesian graphical models are ubiquitous in ma-

chine learning and statistics [21]. A probabilistic graphical model

is a graph, where the nodes (say, 𝑥𝑖 ∈ R𝑑𝑥) present hidden random

variables with a conditional distribution structure defined by the

vertices of the graph. We also get measurements of the graph (say,

𝑦𝑖 ∈ R𝑑𝑦) and an important problem of inference in graphical mod-

els is to compute the posterior distributions of the nodes, that is,

𝑝 (𝑥𝑘 | 𝑦1,...,𝑛) for some selected 𝑘 = 1, . . . , 𝑛.

We consider an important special case of a Bayesian graphical

model, where the graph is a tree and the observations are condi-

tionally independent observations obtained at each node from a

given conditional distribution model 𝑝 (𝑦𝑖 | 𝑥𝑖). The conditional
distributions of the nodes then take the form 𝑝 (𝑥𝑖 | 𝑥𝛾𝑖), where 𝛾𝑖
is the collection of child indices of the node 𝑥𝑖 (a leaf 𝑗 has 𝛾 𝑗 = ∅).
It now turns out that the algorithm framework presented in this

paper allows us to compute 𝑝 (𝑥𝑘 | 𝑦1,...,𝑛) in𝑂 (log𝐷) MPC rounds,

at least in the Gaussian special case which we consider here. We

assume that we have rooted the tree at 𝑥𝑘 .

Let us denote the clique indices of the node 𝑖 as 𝛼𝑖 = {𝑖} ∪𝛾𝑖 and
define clique potentials as

𝜓𝑖 (𝑥𝑖 , 𝑥𝛾𝑖) = 𝜓𝑖 (𝑥𝛼𝑖) = 𝑝 (𝑦𝑖 | 𝑥𝑖) 𝑝 (𝑥𝑖 | 𝑥𝛾𝑖) .
The computation of posterior probability density 𝑝 (𝑥𝑘 | 𝑦1,...,𝑛)
then corresponds to computing the marginal of the product of the

clique potentials:

𝑝 (𝑥𝑘 | 𝑦1,...,𝑛) ∝
∫
· · ·

∫ 𝑛∏
𝑖=1

𝜓𝑖 (𝑥𝛼𝑖) 𝑑 (𝑥1:𝑛\𝑘) .

An efficient algorithm for solving this kind of problems on trees is

called belief propagation [21]. In the case of path graphs (i.e., when

each 𝛼𝑖 is a pair of indices), the solution to the inference problem is

given by Bayesian filters and smoothers [25], and belief propagation

corresponds to so-called two-filter smoother. Parallel algorithms for

the Bayesian filtering and smoothing problems (i.e., inference for

probabilistic path graphs) have recently been developed in [18, 26],

but not in the context of the MPC model. However, the associative

formulations used in those algorithms provide practical means for

path compression that we also need in Bayesian trees.

If we now think that the present tree is actually the subtree

within the current cluster, then we have the following two possible

cases to consider:

451

SPAA ’23, June 17–19, 2023, Orlando, FL, USA Chetan Gupta et al.

(1) Indegree-zero cluster, where we want to compute

¯𝜓1 (𝑥1) =
∫
· · ·

∫ 𝑛∏
𝑖=1

𝜓𝑖 (𝑥𝛼𝑖) 𝑑 (𝑥2:𝑛),

where 𝑥1 is the root. The potential ¯𝜓1 (𝑥1) then corresponds

to compression of the indegree-zero cluster into a single

node.

(2) Indegree-one cluster, where we want to compute

¯𝜓 𝑗→1 (𝑥1, 𝑥 𝑗) =
∫
· · ·

∫ 𝑛∏
𝑖=1

𝜓𝑖 (𝑥𝛼𝑖) 𝑑 (𝑥2:𝑛\𝑗)

for some index 𝑗 ∈ {2, . . . , 𝑛}. Here ¯𝜓 𝑗→1 (𝑥1, 𝑥 𝑗) corre-
sponds to compression of the cluster into a node 𝑥1 with an

open child position 𝑥 𝑗 .

For concreteness, let us now take a look at a linear Gaussian graph

in which we have (for 𝑖 = 1, . . . , 𝑛):

𝑝 (𝑥𝑖 | 𝑥𝛾𝑖) = N(𝑥𝑖 ;
∑︁
𝑗∈𝛾𝑖

𝐹 𝑗 𝑥 𝑗 + 𝑐𝑖 , 𝑄𝑖),

𝑝 (𝑦𝑖 | 𝑥𝑖) = N(𝑦𝑖 ;𝐻𝑖 𝑥𝑖 + 𝑑𝑖 , 𝑅𝑖),

that is,

𝜓𝑖 (𝑥𝛼𝑖) = N(𝑦𝑖 ;𝐻𝑖 𝑥𝑖 + 𝑑𝑖 , 𝑅𝑖) N (𝑥𝑖 ;
∑︁
𝑗∈𝛾𝑖

𝐹 𝑗 𝑥 𝑗 + 𝑐𝑖 , 𝑄𝑖),

where N(𝑥 ; 𝜇, Σ) denotes a multivariate Gaussian probability den-

sitywithmean vector 𝜇 and covariancematrix Σ. The representation
of a node thus consists of the |𝛾𝑖 | matrices {𝐹 𝑗 : 𝑗 ∈ 𝛾𝑖 } along with
𝑐𝑖 , 𝑄𝑖 , 𝑦𝑖 , 𝐻𝑖 , 𝑑𝑖 , and 𝑅𝑖 .

The implementation of the indegree-zero cluster operation (1)

above requires just one primitive operation: the elimination of a

leaf. We can repeat this operation until the whole tree is reduced

into a single node. However, we need to ensure that we are able

to do this operation in constant memory per node. Luckily, this is

what happens in the Gaussian case.

Let us now consider a tree where we have an additional node

𝑥𝑛+1 which is attached to the node 𝑗 . What happens is that this

adds a new child to node 𝑗 :

𝜓 𝑗 (𝑥𝛼 𝑗
) → ˜𝜓 𝑗 (𝑥𝛼 𝑗

, 𝑥𝑛+1),

and we also need to multiply with the leaf potential 𝜓𝑛+1 (𝑥𝑛+1).
Thus, the joint potential is𝜓 (𝑥1:𝑛+1) =[

𝑗−1∏
𝑖=1

𝜓𝑖 (𝑥𝛼𝑖)
]

˜𝜓 𝑗 (𝑥𝛼 𝑗
, 𝑥𝑛+1)𝜓𝑛+1 (𝑥𝑛+1)

𝑛∏

𝑘=𝑗+1
𝜓𝑘 (𝑥𝛼𝑘)

 ,
which we want to integrate over everything but 𝑥1 in the present

indegree-zero cluster case and over everything but 𝑥1, 𝑥 𝑗 in the

indegree-one cluster case below. The elimination of the leaf in both

cases corresponds to integration over 𝑥𝑛+1.
The integration over 𝑥𝑛+1 can be done in closed form in the

Gaussian case. In practice, it consists of computing the posterior

covariance and mean parameters of𝜓𝑛+1 (𝑥𝑛+1) which are

�̃�𝑛+1 =
[
𝑄−1𝑛+1 + 𝐻

⊤
𝑛+1𝑅

−1
𝑛+1𝐻𝑛+1

]−1
,

˜𝑏𝑛+1 = �̃�𝑛+1
[
𝐻⊤𝑛+1𝑅

−1
𝑛+1 (𝑦𝑛+1 − 𝑑𝑛+1) +𝑄

−1
𝑛+1𝑐𝑛+1,

]
,

and then fusing them to the mean and covariance parameters of its

parent node: 𝑐 𝑗 ← 𝐹𝑛+1 ˜𝑏𝑛+1 + 𝑐 𝑗 and 𝑄 𝑗 ← 𝑄 𝑗 + 𝐹𝑛+1�̃�𝑛+1𝐹⊤𝑛+1,
which both are operations that can be done in constant memory.

For implementing the indegree-one cluster operation (2), we can

first use the leaf elimination procedure above repeatedly to reduce

the indegree-one cluster into a single indegree-one path. What we

then have left is a path of the form (with re-indexed intermediate

nodes)

𝜓1 (𝑥1, 𝑥2)𝜓2 (𝑥2, 𝑥3)𝜓3 (𝑥3, 𝑥4) × · · · × 𝜓 𝑗−1 (𝑥 𝑗−1, 𝑥 𝑗)

which we want to integrate over 𝑥2:𝑗−1. This can be implemented

using pairwise combinations of the potentials, which can be done

recursively as

¯𝜓𝑚+1→1 (𝑥1, 𝑥𝑚+1) =
∫

¯𝜓𝑚→1 (𝑥1, 𝑥𝑚)𝜓𝑚 (𝑥𝑚, 𝑥𝑚+1) 𝑑𝑥𝑚

with initial condition
¯𝜓2→1 (𝑥1, 𝑥2) = 𝜓1 (𝑥1, 𝑥2). This is a spe-

cial case of the Kalman filter’s associative rule derived in [18, 26]

(though backwards in time) and hence it can be implemented in

constant additional memory for storing the temporary variables.

The algorithm gives parameters (𝐴,𝑏,𝐶, 𝜂, 𝐽) which define a factor-

ization of the form:

¯𝜓 𝑗→1 (𝑥1, 𝑥 𝑗) ∝ N (𝑥1;𝐴𝑥 𝑗 + 𝑏,𝐶) N𝐼 (𝑥 𝑗 ;𝜂, 𝐽)
= N(𝑥1;𝐴𝑥 𝑗 + 𝑏,𝐶) N (𝑥 𝑗 ; 𝐽 −1 𝜂, 𝐽 −1) .

The term N(𝑥 𝑗 ; 𝐽 −1 𝜂, 𝐽 −1) can now be fused to the measurement

model at the node 𝑗 by finding an artificial measurement 𝑧 𝑗 along

with𝐻 𝑗 and 𝑅 𝑗 such thatN(𝑥 𝑗 ; 𝐽 −1 𝜂, 𝐽 −1) 𝑁 (𝑦 𝑗 | 𝐻 𝑗 𝑥 𝑗 +𝑑 𝑗 , 𝑅 𝑗) ∝
𝑁 (𝑧 𝑗 | 𝐻 𝑗 𝑥 𝑗 , 𝑅 𝑗). This can be done in constant memory by simple

matrix and vector operations. In conclusion, the path compression

just requires us to compute the parameters of the conditional dis-

tribution N(𝑥1;𝐴𝑥 𝑗 + 𝑏,𝐶) and to form the artificial measurement

model 𝑁 (𝑧 𝑗 | 𝐻 𝑗 𝑥 𝑗 , 𝑅 𝑗) for the node 𝑥 𝑗 . This produces a new graph

which we can continue to process recursively.

7 CONCLUSIONS
In this work, we showed how a broad class of dynamic programming
problems can be solved in trees in the MPC model, with a relatively

simple three-step approach: turn the input into a standard repre-

sentation in𝑂 (log𝐷) rounds, construct a hierarchical clustering in
𝑂 (log𝐷) rounds, and solve the problem of interest in 𝑂 (1) rounds.
We expect that the hierarchical clustering will find applications

also beyond the scope of dynamic programming problems.

One key open question is what happens once we step outside

trees. The natural first step would be to consider bounded-treewidth

graphs. Is it possible to find a similar hierarchical clustering effi-

ciently also in bounded-treewidth graphs? And if so, does it still let

us solve dynamic programming problems in constant time, given

the hierarchical clustering?

ACKNOWLEDGMENTS
We are grateful to Alkida Balliu, Darya Melnyk, and Dennis Olivetti

for several fruitful discussions, and to the anonymous reviewers

for their helpful feedback on prior versions of this work. This work

was supported in part by the Academy of Finland, Grants 321901

(Gupta and Vahidi) and 334238 (Latypov and Pai).

452

Fast Dynamic Programming in Trees in the MPC Model SPAA ’23, June 17–19, 2023, Orlando, FL, USA

REFERENCES
[1] Alexandr Andoni, Zhao Song, Clifford Stein, Zhengyu Wang, and Peilin Zhong.

2018. Parallel Graph Connectivity in Log Diameter Rounds. In 59th IEEE Annual
Symposium on Foundations of Computer Science, FOCS 2018, Paris, France, October
7-9, 2018, Mikkel Thorup (Ed.). IEEE Computer Society, 674–685. https://doi.org/

10.1109/FOCS.2018.00070

[2] Sepehr Assadi, Xiaorui Sun, and Omri Weinstein. 2019. Massively Parallel Algo-

rithms for Finding Well-Connected Components in Sparse Graphs. In Proceedings
of the 2019 ACM Symposium on Principles of Distributed Computing, PODC 2019,
Toronto, ON, Canada, July 29 - August 2, 2019, Peter Robinson and Faith Ellen

(Eds.). ACM, 461–470. https://doi.org/10.1145/3293611.3331596

[3] Alkida Balliu, Sebastian Brandt, Manuela Fischer, Rustam Latypov, Yannic Maus,

Dennis Olivetti, and Jara Uitto. 2022. Exponential Speedup over Locality in MPC

with Optimal Memory. In 36th International Symposium on Distributed Computing,
DISC 2022, October 25-27, 2022, Augusta, Georgia, USA (LIPIcs, Vol. 246), Christian
Scheideler (Ed.). Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 9:1–9:21.

https://doi.org/10.4230/LIPIcs.DISC.2022.9

[4] Alkida Balliu, Rustam Latypov, Yannic Maus, Dennis Olivetti, and Jara Uitto. 2023.

Optimal Deterministic Massively Parallel Connectivity on Forests. In Proceedings
of the 2023 ACM-SIAM Symposium on Discrete Algorithms, SODA 2023, Florence,
Italy, January 22-25, 2023, Nikhil Bansal and Viswanath Nagarajan (Eds.). SIAM,

2589–2631. https://doi.org/10.1137/1.9781611977554.ch99

[5] MohammadHossein Bateni, Soheil Behnezhad, Mahsa Derakhshan, Mohammad-

Taghi Hajiaghayi, and Vahab S. Mirrokni. 2018. Brief Announcement: MapReduce

Algorithms for Massive Trees. In 45th International Colloquium on Automata,
Languages, and Programming, ICALP 2018, July 9-13, 2018, Prague, Czech Republic
(LIPIcs, Vol. 107), Ioannis Chatzigiannakis, Christos Kaklamanis, Dániel Marx,

and Donald Sannella (Eds.). Schloss Dagstuhl - Leibniz-Zentrum für Informatik,

162:1–162:4. https://doi.org/10.4230/LIPIcs.ICALP.2018.162

[6] MohammadHossein Bateni, Soheil Behnezhad, Mahsa Derakhshan, Moham-

madTaghi Hajiaghayi, and Vahab S. Mirrokni. 2018. Massively Parallel Dy-

namic Programming on Trees. CoRR abs/1809.03685 (2018). arXiv:1809.03685

http://arxiv.org/abs/1809.03685

[7] Soheil Behnezhad, Laxman Dhulipala, Hossein Esfandiari, Jakub Lacki, and Va-

hab S. Mirrokni. 2019. Near-Optimal Massively Parallel Graph Connectivity. In

60th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2019,
Baltimore, Maryland, USA, November 9-12, 2019, David Zuckerman (Ed.). IEEE

Computer Society, 1615–1636. https://doi.org/10.1109/FOCS.2019.00095

[8] Soheil Behnezhad, Laxman Dhulipala, Hossein Esfandiari, Jakub Lacki, Vahab S.

Mirrokni, and Warren Schudy. 2021. Massively Parallel Computation via Remote

Memory Access. ACM Trans. Parallel Comput. 8, 3 (2021), 13:1–13:25. https:

//doi.org/10.1145/3470631

[9] Hans L. Bodlaender. 1988. Dynamic Programming on Graphs with Bounded

Treewidth. In Automata, Languages and Programming, 15th International Collo-
quium, ICALP88, Tampere, Finland, July 11-15, 1988, Proceedings (Lecture Notes
in Computer Science, Vol. 317), Timo Lepistö and Arto Salomaa (Eds.). Springer,

105–118. https://doi.org/10.1007/3-540-19488-6_110

[10] Tim Bray, Jean Paoli, C. M. Sperberg-McQueen, Eve Maler, and François Yergeau

(Eds.). 2008. Extensible Markup Language (XML) 1.0 (Fifth Edition). https://www.

w3.org/TR/REC-xml/

[11] Sam Coy and Artur Czumaj. 2022. Deterministic massively parallel connectivity.

In STOC ’22: 54th Annual ACM SIGACT Symposium on Theory of Computing,
Rome, Italy, June 20 - 24, 2022, Stefano Leonardi and Anupam Gupta (Eds.). ACM,

162–175. https://doi.org/10.1145/3519935.3520055

[12] Artur Czumaj, Peter Davies, and Merav Parter. 2021. Graph Sparsification for

Derandomizing Massively Parallel Computation with Low Space. ACM Trans.
Algorithms 17, 2 (2021), 16:1–16:27. https://doi.org/10.1145/3451992

[13] Sanjoy Dasgupta, Christos H. Papadimitriou, and Umesh V. Vazirani. 2008. Algo-
rithms. McGraw-Hill.

[14] Mohsen Ghaffari, Fabian Kuhn, and Jara Uitto. 2019. Conditional Hardness

Results for Massively Parallel Computation from Distributed Lower Bounds. In

60th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2019,
Baltimore, Maryland, USA, November 9-12, 2019, David Zuckerman (Ed.). IEEE

Computer Society, 1650–1663. https://doi.org/10.1109/FOCS.2019.00097

[15] Jeremy Gibbons, Wentong Cai, and David B. Skillicorn. 1994. Efficient Parallel

Algorithms for Tree Accumulations. Sci. Comput. Program. 23, 1 (1994), 1–18.
https://doi.org/10.1016/0167-6423(94)00013-1

[16] Michael T. Goodrich. 1999. Communication-Efficient Parallel Sorting. SIAM J.
Comput. 29, 2 (1999), 416–432. https://doi.org/10.1137/S0097539795294141

[17] Michael T. Goodrich, Nodari Sitchinava, and Qin Zhang. 2011. Sorting, Searching,

and Simulation in the MapReduce Framework. In Algorithms and Computation -
22nd International Symposium, ISAAC 2011, Yokohama, Japan, December 5-8, 2011.
Proceedings (Lecture Notes in Computer Science, Vol. 7074), Takao Asano, Shin-

Ichi Nakano, Yoshio Okamoto, and Osamu Watanabe (Eds.). Springer, 374–383.

https://doi.org/10.1007/978-3-642-25591-5_39

[18] Syeda Sakira Hassan, Simo Särkkä, and Ángel F. García-Fernández. 2021. Tem-

poral Parallelization of Inference in Hidden Markov Models. IEEE Trans. Signal
Process. 69 (2021), 4875–4887. https://doi.org/10.1109/TSP.2021.3103338

[19] Sungjin Im, Benjamin Moseley, and Xiaorui Sun. 2017. Efficient massively parallel

methods for dynamic programming. In Proceedings of the 49th Annual ACM
SIGACT Symposium on Theory of Computing, STOC 2017, Montreal, QC, Canada,
June 19-23, 2017, Hamed Hatami, Pierre McKenzie, and Valerie King (Eds.). ACM,

798–811. https://doi.org/10.1145/3055399.3055460

[20] Howard J. Karloff, Siddharth Suri, and Sergei Vassilvitskii. 2010. A Model of

Computation for MapReduce. In Proceedings of the Twenty-First Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA 2010, Austin, Texas, USA, January
17-19, 2010, Moses Charikar (Ed.). SIAM, 938–948. https://doi.org/10.1137/1.

9781611973075.76

[21] Daphne Koller and Nir Friedman. 2009. Probabilistic Graphical Models: Principles
and Techniques. The MIT Press.

[22] Richard E. Ladner and Michael J. Fischer. 1980. Parallel Prefix Computation. J.
ACM 27, 4 (1980), 831–838. https://doi.org/10.1145/322217.322232

[23] Moni Naor and Larry J. Stockmeyer. 1995. What Can be Computed Locally? SIAM
J. Comput. 24, 6 (1995), 1259–1277. https://doi.org/10.1137/S0097539793254571

[24] Tim Roughgarden, Sergei Vassilvitskii, and Joshua R. Wang. 2018. Shuffles and

Circuits (On Lower Bounds for Modern Parallel Computation). J. ACM 65, 6

(2018), 41:1–41:24. https://doi.org/10.1145/3232536

[25] Simo Särkkä. 2013. Bayesian Filtering and Smoothing. Cambridge University

Press.

[26] Simo Särkkä and Ángel F. García-Fernández. 2021. Temporal Parallelization of

Bayesian Smoothers. IEEE Trans. Autom. Control. 66, 1 (2021), 299–306. https:

//doi.org/10.1109/TAC.2020.2976316

453

https://doi.org/10.1109/FOCS.2018.00070
https://doi.org/10.1109/FOCS.2018.00070
https://doi.org/10.1145/3293611.3331596
https://doi.org/10.4230/LIPIcs.DISC.2022.9
https://doi.org/10.1137/1.9781611977554.ch99
https://doi.org/10.4230/LIPIcs.ICALP.2018.162
https://arxiv.org/abs/1809.03685
http://arxiv.org/abs/1809.03685
https://doi.org/10.1109/FOCS.2019.00095
https://doi.org/10.1145/3470631
https://doi.org/10.1145/3470631
https://doi.org/10.1007/3-540-19488-6_110
https://www.w3.org/TR/REC-xml/
https://www.w3.org/TR/REC-xml/
https://doi.org/10.1145/3519935.3520055
https://doi.org/10.1145/3451992
https://doi.org/10.1109/FOCS.2019.00097
https://doi.org/10.1016/0167-6423(94)00013-1
https://doi.org/10.1137/S0097539795294141
https://doi.org/10.1007/978-3-642-25591-5_39
https://doi.org/10.1109/TSP.2021.3103338
https://doi.org/10.1145/3055399.3055460
https://doi.org/10.1137/1.9781611973075.76
https://doi.org/10.1137/1.9781611973075.76
https://doi.org/10.1145/322217.322232
https://doi.org/10.1137/S0097539793254571
https://doi.org/10.1145/3232536
https://doi.org/10.1109/TAC.2020.2976316
https://doi.org/10.1109/TAC.2020.2976316

