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Graphic Neural Network based GPS Spoofing

Detection for Cellular-Connected UAV swarm
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Abstract—The cellular-connected Unmanned Aerial Vehicles
(UAVs) are emerging as integral components of the 5G and
beyond system due to their mobility and flexibility. Compared to
a traditional single UAV, a flock of UAVs established as a UAV
swarm can implement diverse distributed applications econom-
ically and efficiently, such as cooperatively smart agriculture,
joint search and rescue, and supplementing temporary network
connections. However, the GPS spoofing attack can manipulate
UAV swarm locations and distort UAV swarm topology, which
threatens the security of swarm communication and control. This
paper proposes a Graphic Neural Networks (GNN) based GPS
spoofing detection approach for cellular-connected UAV swarms.
Especially, we propose a system in which the GNN model is
used to detect GPS spoofing attacks by analyzing the similarity
between the swarm GPS topology and communications topology.
To evaluate the proposed neural networks, we use a bipartite
graph and Hungarian algorithm to build a UAV swarm simulator.
The results show that GNN can efficiently compute topologies’
similarity and detect GPS spoofing attacks. For instance, for a
UAV swarm consisting of 10 UAVs, GNN detects the spoofing
with accuracy over 90% and computation time of fewer than 10
milliseconds using Intel Core 1.6 GHz processor.

Index Terms—Unmanned Aerial Vehicles (UAVs), UAV swarm,
GPS spoofing detection, and Graphic Neural Networks (GNN).

I. INTRODUCTION

The cellular-connected Unmanned Aerial Vehicles (UAVs)

are emerging as imperative parts of the upcoming 5G and

beyond the system. Specifically, A flock of UAVs, or named

UAV swarm, has been envisioned in different kinds of ap-

plications, such as cooperative rescue, search, and network

recovery economically and efficiently [1]. A safe and reliable

navigation system is compulsory for cellular-connected UAV

swarms to complete the mission successfully. For example,

the safe navigation system can help the swarm members avoid

collisions and optimize the trajectory as well as support the

swarm formation flocking and coordinated path planning [2].

The Global Navigation Satellite System (GNSS), specifi-

cally GPS, is adopted by cellular-connected UAVs because of

its global coverage and accuracy. However, civil GPS signals

are unencrypted and vulnerable to signal spoofing attacks

[3]. In practice, the GPS spoofer can use Software Define

Radio (SDR) to generate fake GPS signals and information,

which cause the GPS receiver to compute wrong positions [3].

Indeed, the GPS spoofer can manipulate the swarm topologies

and deviate the swarm from its optimized trajectories [2]. In

addition, the spoofed GPS positions also have an impact on

the swarm communication and control, because the swarm

Ad-hoc On-demand Distance Vector (AODV) routing protocol

lacks strong authentication on the node and is vulnerable to the

spoofing attack [3]. Thus, it is necessary to endow the swarm

with the ability to verify the GPS navigation information and

withstand GPS spoofing attacks.

Several countermeasures have been proposed to protect

UAVs against GPS spoofing attacks, including GPS navigation

signals analysis (e.g., [4]–[6]) and GPS navigation message

authentication (e.g., [7]–[10]). The GPS signal analysis ap-

proaches to detect the GPS spoofing attack by estimating and

comparing the radio fingerprinting of GPS satellites [4], such

as the Direction of Arrival (DoA) of received GPS signals [5]

or the Time of Arrival (ToA) of the fake GPS signals [6].

In addition to GPS signal analysis, GPS navigation message

authentication methods counteract GPS spoofing by generating

cryptographically signed navigation messages [7]. Wu et al.

inserted the digital signature into the navigation message

with the help of the elliptic curve digital signature algorithm

[8]. Furthermore, the authors in [9] used SM cryptographic

algorithms to protect navigation messages from modification

for BeiDou II. Furthermore, Nicola et al. in [10] evaluated

the authentication of open service navigation messages for the

Galileo navigation system based on the efficient timed stream

loss tolerant authentication protocol.

Although the above-mentioned approaches have shown ef-

fectiveness against GPS spoofing attacks, they require a lot

of processor resources and have cost energy consumption at

the GPS receiver, which limits their implementation in real

UAV system that has limited computation power and battery

capability [11]. In addition to GPS navigation signals analysis

and GPS navigation message authentication approaches, the

UAV Inertial Navigation System (INS) is used to detect GPS

spoofing by comparing the difference between the position in-

ferred from the Inertial Measurement Unit (IMU) and the one

reported by the GPS receiver [12]. If the difference is above

a preset threshold value, the GPS position is spoofed. A key

advantage of INS is its resilience to spoofing attacks as it does

not rely on any external signal. However, the main weakness

of INS is the error accumulation of the IMU measurements

over time, which can seriously affect the detection accuracy.

The Mobile Positioning System (MPS) is another available

GPS spoofing detection method for UAVs and UAV swarms.

To enhance Long Term Evolution (LTE) support for Un-

manned Aerial Systems (UAS), the 3rd Generation Partnership

Project (3GPP) had defined new standards that allow the UAS

to access MPS services to locate and track the UAVs. In this



vein, Dang et al. in [13] proposed the Adaptive Trustable

Residence Area (ATRA) to cross-check the validity of GPS

information reported by UAV. However, the ATRA method

requires at least three base stations (BSs) at the same time.

To overcome these weaknesses, Dang et al. in [14] introduced

the deep learning method into the edge server, which allows

detecting the GPS spoofing for cellular-connected UAVs by

using one BS. Furthermore, the authors in [15] used transfer

learning methods in edge servers to train the model for GPS

spoofing detection, where the use of transfer learning can

increase detection accuracy and decrease detection latency.

Despite the fact that the proposed deep learning and transfer

learning approaches demonstrate effectiveness in detecting

GPS spoofing, they are designed for one single cellular-

connected UAV and do not consider the case of the cellular-

connected UAV swarm. In fact, the GPS attacker can ma-

nipulate the swarm formation by spoofing a specific UAV

member position, which may lead AODV to become unstable,

increase communication latency and decrease collaboration in

the swarm [2]. Additionally, the above approaches support

GPS spoofing detection for cellular-connected UAVs by run-

ning multiple detection procedures on the edge server, one

per UAV, which may lead to congestion in the detection

system when a large UAV swarm connects with one base

station. In this paper, we propose a GNN-based GPS spoofing

detection approach for the cellular-connected UAV swarm,

where GNN uses Graphic Conventional Network (GCN) layers

and recurrent network layers to detect GPS spoofing attacks

on the swarm by comparing the difference between the swarm

GPS topology information of and the communication topology.

The following are the major contributions of this paper.

• We investigated a mobile cellular network-assisted Flying

Ad-hoc Network (FANET) system (see Fig. 1), where the

UAV swarm leader is connected with a base station and

controlled by the edge UAVs Flight Controller (UFCs). In

addition, the UFCs can monitor and verify GPS positions

reported by swarm members through Air-to-Air (A2A)

and Air-to-Ground (A2G) communication links.

• To detect the GPS spoofing against the swarm, we de-

signed a GNN to the edge UFCs in order to analyze the

swarm-reported GPS information and the communication

links information. Specifically, the GCN layers are used

to compute the spatial similarity between the swarm GPS

topology and communications topology while the recur-

rent networks are for acquiring the temporal similarities

of the swarm topology changes caused by GPS spoofing

attacks.

• To evaluate the proposed neural networks, we use a

bipartite graph and Hungarian algorithm to build a UAV

swarm trajectory simulator that demonstrates the impacts

of GPS spoofing attacks on the swarm topology and

provides the data for GNN training and evaluation.

The remainder of this paper is organized as follows. Sec-

tion II introduces the system model and problem formulation.

Section III provides details on the proposed GNN-based GPS
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Fig. 1. Cellular-connected FANET system.

spoofing detection method. The results are given in Section IV.

Conclusion and future work are presented in Section V.

II. SYSTEM MODEL AND PROBLEM FORMULATION.

A. System Model

1) Network Model: As illustrated in Fig.1, we consider

an edge network scenario consisting of one BS b, a UAV

swarm containing N UAVs, and a GPS spoofer equipped

with an antenna array. The BS connects with the edge server

that runs the UFCs to control the swarm. The aerial UAVs

swarm is organized in a FANET manner and uses the AODV

routing protocol for communication and collaboration among

the swarm leader ui, the swarm members uj and uk, 0 <

i, j, k ≤ N and i 6= j 6= k. Specifically, the leader of the

swarm ui is the gateway between the UFCs and other members

of the swarm, which can expand the range of communication

of the swarm while reducing spectrum interference. In addition

to the UAV swarm and BS, there is a GPS spoofer with an

antenna array to spoof the GPS signal, which can cause the

swarm to deviate from the planned position and arise collision

risks in the swarm.

2) Channel Model: The A2A channel between ui and uj

follows the free-space path loss model, and the A2G channel

model between ui and b is defined in [16] by the 3GPP.

3) Attack Model: Let (xb, yb, hb) denote the location of the

BS position, and (xk, yk, hk) represents uk position. Casting

aside GPS spoofing and GPS error, uk should be at the planned

waypoint pk at time t. In the presence of a GPS error, the

report position p
′

k is close to pk with an error ǫ. Once GPS

spoofed, the UAV uk locates at p̃k that deviates from pk with

δ, where ǫ ≤ dE < δ and dE is the system’s tolerable

GPS margin error (see Fig.1). The attacker can either spoof

a specific UAV GPS position or broadcast fake GPS signals

into the air and spoof all the UAVs’ positions. The first type

of spoofing can manipulate some UAVs’ positions and change

the swarm formation, while the second type of spoofing leads

the whole swarm to a wrong destination without any changes

to the swarm formation. We assume that the spoofing attacks

will not affect swarm and BS communication.

B. Problem Formulation

The cellular-connected UAV swarm system is modeled as

an undirected graph G, G = {V,E,W}. V is the node-



set, and V = {v0, ..., vi, ..., vN}, where v0 represents the

BS b and node vi denotes the UAV ui. E is the edge set

that represents the interaction between BS and the swarm,

E ⊆ {(ui, uj) : ui, uj ∈ V, 0 ≤ i 6= j ≤ N} particularly. The

weighted adjacency matrix W is the interaction strength, W =
[wij ] ∈ R

(N+1)×(N+1)(wij ≥ 0). The interaction strength

for the cellular-connected UAV swarm can be extracted from

GPS positions or generated from wireless connections. Let Gg

denote the GPS topology and Gl represent the communication

topology for the cellular-connected UAV swarm. The interac-

tion strength wij for Gg stands for the distance dij , wij = 0 if

dij > rij , where rij is the max communication range between

node i and node j. Correspondingly, the interaction strength

wij for Gl represents the path loss value from node i to node

j, wij = Lij when i = 0 or j = 0, otherwise wij = Lij .

Theoretically, the path loss increases with increasing dis-

tance between the transmitter and receiver. In such a dynamic

scenario, the strength of GPS interaction is close to the

communication path loss interaction in the cellular-connected

UAV swarm at a given time. However, fake or false GPS

positions from GPS spoofing correspond to the deviation

between the swarm communication topology and the GPS

location topology. Therefore, the similarity between Gl and

Gg can indicate GPS spoofing in the cellular-connected UAV

swarm. Let Sgl denote the similarity between Gl and Gg .

Hence, the swarm GPS spoofing detection problem can be

formulated as a threshold-based hypothesis test, seen in (1).
{

H0 : Sgl > τ,

H1 : Sgl ≤ τ,
(1)

where τ denotes a threshold of hypothesis testing and H0

is the null hypothesis that indicates GPS spoofing while

H1 stands for no GPS spoofing. H0 is accepted if Sgl is

above τ . Otherwise, H1 is accepted. Noteworthy, Sgl can be

represented by Graph Edit Distance (GED) [17].

Although there are algorithms for GED computation, all

of them cannot manage graphs with more than 16 nodes in

a reasonable time [17]. In addition, the swarm communica-

tion topology is influenced by environmental factors, such

as clouds, temperature, and vapor, which may lead to a

wrong decision on GPS spoofing. Thereby, the threshold-based

hypothesis testing in (1) faces the following challenges. First,

the current GED computations are high time consumption

that can lead to fatal damage to the swarm due to detection

latency. Secondly, the swarm communication topology is more

likely to be affected by the environment, which may increase

spoofing detection errors. Thirdly, the threshold setting has an

immediate impact on the accuracy of the hypothesis testing,

i.e. a bigger threshold setting leads to a higher probability of

miss detection while a smaller threshold setting results in a

higher probability of false alarms.

To address the aforementioned challenges, we employ GNN

model on the edge server to devise an effective GPS spoofing

detection approach for the cellular-connected UAV swarm,

seeing in the following section.

III. GNN BASED GPS SPOOFING DETECTION

Fig.2 shows GNN architecture that includes GCN layers,

attention and tensor network layers, recurrent network layers,

and dense layers. Specifically, GCNs, attention, and tensor

networks have the same architecture as the SimGNN in

[18], which are in charge of topological spatial similarity

measurements while recurrent network layers and dense layers

are responses to extract topological temporal changes.
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Fig. 2. GNN architecture.

The GCN layers uses the GPS topology Gg and the com-

munication topology Gl as inputs and produces the simi-

larity score Similarity(Gg,Gl). Firstly, the Graph Convolu-

tional Networks (GCNs) embed the swarm GPS topology

and one of its nodes into Euclidean vector space. Precisely,

all N nodes in a graph G have N node embeddings [18].

Following, the attention mechanism emphasizes each node’s

importance and similarity within one graph embedding for

graph-level embeddings. However, the attention emphasized

that graph embeddings lose the small substructures features,

which debilitates the authenticity of the final similarity [18].

To solve this problem, both Neural Tensor Network (NTN) and

pairwise node comparison are employed for analyzing graph-

level embeddings in order to extract fine-grained node-level

information [18]. More specifically, the histogram features

of node-level embeddings are used in the Pairwise Node

Comparison (PNC) to represent node-level features [18]. At

the end, fully connected layers are employed to aggregate

node-level and graph-level features to produce a similarity

score, Sgl, Sgl = Similarity(Gg,Gl).

The GPS spoofing attack is a continuous procedure that

manipulates the swarm and its member positions constantly.

It is difficult for the GCN layers to capture the topological

changes of the swarm over time. Fortunately, the recurrent

network layers and dense layers are good at analyzing the

time sequence data and detecting abnormal topology changes

from GPS spoofing attacks. Initially, the unit of recurrent

network layers has two kinds of inputs, one input for the

recent past graph similarities and another input for the present

similarity, which allows for making a decision in a combi-

nation with graph temporal similarities [19]. However, the

traditional recurrent network unit has an impediment to long-

term prediction, which is caused by the vanishing or explosion

of the gradient in adaptive neural networks [19]. Two variants

of the recurrent networks have been developed, namely, the



long-short-term memory (LSTM) model and the gated recur-

rent units (GRUs) model, based on a gated mechanism to

solve the above problems [19]. The LSTM uses three gates,

input, output, and forget gate, to extract the temporal features

from time sequences, while the GRU has two gates with

two activation functions for combining the past and present

features. The evaluation of the GNN model is illustrated in

Section IV.

IV. PERFORMANCE EVALUATION

A. Simulation Setting

We develop a swarm simulator using Python 3.6 and Ten-

sorflow 2.1.0 to evaluate the performance of the proposed

spoofing detection algorithms. In this simulator, Python is used

to set up the simulation platform, and Tensorflow is employed

to build the GNN and RNN models.

Fig. 3. Simulation platform with 6 UAVs in the swarm.

Fig.3 shows the simulation platform that contains one

base station and an aerial UAV swarm distributed in a 3D

1400× 1400× 100 m3 space, where the base station locates

at the origin point while the swarm starts at the initial

waypoints and towards to the target waypoints. In particular,

the spherical surface is the boundary of the base station

coverage. It is worth mentioning that the swarm needs to arrive

at a given altitude and then move to their next waypoints,

and then the bipartite graph and Hungarian algorithms are

used to optimize the swarm trajectory from the given altitude

positions to target positions. The simulation platform settings

are illustrated in Table I, where the target positions of the

swarm are two different locations, P1 denote the normal

end position, while P2 stands for the spoofed end position,

P1,P2 ∈ {(x, y, z)|x, y ∈ {1200, 1250, ..., 1300}, z = 100}.

In addition, N is the Gaussian noise on the swarm positions

caused by random winds. dE is preset as {10, 15, 20, 25, 30}
to simulate the GPS error tolerance of different scenarios. The

channel frequency is set at 5.0 GHz for A2A communication

and 2.4 Ghz for A2G communication.

The GNN has three GCNs layers with (128, 64, 32) filters

for embedding graph nodes, one NTN layer with 16 neurons

for extracting nodes features, and one PCN with 16 neurons

and 32 histogram bins for preserving link features, and recur-

rent network layers consist of one bidirectional layer (LSTM

or GRU unit) followed by a dense layer and one output layer.

The LSTM/GRU layer and the dense layer have the same

TABLE I
PARAMETER SETTINGS OF THE SIMULATION PLATFORM.

Parameter Definitions Value(s)

PS Swarm initial position (0,0,0)

PT Swarm target positions (P1,P2)

PB Base station position (0,0,0)

N Swarm UAVs’ number 6,8,10

rS Swarm range size 100 m

rU UAV communication range 300 m

rB BS communication range 1200 m

N Random wind noise N (0, 5)
fa A2A channel frequency 5.0 GHz

fg A2G channel frequency 2.4 GHz

dE GPS error 10,15,...,30 m

number of neurons chosen from {10, 15, ..., 40}, while the

output layer has one single neuron to make the final spoofing

decision.

Since GCNs, attention, and tensor networks are applied for

topological spatial similarity measurements while recurrent

network layers and dense layers are responses to extract

topological temporal changes, they are trained separately in

order to reduce the model training time as well as prevent

overfitting. The GNN has been trained for 200 epochs on 100

graphs and tested with 100 graphs. In particular, the Adam

optimizer is used during GNN training with a learning rate

of 0.001 and a weight decay of 0.001 for GCN layers while

a learning rate of 0.0001 for recurrent network layers. Sup-

plementally, the weight decay is also called L2 regularization

and is used to accelerate training processes as well as prevent

model overfitting. In addition, the dropout is also employed

after GCNs layers with a rate of 0.9 to reduce overfitting

and improve generalization. Moreover, the activation function

sigmoid is applied in the dense layer and the output layer to

produce the final spoofing probability.

B. Performance Metrics

1) Normalized Graph Edit Distance (NGED): NGED is

used to transform the graph edit distance into the graph

similarity score. In [20], NGED is defined as:

NGED(G1,G2) = Similarity(G1,G2) = e
−

GED(G1,G2)

(|G1|+|G2|)/2 , (2)

Similarity(G1,G2) is in range of (0, 1] and there is a one-

to-one mapping between GED(G1,G2) and Similarity(G1,G2),
conspicuously. NGED is used in SimGNN inputs and output

during the model training and evaluation processes.

2) Mean Squared Error (MSE): MSE is the loss function

for evaluating the performance of the GCN networks, which

is expressed as

L =
1

T

T
∑

t=1

(St
gl − Ŝ

t
gl)

2, (3)

where L is MSE and S
t
gl is the graph similarity score at time

t while Ŝ
t
gl is the graph similarity prediction at time t.



3) The Binary Cross-entropy Loss (BCL): BCL is employed

to assess the performance of the recurrent network layers,

which is expressed as

B = −
n
∑

i=1

ŷi log yi + (1− ŷi) log(1− yi), (4)

where B represent BCL and ŷi is the ith predicted spoofing

probability while yi is the ith ground truth label, yi = 1
representing no spoofing while yi = 0 denoting GPS spoofed.

yi = 0 if and only if the average deviation of the swarm is

outside the system GPS error tolerance.

C. Performance Results

(a) 6 UAVs in the swarm (b) 8 UAVs in the swarm

(c) 10 UAVs in the swarm (d) GED difference.

Fig. 4. GPS spoofing attack on UAV swarms with P1 = (1200, 1200, 100)
(Normal) and P2 = (1300, 1300, 100) (Spoofed). The spoofing starts at
around time 60.

1) The swarm simulation platform data evaluation: Fig.4

illustrates the GED of different UAV swarms with GPS

spoofing attack, where the normal position locates at P1 =
(1200, 1200, 100) while the spoofed position is relocated to

P2 = (1300, 1300, 100).
It can be observed from Fig.4 that the GPS spoofing attack

has more impact on a bigger swarm. The reason is that the GPS

spoofing attack can result in more changes to a bigger swarm

topology than a small swarm. It is easy to see in Fig.4 that

there are some flaws in the normal GED, which actually come

from random winds, GPS errors, or communication noise. In

practice, the random wind can cause the UAV to hang near

to its planned GPS positions and bad weather can increase

GPS signal error and decrease GPS accuracy. In fact, both

random wind and GPS errors can result in the accumulation

of the swarm GPS location topology errors. Additionally,

swarm communication is also influenced by environmental

conditions that can make swarm communication unstable.

Unstable communication will be reflected in the path loss

values and will further impact the swarm communication

topology. So, it is reasonable that the GED between the swarm

GPS topology and communication is different without GPS

spoofing.

(a) GCN training history. (b) GCN prediction with 6 UAVs

(c) GCN prediction with 8 UAVs (d) GCN prediction with 10 UAVs

Fig. 5. GCN training history and prediction.

2) GNN based graph similarity prediction approach:

Fig.5(a) depicts the GCN layers training history, where the

MSE defined in (2) is used as a loss function on 6, 8, and 10

UAV swarm data sets. The training history shows that GCN

layers can fit all swarm data sets with a small loss value near

zero, which means the trained GCN layers can predict well on

the training data set. It can also be observed from the training

history that GCN layers are trained faster on the swarm with a

smaller size. The reason behind the phenomenon is that there

are fewer neurons working in the GCN layers when the swarm

size is small. The performance of GCN layers on the test data

sets are shown respectively in Fig.5.(b-d). It is clear that the

trained GCN layers can also fit well on the test data set as well

as keep the normalized GED trending. Thus, the similarity

between GPS topology and communication topology can be

used to detect GPS spoofing attacks on cellular-connected

aerial swarms.
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Fig. 6. Computation times for 100 graphs pairwise

We also measured the traditional GED and GCN layers

prediction time on a test data set with 100 graphs pairwise

using a physical machine with 4-cores Intel’s Core 1.6GHz

CPU and 16GB RAM. Fig.6 illustrates the obtained results.

It is remarkable that GCN layers only need 1 second to

compare 100 graphs pairwise with 10 UAVs, which is more

than 1000 times faster than the traditional GED method. The

reason behind the phenomenon is that GCN layers use neural

networks to embed the graph into Euclidean vector space and

can compute the similarity directly, which is different from the

traditional GED methods that count the number of graph edge



deletions, edge insertion, and vertex relabeling operations to

transform one graph to the target one.

3) GNN based spoofing detection approach: We measure

two kinds of recurrent networks unit, LSTM, and GRU sep-

arately, to evaluate the proposed GNN-based GPS spoofing

detection approach. The LSTM and GRU training history is

illustrated in Fig.7(a), where the GRU is convergent faster

than the LSTM network. The reason for this phenomenon is

that the GRU model has a more simple architecture compared

to the LSTM. Although LSTM is not far-off from the GRU

in detection accuracy, the LSTM requires more training time

compared with the GRU. In practice, a longer training time

introduces more latency for updating the GNN model in a

dynamic environment and may hinder the spoofing attack

during model updating. Thus, the combination of GNN and

GRU is better than GNN and LSTM for the cellular-connected

UAV swarm GPS spoofing detection. In addition to the training

performance, we further compare trained LSTM and GRU

model performances with the Normalized GED (NGED) and

the Predicted GED (PGED) under different GPS error settings

as shown in Fig.7(b). From the results depicted in Fig.7(b),

the accuracy of GNN is decreasing as GPS error increases.

This can be explained by the fact that it is easier for an

attacker to counterfeit the GPS position in an environment with

a high GPS error. Moreover, we observe that the use of NGED

and PGED has insignificant impacts on the GNN spoofing

detection performance. The reason behind those trends is that

the proposed GNN spoofing detection approach considers not

only the swarm spatial similarity but also the temporal changes

caused by the spoofing attack.

(a) Training history (b) Detection performance

Fig. 7. Training history and detection performance for 10 UAVs

V. CONCLUSION AND FUTURE WORK

This paper proposed a GNN-based GPS spoofing detection

approach for the cellular-connected UAV swarm using the

similarity between the swarm GPS topology and the commu-

nications topology. Specifically, the GCN layers and recurrent

network layers are used to compute the spatial and temporal

similarity between the swarm GPS location topology and

communications topology. Remarkably, GNN can compute

two graphs’ similarity computation within 10 milliseconds

compared with the 16 seconds consumed by the traditional

GED approach. Furthermore, the use of the GRU unit requires

less training time than the use of the LSTM unit. In the future,

we will elaborate more on graphic reinforcement learning-

based GPS spoofing detection and mitigation methods for the

cellular-connected UAV swarm.
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