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Predicting the phase diagram of interacting quantum many-body systems is a central problem in condensed
matter physics and related fields. A variety of quantum many-body systems, ranging from unconventional
superconductors to spin liquids, exhibit complex competing phases whose theoretical description has been the
focus of intense efforts. Here, we show that neural network quantum states can be combined with a Lee-Yang
theory of quantum phase transitions to predict the critical points of strongly correlated spin lattices. Specifically,
we implement our approach for quantum phase transitions in the transverse-field Ising model on different lattice
geometries in one, two, and three dimensions. We show that the Lee-Yang theory combined with neural network
quantum states yields predictions of the critical field, which are consistent with large-scale quantum many-body
methods. As such, our results provide a starting point for determining the phase diagram of more complex
quantum many-body systems, including frustrated Heisenberg and Hubbard models.
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I. INTRODUCTION

Solving a generic family of quantum many-body problems
and ultimately predicting their phase diagram is a challeng-
ing task [1,2]. The exponential growth of the Hilbert space
with the system size, especially for high-dimensional systems,
makes most realistic models intractable in practice. Some
problems, such as the transverse-field Ising model in one
dimension, can be solved analytically [3]. However, more gen-
erally, obtaining the phase diagram of an interacting quantum
many-body system is a critical open problem. To this end,
several numerical tools have been developed, including Monte
Carlo simulations [4] and tensor-network algorithms [5]. Nev-
ertheless, despite considerable progress, the phase diagram of
many quantum systems in two and three dimensions remain
unknown [6,7].

Neural network quantum states are a recently developed
class of variational states [8] that have shown great potential
for parametrizing and finding the ground state of interact-
ing quantum many-body systems [9–26]. Neural network
quantum states represent the wave function of a quantum
many-body system as a neural network. Specifically, the
neural network is a parametrized function that takes the con-
figuration of a many-body system as the input and outputs
the corresponding amplitude and phase of the wave function.
By optimizing the parameters of the neural network, so that
the energy is minimized, an accurate approximation of the
ground state can be found. Neural network quantum states
exploit the fact that neural networks can faithfully represent
many complex functions [27], including a variety of quantum
many-body wave functions. They have already been applied
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FIG. 1. Neural network approach to quantum phase transitions.
(a) Cubic Ising lattice of interacting spins in a transverse magnetic
field—here a system of size 3×3×3. (b) A neural network takes a
configuration of the spins, encoded in the vector �σ = (σ1, . . . , σN ),
and outputs the corresponding value of the wave function, ψ�θ (�σ ) =
〈�σ |ψ〉, which depends on the variational parameters in �θ . (c) From
the fluctuations of the magnetization, we extract the zeros of the
moment-generating function of the magnetization (shown as ×) and
investigate their motion in the complex plane as we increase the sys-
tem size (indicated with numbers). Above the critical field, h > hc,
the zeros remain complex in the thermodynamic limit, signaling that
the system is in the paramagnetic phase (PM). For h < hc, the system
is in the ferromagnetic phase (FM) with finite magnetization and
the zeros approach the origin in the thermodynamic limit. (d) Phase
diagram of the transverse-field Ising model.
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to find the wave functions of several spin models [9–14,28],
including the J1-J2 Heisenberg model [15–21,29]. Unlike
many other Monte Carlo methods, neural network quantum
states, as a variant of variational Monte Carlo, can be applied
to frustrated spin models. Moreover, their use has been ex-
tended to fermionic [22,30] and bosonic [31–33] systems, as
well as to molecules [22,23] and nuclei [24–26].

In the context of critical behavior, a rigorous foundation
of phase transitions was established by Lee and Yang, who
considered the zeros of the partition function in the complex
plane of the control parameters, for example an external mag-
netic field or the inverse temperature [34–37]. This approach
relies on the fact that for systems of finite size, the partition
function zeros are all complex. However, if a system exhibits
a phase transition, the zeros will approach the critical value
on the real axis in the thermodynamic limit of large system
sizes, giving rise to a nonanalytic behavior of the free-energy
density [38–49]. Lee-Yang zeros are not just a theoretical con-
cept, but they can also be determined experimentally [50–54].
In recent years, applications of Lee-Yang theory have been
expanded to dynamical quantum phase transitions in quantum
many-body systems after a quench [55–57] and to quantum
phase transitions in systems at zero temperature [58,59].

Here, we combine neural network quantum states with
a Lee-Yang theory of quantum phase transitions to predict
the critical behavior of interacting spin lattices in one, two,
and three dimensions. As illustrated in Fig. 1(a), we consider
the transverse-field Ising model in different dimensions and
lattice geometries. We then find the ground state of the system
as well as the fluctuations of the magnetization using neural
network quantum states, Fig. 1(b). From these fluctuations,
we determine the complex zeros of the moment-generating
function of the magnetization and follow their motion as the
system size is increased. As illustrated in Fig. 1(c), the zeros
remain complex in the thermodynamic limit in case there is
no phase transition. On the other hand, if the magnetic field is
tuned to its critical value, the zeros of the moment-generating
function will reach the origin of the complex plane, signaling
a phase transition. Thus, by investigating the positions of the
zeros for different magnetic fields, we can map out the phase
diagram of the system, Fig. 1(d).

Our paper is organized as follows: In Sec. II, we describe
the methods that we use throughout this work. In particular,
we introduce the transverse-field Ising model, we discuss our
calculations of the magnetization cumulants in the ground
state using neural network quantum states, and we provide
the details of the Lee-Yang theory that we use to predict the
critical magnetic field for a given lattice geometry. In Sec. III,
we present the results of our calculations. As examples, we
first discuss our procedure for the transverse-field Ising model
on a one-dimensional chain, a two-dimensional square lattice,
and a cubic lattice in three dimensions. We then provide
predictions of the critical fields for several other lattice ge-
ometries. In Sec. IV, we discuss our results and the role of the
coordination number and dimensionality of a given lattice. We
also compare our predictions with mean-field theory, which
becomes increasingly accurate in higher dimensions. Finally,
in Sec. V, we summarize our conclusions. Technical details of
our neural network calculations are provided in Appendix A.

II. METHODS

A. Transverse-field Ising model

We consider the transverse-field Ising model on a lattice of
spin-1/2 sites as described by the Hamiltonian

Ĥ = −J
∑
〈i, j〉

σ̂ z
i σ̂ z

j − h
∑

i

σ̂ x
i . (1)

Here, the first sum runs over all nearest neighbors, denoted by
〈i, j〉, the coupling between them is J , and h is the transverse
magnetic field. The one-dimensional version of this model can
be solved analytically and it is known to exhibit a continuous
phase transition in the thermodynamic limit at the critical
field hc = J [3]. Above the critical field, the system is in a
paramagnetic phase with vanishing magnetization. Below it,
the system exhibits spontaneous symmetry breaking and en-
ters a ferromagnetic phase with a nonvanishing magnetization.
In the following we will investigate the model in different
dimensions and geometries. The two-dimensional systems we
consider are square, honeycomb, kagome, and triangular lat-
tices. In three dimensions, we consider cubic, face-centered
cubic, body-centered cubic, and diamond lattices. In all of
these cases, we impose periodic boundary conditions, and we
compare our predictions with earlier results based on large-
scale quantum Monte Carlo simulations [60].

B. Neural network quantum states

To find the ground state of the system together with the
moments and cumulants of the magnetization, we use neural
network quantum states. The neural network quantum states
are variational states of the form

ψ�θ (�σ ) = 〈�σ |ψ�θ 〉, (2)

where the vector �θ contains the variational parameters that
we need to determine to minimize the energy and thereby
find the ground state. The neural network provides a com-
pressed algorithmic representation of the coefficients of the
wave function, and it takes a spin configuration in the com-
putational basis as the input, and outputs the wave function
in response. The energy is minimized using stochastic recon-
figuration, which is an approximate imaginary time evolution
within the variational space of the neural network. Neural
network state methodologies have been extended to the time
evolution of quantum systems [8,61,62], quantum state to-
mography [63–65], as well as finite-temperature equilibrium
physics [66–68]. Importantly, while many other approaches
are not able to exploit the computational power of massive
parallel computing, neural network quantum states can be im-
plemented with modern graphics processing units. The energy
is evaluated by sampling over the wave function as

〈Ĥ〉 =
∑

�σ �σ ′ ψ∗(�σ )〈�σ |Ĥ|�σ ′〉ψ (�σ ′)∑
�σ ′ |ψ (�σ ′)|2 =

∑
�σ

Pψ (�σ )Hloc(�σ ),

(3)
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where we have defined the probability

Pψ (�σ ) = |ψ (�σ )|2∑
�σ ′ |ψ (�σ ′)|2 (4)

and the local spin Hamiltonian

Hloc(�σ ) =
∑
�σ ′

〈 �σ |Ĥ|�σ ′〉ψ (�σ ′)
ψ (�σ )

. (5)

Since Eq. (3) is just an average with respect to a normalized
probability distribution, Markov-chain Monte Carlo can be
used for evaluating the energy and the gradients [69]. It is
worth noting that the spin Hamiltonian in Eq. (5) is given by
only a few terms in the sum, since only nearest neighbors are
coupled. We will also need the expectation value of the total
magnetization and its moments, which we express as〈

M̂n
z

〉 =
∑

�σ
Pψ (�σ )Mn

z (�σ ), (6)

since M̂z is diagonal in the computational basis, such
that Mn

z (�σ ) = (〈�σ |M̂z|�σ 〉)n = 〈�σ |M̂n
z |�σ 〉. Additional details of

these calculations are provided in Appendix A.

C. Lee-Yang theory

The classical Lee-Yang theory of phase transitions consid-
ers the zeros of the partition function in the complex plane
of the control parameter, for instance magnetic field or in-
verse temperature [34–37]. For finite systems, the partition
function zeros are situated away from the real axis. How-
ever, in the case of a phase transition, they will approach
the critical value on the real axis in the thermodynamic
limit. One may thereby predict the occurrence of a phase
transition by investigating the position of the zeros as the
system size is increased. The Lee-Yang theory of phase tran-
sitions has found applications in condensed matter physics
[38,41,42,45–47], atomic physics [39], and particle physics
[40,43,44,48,70–73]. Recently, it has been extended to the
zeros of the moment-generating function that describes the
fluctuations of the order parameter [58,59] and thereby allows
for the detection of quantum phase transitions. In Ref. [58],
the method was implemented for one-dimensional chains, in
particular the transverse-field Ising chain and an anisotropic
Heisenberg model. In addition, preliminary results for a J1-J2

Heisenberg model in two dimensions were presented. It was
observed that the Lee-Yang approach made it possible to de-
termine the critical points using rather short chains. Following
this approach, we now define the moment-generating function

χ (s) = 〈esM̂z 〉 = 1

g

g∑
k=1

〈
ψ

(0)
k

∣∣esM̂z
∣∣ψ (0)

k

〉
, (7)

where M̂z is the total magnetization, and s is referred to as
the counting field. Here, we have included the possibility that
the system may have g degenerate and normalized ground
states that we denote by |ψ (0)

k 〉, k = 1, . . . , g. Within this
framework, the moment-generating function plays the role of
the partition function in the classical Lee-Yang theory, and
the cumulant generating function, �(s) = ln χ (s), becomes
the corresponding free energy. The moments and cumulants

of the magnetization are given by derivatives with respect to
the counting field as 〈

M̂n
z

〉 = ∂n
s χ (s)

∣∣
s=0 (8)

and 〈〈
M̂n

z

〉〉 = ∂n
s �(s)

∣∣
s=0. (9)

Importantly, away from a phase transition, the cumulants are
expected to grow linearly with the system size, such that the
normalized cumulants 〈〈M̂n

z 〉〉/N converge to finite values as
the number of spins N approaches infinity. By contrast, at a
phase transition, a different scaling behavior is expected due
to a nonanalytic behavior of the cumulant generating function
at s = 0 [41,74]. This nonanalytic behavior emerges in the
thermodynamic limit, if the complex zeros of the moment-
generating function approach s = 0.

To determine the position of the zeros that are closest
to s = 0, we use the cumulant method that was developed
in Refs. [41,53,54,58,59]. In this approach, the zeros of the
moment-generating function can be determined from the high
cumulants of the order parameter. By doing so for different
system sizes, we can then find the convergence points in the
thermodynamic limit using finite-size scaling [41,53,58,59].
The cumulant method allows us to express the zeros in terms
of the high cumulants of the magnetization. Moreover, for the
transverse-field Ising model, the symmetry, Û †ĤÛ = Ĥ , with
respect to the unitary operator Û = ∏

i σ̂
x
i that flips all spins,

implies that all odd cumulants vanish, and in this model the
zeros are purely imaginary [58,59]. In that case, the zeros that
are closest to s = 0 can be approximated as [59]

Im(s0) �
√

2n(2n + 1)
∣∣〈〈M̂2n

z

〉〉/〈〈
M̂2n+2

z

〉〉∣∣ (10)

for large enough cumulant orders, n � 1. Thus, in the follow-
ing, we find the zeros from the high magnetization cumulants,
which we calculate using neural network quantum states,
and we ensure that the results from Eq. (10) are unchanged
if we increase the cumulant order. We then use the scaling
ansatz [58,59]

Im(s0) � Im(s0,c) + αL−γ (11)

to predict the convergence point, Im(s0,c), in the thermody-
namic limit, where L → ∞ is the linear system size. We carry
out this procedure for different magnetic fields to find the
critical field, where the zeros reach s = 0, and the system
exhibits a phase transition.

III. RESULTS

A. Extracted zeros

Figure 2 shows zeros obtained for the transverse-field
Ising model in one (chain), two (square), and three (cube)
dimensions. In each case, we have determined the zeros from
Eq. (10) using magnetization cumulants of up to order n = 10
for a fixed magnetic field and a given system size. We then
obtain the imaginary part of the zeros, and using the finite-size
scaling ansatz from Eq. (11), we find the convergence point
in the thermodynamic limit as illustrated in the figure. As
an example, we see in Fig. 2(a) how the zeros eventually
reach s = 0 as we decrease the magnetic field from above
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FIG. 2. Extraction of zeros from the cumulants of the magnetization. (a) Extracted zeros for a linear Ising chain in different magnetic
fields, h = 0.6, 0.7, 0.8, 0.9, 0.95, 1.0, 1.05, 1.1, 1.15, 1.2J (starting from the lower curve), as a function of the inverse system size, 1/L,
with L = 30, 40, 50, 25, 35, 45, 60, 80, 100. The solid lines are the finite-size scaling ansatz in Eq. (11), which allows us to determine
the value in the thermodynamic limit, where 1/L approaches zero. The data points in black correspond to the value of h/J , which
is closest to the critical field. (b) Similar results for a two-dimensional square lattice with the following values of the magnetic field,
h = 0.5, 1.0, 1.5, 2.0, 2.5, 2.9, 3.0, 3.05, 3.1, 3.2, 3.3, 3.4, 3.5J (starting from the lower curve) with L = 3, 4, 5, 6, 7, 8, 9, 10. (c) Results for a
cubic lattice in three dimensions with h = 0.0, 1.0, 2.0, 4.0, 5.0, 5.16, 5.2, 5.4, 5.6, 5.8, 6.0J (starting from the lower curve) with L = 2, 3, 4.

to h � J , where the system exhibits a quantum phase tran-
sition. In Figs. 2(b) and 2(c), we show similar results for the
two-dimensional square lattice and for the three-dimensional
cubic lattice. For increased dimensionality, we observe that
the quantum phase transition occurs at higher magnetic fields,
as expected for an increasing number of nearest neighbors. In
one dimension, we use chains of up to a length of L = 100.
For the two-dimensional square lattices, we consider systems
of sizes up to L×L = 10×10, while in three dimensions, the
biggest lattice is of size L×L×L = 4×4×4. The figure in-
cludes small error bars that represent sampling errors in the
neural network quantum states. We note that additional errors
could potentially arise from small inaccuracies in the varia-
tional ground state.

The results for the three different geometries are combined
in Fig. 3, where we show the extracted convergence points as a
function of the transverse magnetic field. The extrapolation is
performed by a constrained minimization of Im(s0,c), impos-
ing that the imaginary part is not negative. At large magnetic
fields, the systems are in the paramagnetic phase with the

spins mostly pointing along the direction of the field. In that
case, the zeros of the moment-generating function do not
converge to s = 0 in the thermodynamic limit. By contrast, as
the magnetic field is lowered, the zeros eventually reach s = 0,
signaling a quantum phase transition. Based on our calcula-
tions, we estimate the critical fields to be hc = 1.00J for the
one-dimensional chain, hc = 3.05J for the two-dimensional
square lattice, and hc = 5.16J for the three-dimensional cubic
lattice. These values are all within less than 1% difference
from other numerical results [60]. Below the critical field, the
zeros also reach s = 0, since the system is in the ferromag-
netic phase with spontaneous magnetization. In that case, the
ground state is twofold degenerate, and the system will exhibit
an abrupt change if a small magnetic field is applied in the z
direction.

B. Critical magnetic fields

We have considered other geometries in two and three
dimensions as illustrated in Fig. 4, where we show the results

FIG. 3. Convergence points of the zeros in the thermodynamic limit. (a) Convergence points for a linear Ising chain as a function of
the magnetic field. A quantum phase transition occurs at hc = 1.00J , where the curve exhibits a kink, and the zeros reach the real axis.
Above the critical field, the system is in the paramagnetic phase, while it is in the ferromagnetic phase below it. (b), (c) Similar results for
the two-dimensional square lattice (b) and the cubic lattice in three dimensions (c).

033116-4



LEE-YANG THEORY OF QUANTUM PHASE TRANSITIONS … PHYSICAL REVIEW RESEARCH 5, 033116 (2023)

FIG. 4. Convergence points of the zeros in the thermodynamic limit. (a) Convergence points for honeycomb lattice as a function of the
magnetic field. A quantum phase transition occurs at hc ≈ 2.14J , where the curve exhibits a kink, and the zeros reach the real axis. Above
the critical field, the system is in the paramagnetic phase, while it is in the ferromagnetic phase below it. (b), (c) Similar results for the kagome
lattice (b) and the diamond lattice (c).

for a honeycomb lattice, a kagome lattice, and a diamond
lattice. The honeycomb lattice has two sites per unit cell,
and we restrict ourselves to a linear dimension of L = 8,
which corresponds to 2×L2 = 128 sites. Similarly, for the
kagome lattice, we go up to L = 6, while for the diamond
lattice, we consider systems of linear size up to L = 4, which
corresponds to 2×L3 = 128 sites. The results in Fig. 4 are
qualitatively similar to those in Fig. 3, but with different criti-
cal fields. In particular, we find hc = 2.14J for the honeycomb
lattice, hc = 2.95J for the kagome lattice, and hc = 3.20J for
the diamond lattice.

The predictions of the critical fields are summarized in
Table I, where we also show the results for triangular lat-
tices in two dimensions and face-centered cubic (fcc) and
body-centered cubic (bcc) lattices in three dimensions. The
results are ordered according to the dimension D as well as
the number of nearest neighbors, the coordination number C.
In addition, we indicate the maximum linear dimension that
we have used, Lmax, and the number of sites in a unit cell,
Ncell. Those parameters control the maximum number of spins
in the lattice that we have considered, Nmax. The last column
contains the critical magnetic fields that we predict with the

TABLE I. Summary of critical fields. For each lattice, we indi-
cate the dimension, D, and the coordination number, C. We also show
the maximum linear dimension, Lmax, and the number of sites per unit
cell, Ncell, which give the maximum number of sites that we have used
as Nmax = Ncell × LD

max. The two last columns contain our predictions
of the critical field as well as the results from Ref. [60].

Lattice D C Lmax Ncell Nmax hc/J Ref. [60]

Chain 1 2 60 1 60 1.00
Honeycomb 2 3 8 2 128 2.14 2.13
Kagome 2 4 6 3 108 2.95 2.95
Square 2 4 10 1 100 3.05 3.04
Triangular 2 6 10 1 100 4.78 4.77
Diamond 3 4 4 2 128 3.20
Cubic 3 6 4 1 64 5.16 5.16
bcc 3 8 4 1 64 7.10
fcc 3 12 4 1 64 10.8

combination of Lee-Yang theory and neural network quantum
states. We note that our methodology provides accurate pre-
dictions even with a rather low number of lattice sites.

IV. DISCUSSION

A. Dimensionality and lattice geometry

The importance of the lattice geometry and the dimension
of the system can be understood from the results in Table I.
The chain and the honeycomb lattice, which have the lowest
coordination numbers, also have the lowest critical fields. The
coordination numbers are larger for the kagome and the square
lattices, where each spin has four nearest neighbors, as well as
for the triangular lattice with six nearest neighbors, and we see
that the critical fields increase accordingly. For the lattices in
three dimensions, the coordination numbers and the critical
fields are even larger. Despite this general behavior, we also
see that lattices with the same dimension and coordination
number (the square and kagome lattices) still have different
critical fields, which are directly related to their specific lattice
geometries.

B. Mean-field approximation

To better understand the role of the coordination number,
we show in Fig. 5 the critical fields as a function of the
coordination number. In Fig. 5(a), we see the clear trend
that the critical fields increase with the coordination num-
ber. Indeed, within a simple mean-field approximation, we
would expect that the critical field is directly related to the
coordination number as hMF

c = CJ [75]. The physical picture
here is that the spins experience a competition between two
opposing effects. On the one hand, the external magnetic field
tends to align the spins in the x direction. On the other hand,
the coupling between them tends to align them along the z
axis. The phase transition then occurs when the two effects
are equally strong. Since the coupling between neighboring
spins is proportional to the coordination number, so is the
critical field. Still, this mean-field approximation does not
fully capture the actual physics, since it ignores the effects of
the lattice geometry.We show the mean-field approximation
with a dashed line in the figure and find good qualitative
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FIG. 5. Comparison with mean-field theory. (a) The critical fields are shown as functions of the coordination number, C. The dashed line
is a simple mean-field approximation that directly links the critical field to the coordination number as hMF

c = CJ . (b) The ratio of the critical
fields over the mean-field approximation as functions of the coordination number, C. For large coordination numbers and dimensions, the
critical fields approach the mean-field approximation indicated with a dashed line.

agreement with our predictions. We also see that our results
come closer to the mean-field approximation as the dimension
of the system is increased. In particular, it is clear that the
critical field for the one-dimensional chain is furthest away
from the mean-field approximation, while the results for the
three-dimensional lattices are much closer.

To further support these observations, we show in Fig. 5(b)
the ratio of the critical fields over the mean-field approxi-
mation. This ratio allows us to characterize how the relative
deviations from the mean-field prediction decrease for larger
coordination numbers. Still, we see that the critical fields are
all smaller than the mean-field approximation, which ignores
quantum fluctuations. The results for the critical fields in
three dimensions are closer to the mean-field approximation
as compared with one and two dimensions. This observation
is in line with the expectation that mean-field theory becomes
more accurate in higher dimensions.

V. CONCLUSIONS

We have combined a Lee-Yang theory of quantum phase
transitions with neural network quantum states to predict the
critical field of the transverse-field Ising model in different
dimensions and lattice geometries. Specifically, we have used
neural network quantum states to find the ground state of
the interacting spin system, which further makes it possible
to extract the cumulants of the magnetization. From these
cumulants, we determine the complex zeros of the moment-
generating function, which reach the origin of the complex
plane in the thermodynamic limit if the system exhibits a
phase transition. Our method works with rather small sys-
tems, which in turn allows us to treat lattices in two and
three dimensions. Our predictions agree well with results
that were obtained using large-scale quantum many-body
methods. We have also analyzed the differences between our
predictions and a simple mean-field approximation, which be-
comes increasingly accurate for higher coordination numbers
and dimensions. Thanks to the flexibility of neural network
quantum states, the method can potentially treat frustrated
problems, in stark contrast to quantum Monte Carlo ap-
proaches that suffer from sign problems. Our results show
that the combination of Lee-Yang theories of phase transitions

with neural network quantum states provides a viable way
forward to predict the phase behavior of complex quantum
many-body systems such as Heisenberg models and fermionic
Hubbard models. The application of neural network quantum
states to fermionic models is currently being developed, which
in the future may provide a better understanding of interacting
fermionic systems using Lee-Yang theory.
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APPENDIX A: DETAILS OF CALCULATIONS

All of our calculations were implemented in NETKET

3.3 [69,76]. In one dimension, we found that a restricted
Boltzmann machine works well, while in two dimensions,
a group convolutional neural network functions better. In
three dimensions, we used a simple and shallow symmetric
architecture with real weights, which is sufficient, since the
transverse-field Ising model is stoquastic.

In one dimension, we used a simple real restricted Boltz-
mann machine with a number of hidden units per visible unit
of α = 20. For each training iteration, 8192 samples were
used, taken from 128 parallel chains. The network was trained
for 3000 iterations with a learning rate of 0.02, and then for a
further 1000 iterations with a learning rate of 0.01. Stochastic
reconfiguration with a diagonal shift of 0.01 was used.

In two dimensions, we used a group convolutional neural
network [15,77] defined over the group of all translations with
four layers of feature dimension 8 each and complex param-
eters. We used 32 parallel Markov chains constructed using
a Metropolis algorithm with local updates, and we took 1024
samples per iteration step. Stochastic reconfiguration with a
diagonal shift of 0.01 was used, and the network was trained
with a learning rate of 0.01 for 2000 iterations. If necessary,
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FIG. 6. Error analysis. (a) Relative error in the ground state
energy for the square lattice of different sizes as a function of the
field strength. (b) Zeros obtained for 100 neural network quantum
states with L = 10 and h/J = 3.05 as a function of the error. For

E/|E | < 0.001, the zeros have converged.

we trained the network multiple times and chose the network
with the lowest variance of the energy.

In three dimensions, we applied a dense symmetric layer
with real weights and 40 features to the input, and we then
activated it with the ReLu function, which was then summed
over to obtain the wave function. We used a local Metropolis
update Markov chain with 128 parallel chains and 8192 sam-
ples per training step. A learning rate of 0.002 and stochastic
reconfiguration with a diagonal shift of 0.01 were applied.
We then trained the network for 2000 iterations. If necessary,
we ran this training multiple times for the same configuration
(system size and magnetic field), and we chose the network
parameters that resulted in the lowest variance of the energy,

so that the network was as similar as possible to a ground state
of the Hamiltonian.

We evaluated the moments of the magnetization using reg-
ular sampling with an unbiased Markov chain, since

〈
M̂n

z

〉 =
∑

�σ
Pψ (�σ )Mn

z =
∑

�σ
Pσ (�σ )

[∑
i

σi

]n

. (A1)

For the two- and three-dimensional lattices with up to
Nmax = 128 sites, we took 100×1024×128 � 1.3×107 sam-
ples. For the one-dimensional lattice, we took up to
1000×1024×128 � 2.7×108 samples. For the sampling, we
used 128 parallel chains and discarded the first 64 entries.
From the moments, we then obtained the cumulants using a
standard recursion relation between them.

APPENDIX B: ERROR ANALYSIS

The position of the zeros can be slightly imprecise for
several reasons. For example, the ground state is never com-
pletely accurate, which may lead to errors in the zeros. The
Monte Carlo sampling itself may also lead to inaccuracies. In
addition, one has to ensure that only the closest zeros con-
tribute to the cumulants by using a sufficiently high cumulant
order. The errors from the Monte Carlo sampling are statistical
in nature and can easily be quantified. Regarding the ground
state, we make sure that it has converged so that the zeros
obtained with the cumulant method remained unchanged. In
Fig. 6(a) we show the relative errors in the ground state energy
for the square lattice, and we see that they are small for all
field strengths. In Fig. 6(b), we show the extracted zero for
different relative errors, and we see how the position of the
zero converges as the error is reduced. These results were
obtained by running the algorithm for finding the ground state
ten times, taking ten snapshots each time at different stages
of the training. These 100 data points have different errors in
the energy as shown in Fig. 6(b) together with the extracted
zero. As the error is reduced, we see a clear convergence of
the zero. In particular, for 
E/|〈E〉| < 0.001, the position of
the zero remains the same as the error is further reduced.
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