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Abstract—In recent years, variable renewable energy sources
(RES) have been integrated into electricity generation to re-
duce reliance on fossil fuels. RES integration into conventional
power systems diminishes rotational inertia, causing frequency
fluctuation vulnerability. Following the rapid increase in electric
vehicle (EV) sales, an EV fleet can contribute to an automatic
frequency reserve service in balancing markets through an EV
aggregator. However, the benefits of an EV aggregator directly
depend on the energy availability of each EV in an aggregator,
represented by the state-of-charge (SoC). In the wider literature,
SoC estimation is conventionally calculated using the ampere-
hour (Coulomb counting) method. However, this approach is
vulnerable to estimation errors, such as initial SoC and power
measurement errors, that can positively or negatively affect
aggregator benefits. Although previous studies have examined
several ways to maximize aggregator benefits, none has explored
the effect of SoC estimation errors on aggregator benefits.
Therefore, this study aims to preliminarily explore the influence
of SoC estimation errors on aggregator benefits in the frequency
containment reserve (FCR) market. The regulatory framework
and the FCR market are modeled in the European context.
The simulation results demonstrate that SoC estimation errors
affected the FCR provision period and forced charging activation,
resulting in positive and negative changes in EV aggregator
revenues.

Index Terms—balancing market, electric vehicles, frequency
containment reserve, state-of-charge.

I. INTRODUCTION

A power system’s frequency is a critical variable for system
stability, as it is directly linked to balancing generation and
consumption. Variable renewable energy source (RES) inte-
gration has continuously increased in recent years, expediting
a transition toward sustainability in electricity production
and reducing reliance on traditional fossil fuel-based energy
sources [1]. Moreover, power system inertia diminishes signif-
icantly with the rapid growth of RES installations, resulting
in frequency instability [2]. In particular, photovoltaic (PV)
penetration has increased considerably due to strong market
growth and a substantial price reduction. Hence, PV generation
fluctuations are tremendous challenges encountered by trans-
mission system operators (TSOs) and distribution system oper-
ators (DSOs) [3]. Global electric vehicle (EV) purchases have
increased due to high petrol prices and fossil fuel depletion,
reaching 6.6 million vehicles in 2021 and expected to reach
over 15 million by 2030, according to the International Energy
Agency [4]. Therefore, an EV fleet can provide ancillary

services in balancing markets [5]. In European electricity
markets [6], the balancing market includes four reserve types:
frequency containment reserve (FCR), automatic frequency
restoration reserve (aFRR), manual frequency restoration re-
serve (mFRR), and replacement reserve (RR). However, this
study focuses on an EV aggregator providing an FCR or
primary frequency regulation.

Previous studies have focused on developing EV aggregator
models as an FCR service provider to maximize aggregator
benefits. Luo et al. [7] explored an EV aggregator’s potential
financial return in frequency regulation markets. Shafie-khah
et al. [8] developed a new model to optimize EV aggregator
performance in FCR markets, considering short- and long-term
horizons. Thingvad et al. [9] assessed the potential economic
revenue of an EV aggregator with unidirectional and bidirec-
tional charging technologies providing frequency control in
Denmark. Borne et al. [10] investigated different technical
requirements in an FCR provided by an EV aggregator in
different balancing markets. Arias et al. [11] analyzed the
practical issues associated with Frederiksberg Forsyning’s first
commercial EV aggregator in the Danish frequency regulation
market. The study suggests that delays, measurement errors,
and physical equipment constraints should be considered to
implement realistic frequency regulation. Herre et al. [12]
developed a two-stage stochastic optimization to maximize
risk-averse EV aggregator profits in energy and FCR markets.
Pavic et al. [13] developed an EV aggregator model for the
day-ahead market and FCR bidding to assess the potential
challenges arising during such service provision. Guzman et
al. [14] proposed a smart EV aggregation strategy allowing
aggregator participation in the reserve market to maximize
aggregator profits while guaranteeing the energy required for
EV transportation. Diaz Londono et al. [15] introduced a
conceptual framework coordinating flexible loads and EV
aggregators as balancing service providers. Tepe et al. [16]
investigated the FCR market’s flexibility to make the market
more economically attractive for EV aggregators. Cai and Mat-
suhashi [17] proposed a model predictive control scheme for
EV aggregators that forecasts the regulation capacity price in
the FCR market to increase aggregator revenues. Schlund et al.
[18] considered the stochastic behavior of EV drivers based on
real data in an EV aggregator in FCR markets under different
charging control modes: unidirectional and bidirectional. Pavic
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et al. [19] presented stochastic and robust models of an EV
aggregator providing FCR and aFRR services, considering EV
and market uncertainties.

Based on the current literature, previous studies have de-
voted their efforts to developing EV aggregator models based
on unidirectional and bidirectional charging modes to provide
an FCR in the balancing markets. Additionally, uncertain-
ties associated with market prices, technical infrastructure
limitations, and EV owners’ preferences were considered.
However, the benefits of EV aggregators in providing an FCR
depend on EV availability, represented by the state-of-charge
(SoC). Typically, SoC estimation is based on an ampere-hour
(Coulomb counting) method, which is vulnerable to three
inevitable errors: initial SoC level, power measurement from
noise, and energy capacity [20]. Although previous studies
have examined several ways to maximize aggregator benefits,
none has explored the effects of SoC errors. Therefore, this
study preliminarily explores the influence of SoC errors on
aggregator revenue in the FCR market. The regulatory frame-
work and FCR market are modeled in the European context.
Although an ampere-hour method has main three inevitable
errors, this study does not consider electrochemical reactions
inside batteries that affect the reduction in energy capacity.
Therefore, the first two error sources (initial SoC level, power
measurement from noise) are merely focused.

The remainder of this paper is organized as follows. Section
II describes the FCR market structure. The SoC estimation
errors are detailed in Section III. The simulation results
are provided in Section IV. Finally, the key conclusions are
summarized in Section V.

II. FCR MARKET STRUCTURE

A. FCR requirements

This study focuses on European balancing markets be-
cause several FCR implementations exist, especially in Nordic
countries and central Europe. In particular, this study only
considers an EV aggregator providing an FCR (referred to as
European markets) or primary frequency regulation (referred
to as the North American markets). The FCR is automatically
activated within a few seconds to mitigate the imbalance
between generation and consumption (load), allowing the
system frequency to be regulated around its nominal value
of 50 or 60 Hz. The EV aggregators participating in FCR
markets must provide up- and downregulation with sufficient
energy and power capacity. The FCR control algorithm is
conventionally designed using a droop-based controller. A pre-
defined dead-band is also assigned and set to ±0.02 Hz from
the nominal frequency, and the allowable frequency limits are
set to ±0.1 Hz from the nominal frequency. When the system
frequency deviates within the pre-defined dead-band, the FCR
is not activated. When the system frequency decreases below
the dead-band, the TSO sends an FCR request as upregulation
to the EV aggregator to inject power into the grid. In contrast,
downregulation is activated by the TSO when the system
frequency increases above the dead-band. Consequently, the
aggregator absorbs power from the grid. If the frequency
leaves the deadband, the aggregator injects or absorbs power

at its maximum capacity. Since the aggregator’s availability
depends on the EV SoC, the EVs cannot participate in an FCR
when their SoC reaches the allowable limit, indicating that
the EV is over-discharged or under-charged [21]. However,
the driving purpose is a critical concern for EVs participating
in an FCR. In addition, the aggregator decides whether the
EVs participate in the FCR or are charged at their rated
power to achieve the expected SoC (forced charging). This
decision is based on the minimum plug-in duration available.
If the minimum available plug-in duration is reached, forced
charging is activated. Further details of the EV aggregator
providing the FCR can be referred to in the study proposed
by Jamroen et al [22].

B. FCR remuneration

In this study, the FCR remuneration model is designed
according to European balancing markets and has five com-
ponents: i) revenue from power capacity to provide an FCR,
ii) penalty cost due to aggregator unavailability, iii) revenue
from energy delivered to provide upregulation, iv) cost of
energy bought to provide downregulation, and v) aggrega-
tor forced charging cost. Since increased RES integration
results in decreased adjustable production, a transition to a
15-minute market time resolution and imbalance settlement
period (ISP) is not only a solution for increased RES integra-
tion but also supports low reserve capacity demand, reserve
power optimization, reduced deterministic imbalance, wider
access to balancing, and day-ahead and intraday markets
[23]. According to the European network of transmission sys-
tem operators for electricity (ENTSO-E) [24], nine European
countries implemented a 15-minute ISP in 2022, including
Germany, Netherlands, Belgium, and Austria. The Nordic
balancing markets will switch to a 15-minute ISP in May
2023. Spain and Portugal will move to a 15-minute ISP in
October 2023, while the Baltics have a derogation granted
until 2024. Therefore, this study applied a 15-minute ISP to
the FCR remuneration model. It should be noted that the FCR
remuneration is calculated every 15 minutes but the simulation
is conducted based on a minutely basis. Consequently, the FCR
remuneration model is expressed as follows:

REV =

T∑

τ=1

(
Rp(τ)−Cp(τ)+Rup

e (τ)−Cdown
e (τ)−Cch

e (τ)

)

(1)
where REV is the total revenue for the aggregator providing
an FCR over simulation time T (e), Rp(τ) is the power
capacity revenue for FCR at time step τ (e), Cp(τ) is the
power capacity penalty cost at time step τ (e), Rup

e (τ) is the
delivered energy revenue for upregulation at time step τ (e),
Cdown

e (τ) is the charging energy cost for downregulation at
time step τ (e); and Cch

e (τ) is the aggregator’s forced charging
cost at time step τ (e).

The FCR’s power capacity is remunerated when the aggre-
gator provides the FCR power requested by the TSO in both
up- and downregulation. Hence, the power capacity’s absolute
value is applied. The power capacity revenue for time step τ
is expressed as follows:
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  Rp(τ) =
πFCR

4
·
∑15

m=1 |PFCR(m)|
15

(2)

where πFCR is the power capacity price (e/MW/h), and
PFCR(m) is the power capacity provided by the aggregator
at minute m (MW).

A penalty is applied if the aggregator partially or completely
fails to provide the power capacity requested by the TSO,
expressed as follows [25], [26]:

Cp(τ) =
πpen

4
·
(
|Pbid(τ)| −

∑15
m=1 |PFCR(m)|

15

)
(3)

where πpen is the penalty price (e/MW/h), and Pbid(τ) is the
power capacity required by the TSO at time step τ (MW).

The delivered energy is only remunerated when the aggre-
gator provides upregulation (discharge power to the grid) and
is expressed as follows:

Rup
e (τ) =

πup

4
·

15∑

m=1

PuFCR(m) (4)

where πup is the energy price for upregulation (e/MWh), and
PuFCR(m) is the power delivered for upregulation at minute
m (MW).

Although the aggregator consumes power from the grid to
provide downregulation, the aggregator is still charged by the
TSO based on the downregulation price. The cost of energy
bought from the balancing market to provide downregulation
for time step τ is calculated as follows:

Cdown
e (τ) =

πdown

4
·

15∑

m=1

PdFCR(m) (5)

where πdown is the energy price for downregulation (e/MWh),
and PdFCR(m) is the power consumed for downregulation at
minute m (MW).

When the EVs have reached the minimum available plug-in
duration, the aggregator allows them to charge to meet their
desired SoC (forced charging). Hence, the aggregator buys
energy from the grid. The aggregator’s charging cost for time
step τ is expressed as follows:

Cch
e (τ) =

πch

4
·

15∑

m=1

Pch(m) (6)

where πch is the price of energy bought from the grid
(e/MWh), and Pch(m) is the charging power at minute m
(MW).

III. SOC ESTIMATION ERRORS

Lithium-ion rechargeable batteries currently dominate the
market for portable electronics and have a widespread applica-
tion in the booming automotive and stationary energy storage
market due to their increased power and energy densities,
safety, and lifetime [27]. Consequently, lithium-ion batteries
are the most common type of battery used in EVs. With
vehicle-to-grid (V2G) technology, EV charging control is a

promising solution to providing an FCR as a new flexibility
source. As discussed in Section II, aggregator availability for
FCR provision depends on EV availability, represented by the
SoC. The SoC represents the remaining energy stored in a
battery. Since batteries are complex electrochemical devices
with distinct nonlinear behavior, accurate SoC estimation is a
challenging task depending on various internal and external
conditions. According to current literature, the SoC is de-
termined indirectly by measuring battery parameters such as
voltage and current [28]. However, the ampere-hour (Coulomb
counting) method can estimate the SoC due to its low compu-
tational complexity. Coulomb counting SoC estimation can be
expressed in terms of current or power integration as follows:

SoC(m) = SoC0 −
(
ηc
∑15

m=1 IEV(m)

Qrated
EV

× 100%

)
(7)

SoC(m) = SoC0 −
(
ηc
∑15

m=1 PEV(m)

Erated
EV

× 100%

)
(8)

where SoC(m) is the current EV SoC level (%); SoC0 is
the initial EV SoC level (%); Qrated

EV and P rated
EV are the

actual EV capacity represented in ampere integration (Ah)
and power integration (kWh), respectively; IEV(m) is the
EV’s discharging or charging current (A), which is positive
while discharging but negative while charging; PEV(m) is the
EV’s discharging or charging power (kW), which is positive
while discharging but negative while charging; and ηc is the
Coulombic efficiency (%).

In this study, Eq. (8) represents the SoC estimation errors.
Eq. (8) contains three possible error sources that cause SoC
estimation errors: initial SoC, power measurement, and EV ca-
pacity. This study does not consider electrochemical reactions
inside batteries that affect the reduction in energy capacity,
and EV energy capacity takes a certain time to decrease [29].
These error sources are summarized as follows:

• Initial SoC estimation error: this study considers a deter-
ministic error that shifts the true initial SoC value by a
constant value [30]. This error can be corrected when the
battery has rested for a long period [31]. However, this
may not be practical for EVs in a charging station. The
measured initial SoC is expressed as follows:

SoCmeas
0 = SoCact

0 + β (9)

where SoCmeas
0 and SoCact

0 are the measured and actual
SoC values (%), respectively, and β is the deterministic
constant error.

• Power measurement error: current and voltage measure-
ments are required to measure power. These measure-
ments also create noise to calculate power. This study
considers a random error that also shifts the true mea-
surement value. The power value was added with random
noise [32]. The measured EV power is expressed as
follows:

Pmeas
EV = P act

EV + γ (10)
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Fig. 1. PV and load profiles used in the simulation.

where Pmeas
EV and P act

EV are the measured and actual EV
power (kW), respectively, and γ is the random noise.

IV. RESULTS AND DISCUSSION

A. Simulation setup

A simplified single-area power system was operated using
DIgSILENT PowerFactory software. The system was con-
nected to the external grid via a step-down transformer and
a feeder. The transformer was rated at 69/22 kV. The feeder
length was 50 km with a resistance component of 0.328
Ω/km and a reactance component of 0.509 Ω/km. The network
included a load, a PV system, and an EV aggregator. This
study focuses on a system with high PV penetration due
to a substantial increase in global PV system installations.
Therefore, a PV system is merely a RES system integrated into
the system. The PV and load profiles used in this study are
based on a previous study by Jamroen et al. [22] and illustrated
in Fig. 1. The EV aggregator and frequency regulation settings
are detailed in Table I. This study assumes that the EVs are
parked at a charging station (as an aggregator) during the
daytime for work. Therefore, the EVs can participate in the
FCR, particularly high PV power fluctuations. Additionally,
this study aims to maximize FCR revenue. Thus, it is assumed
that the aggregator can make an accurate bid in response to the
FCR request. The FCR market prices and penalty are listed in
Table II. Since the total simulation period is 12 hours (which
is 720 in minutely basis and 48 in 15-minute basis), T in Eq. 1
is set to 48 because the FCR remuneration model is designed
using a 15-minute ISP.

B. Impact of initial SoC error

This section evaluates the impact of initial SoC errors.
Different β values (0%, ±5%, and ±10%) were set in Eq. (9)
and subsequently in Eq. (8). Fig. 2 illustrates the comparative
variations in EV aggregator power based on different initial
SoC errors. In addition, comparative variations in EV SoC
based on different initial SoC errors are presented in Fig. 3.
Since this study considered a system with high PV penetration,
Fig. 2 demonstrates that the EV aggregator frequently pro-
vided downregulation but occasionally supplied upregulation.
Consequently, the EV SoC tended to increase in response

Table I
EV AGGREGATOR AND SYSTEM PARAMETER CONFIGURATION

Parameter Specification

Rated EV power capacity 10 kW
Rated EV energy capacity 25 kWh
Number of EVs 200
Initial EV SoC level 50%
Expected EV SoC level 80%
Maximum EV SoC level 100%
Minimum EV SoC level 20%
Coulombic efficiency 98%
Departure time 16:00
Nominal frequency 50 Hz
Frequency deadband ±0.02 Hz
Maximum allowable frequency ±0.1 Hz
Nominal voltage 22 kV

Table II
FCR MARKET PRICES AND PENALTY

Parameter Specification

Power capacity price 37.56 e/MW/h
Power capacity penalty 37.56 e/MW/h
Upregulation energy price 39.62 e/MWh
Downregulation energy price 15.03 e/MWh
Charging price 15.03 e/MWh

to frequent downregulation (indicated in Fig. 3). This study
considered the aggregator without an initial SoC estimation
error (0%) as a reference. This EV aggregator stopped pro-
viding an FCR at 15:45. Subsequently, forced charging was
activated (as demonstrated in Figs. 2 and 3) to charge the
EVs to the expected SoC value (80%) at the departure time
(16:00). However, when forced charging was activated, the
aggregator was unable to provide further FCR, resulting in
a penalty. Moreover, this situation led to increased charging
costs due to forced charging. The EV aggregator’s revenue
and penalty are summarized in Table III. Without an initial
SoC estimation error, the EV aggregator received revenue for
the sold power capacity. However, this revenue was e2.99.
Notably, increasing the initial SoC estimation error to 5% led
to a positive revenue of e19.06 because this EV aggregator
could provide an FCR for a longer period (lower minimum
plug-in duration available), as indicated in Fig. 2. Although
the downregulation energy cost increased marginally due to a
longer FCR period, the penalty cost significantly decreased,
resulting in positive revenue. Nevertheless, when the initial
SoC estimation error reached 10%, the SoC quickly attained
the expected value at 13:20 due to frequent downregulation.
Although the charging energy cost was zero, because forced
charging was not activated, the EV aggregator was unable
to provide an FCR after 13:20, resulting in a considerable
penalty cost. Consequently, this EV aggregator’s revenue was
the lowest at –e36.74, which was economically infeasible.
When negative initial SoC errors were assigned, the power
capacity revenue decreased slightly because forced charging
was activated early, resulting in a shorter FCR period and a
penalty cost. Similarly, the downregulation energy cost also
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decreased slightly. It was noted that the initial SoC errors did
not affect upregulation energy revenue because downregulation
was frequently activated, and the EVs had sufficient stored
energy. Since the EV aggregators with negative initial SoC
errors had a shorter FCR period due to forced charging, the
charging energy cost increased marginally. Therefore, the EV
aggregators’ revenue deteriorated compared to the reference
case.

C. Impact of power measurement error

The power measurement error’s impact on EV aggregator
revenue was evaluated by applying different power measure-

ment error values (0%, 2%, 4%, 6%, 8%, and 10%) in (10)
and, subsequently, in (8). Table III gives the EV aggregator
revenues and costs following different power measurement
errors. An increase in the power measurement error increased
the EV aggregator revenue to e10.87 because the EV aggre-
gator could provide a longer FCR period, similar to the small
positive result in the initial SoC error estimation case. The
revenue remained unchanged when the power measurement
error was increased to 4%. Furthermore, the EV aggregator
revenue increased slightly when the power measurement error
was increased to 6% and remained unchanged when the power
measurement error was increased to 8%. It can be concluded
that the power measurement error’s influence appears to be
less than that of the initial SoC estimation error because the
error induced by the power measurement error is cumulative,
gradually increasing over time. Since this study focused on a
single day, the cumulative error was small. However, it tends
to be significant when a longer period is considered (such as
several months or years), as discussed by Movassagh et al.
[29].

V. CONCLUSION

This study evaluated the influence of different SoC esti-
mation errors (i.e., initial SoC level and power measurement
errors) on EV aggregator revenues in FCR market partici-
pation, focusing on the Coulomb counting SoC estimation
method. The regulatory framework and FCR market were
modeled in the European context. The simulation focused
on a system with high PV penetration frequently activated
by downregulation. The key study findings are summarized
as follows. The simulation results reveal that the initial SoC
error affected the FCR provision period and forced charging
activation. A small positive initial SoC error could lead to
positive EV aggregator revenue. However, an initial SoC
error of 10% caused EV unavailability sooner than the lower
positive SoC error, resulting in substantial negative revenue.
Nevertheless, the small negative initial SoC errors slightly
decreased revenue and became more influential than the large
initial SoC error. The power measurement error positively
affected EV aggregator revenue, although only a small increase
in revenue was observed.

The study has focused on the influence of different SoC
estimation errors on EV aggregator revenues in FCR market
participation. Nevertheless, a one-day simulation with high PV
production was selected. Thus, a one-year simulation should
be considered in future studies to capture the variability of
PV generation and better clarify the influence of different SoC
estimation errors on EV aggregator revenues. Additionally, the
influence of interactions among SoC estimation errors on EV
aggregator revenues should be analyzed.
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