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a b s t r a c t 

Estimating structural connectivity from diffusion-weighted magnetic resonance imaging is a challenging task, 
partly due to the presence of false-positive connections and the misestimation of connection weights. Building on 
previous efforts, the MICCAI-CDMRI Diffusion-Simulated Connectivity (DiSCo) challenge was carried out to evalu- 
ate state-of-the-art connectivity methods using novel large-scale numerical phantoms. The diffusion signal for the 
phantoms was obtained from Monte Carlo simulations. The results of the challenge suggest that methods selected 
by the 14 teams participating in the challenge can provide high correlations between estimated and ground-truth 
connectivity weights, in complex numerical environments. Additionally, the methods used by the participating 
teams were able to accurately identify the binary connectivity of the numerical dataset. However, specific false 
positive and false negative connections were consistently estimated across all methods. Although the challenge 
dataset doesn’t capture the complexity of a real brain, it provided unique data with known macrostructure and 
microstructure ground-truth properties to facilitate the development of connectivity estimation methods. 

1. Introduction 

Over the last decade, protocols for diffusion-weighted magnetic res- 
onance imaging (DW-MRI) acquisition, local modelling, tractography 
algorithms, and connectivity mapping methods have considerably im- 
proved ( Jeurissen et al., 2017; Sotiropoulos and Zalesky, 2019; Sporns, 
2011 ). However, concerns remain about the reliability of connectivity 
mapping. International tractography challenges ( Côté et al., 2013; Fil- 
lard et al., 2011; Maffei et al., 2022; Maier-Hein et al., 2017; Nath et al., 
2020 ) have shown limitations in the ability of tractography to correctly 
identify binary connectivity and identify white matter pathways con- 
sitently. In particular, Maier-Hein et al. (2017) showed that tractogra- 
phy may produce an abundance of false positive connections. Moreover, 
studies on animal models showed that, albeit tractography can correctly 
identify connections, the estimated connection weight does not always 
agree with ex vivo tracing data ( Ambrosen et al., 2020a; Aydogan et al., 
2018; Azadbakht et al., 2015; Delettre et al., 2019; Donahue et al., 2016; 
Essen et al., 2014; Girard et al., 2020; 2021; van den Heuvel et al., 2015; 
Jbabdi et al., 2013; Schilling et al., 2019a; Thomas et al., 2014 ). For in- 
stance, Donahue et al. (2016) reported the correlation between ex vivo 
tract tracing data and tractography estimation to be 𝑟 = 0 . 59 , on the in- 
trahemispheric connections the monkey brain. Despite tract tracing be- 
ing among the best available data to validate diffusion tractography, it 
is not possible to have the full ground-truth micro- and macro-structure 
on animal models. 

The rich signal from physical MRI phantoms has been used to test 
and validate methods ( Fillard et al., 2011; Schilling et al., 2019b ), but 
their macrostructural complexity is insufficient for quantifying connec- 
tivity. Numerical phantoms have also been proposed and demonstrated 
to be important tools for methods development ( Caruyer et al., 2014; 
Close et al., 2009; Neher et al., 2013 ), but their biological fidelity for 
microstructure is limited. Monte Carlo methods ( Hall and Alexander, 
2009; Lee et al., 2021; Rafael-Patino et al., 2020 ) can provide realistic 
microscopic DW-MRI signals, but they are generally limited to a single 
voxel signals or to a substrate of only a few voxels in size. Recently, 
Rafael-Patino et al. (2020) proposed a novel diffusion Monte Carlo sim- 

ulator able to generate billions of particles. This allows for large-scale 
substrates with both microscopic and macroscopic complexity, suitable 
for structural connectivity validation. 

The MICCAI-CDMRI 2021 Diffusion-Simulated Connectivity (DiSCo) 
challenge ( Girard et al., 2021 ) was organized to compare structural con- 
nectivity estimation methods using three novel large-scale complex nu- 
merical phantoms designed for connectivity assessment ( Rafael-Patino 
et al., 2021a; 2021b ). Fourteen teams, adding up to 57 researchers, sub- 
mitted 111 weighted connectivity matrices estimating the ground-truth 
connectivity. Results from the challenge are presented below. 

2. Methods 

2.1. Synthetic data 

The three numerical phantoms (training, validation and test phan- 
toms) used for the DiSCo challenge ( Rafael-Patino et al., 2021b ) are 
composed of approximately 12,000 numerical tubular fibres. The tubu- 
lar fibres’ outer diameter ranges from 2 . 0 𝜇𝑚 to 6 𝜇𝑚 , sampled from a 
gamma distribution Γ( 𝜅, 𝜃) , with shape, 𝜅 = 0 . 5 , and scale 𝜃 = 0 . 007 . The 
inner diameter of each fibre ranges from 1 . 4 𝜇𝑚 to 4 . 2 𝜇𝑚 , simulating 
a fixed g-ratio of 0.7 ( Cercignani et al., 2017; Chomiak and Hu, 2009 ). 
The numerical fibres connect pairs of Regions of Interest (ROIs) among 
the 16 ROIs of each phantom (see Fig. 1 A). No other numerical compart- 
ments were added to the substrates. For the three phantoms, the average 
percentage of connections with non-zero connection weight is 22.2% 

among all possible connections (120 pairs of ROIs). The connectivity 
weight between two ROIs was defined as the sum of the cross-sectional 
areas of fibres interconnecting the regions. The normalized connection 
weights range from 0.007 to 0.092 for the three phantoms, resulting 
with the smallest connection having 7.6% of the weight of the largest 
one. Those connection weights derive from the numerical phantom ini- 
tialization parameters described in Rafael-Patino et al. (2021a) . Fig. 1 B, 
C, D show the ground-truth synthetic fibre trajectories of the test dataset 
where fibres are curved and intermingle with other fibres. 
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Fig. 1. Ground-truth test dataset composed of 11,032 numerical tubular fibres. (A) 3D rendering showing the synthetic white matter mask (gray) and the 16 ROIs 
(colors). (B) Trajectories of the fibres of the 26 bundles, each shown using a different color. (C-D) 3D mesh of the outer layer of numerical fibres. 

The simulation substrates have an unprecedented volume of 1 cubic 
millimeter, resulting in an image size of 40 × 40 × 40 voxels of 25 𝜇𝑚 

isotropic resolution. To the best of our knowledge, this is the largest 
image volume achieved for the Monte Carlo simulation of the DW-MRI 
signal in complex numerical substrates. Within each voxel, the signal 
was simulated using Monte Carlo simulations of spin dynamics with a 
density of one particle per cubic micrometer ( Rafael-Patino et al., 2021a; 
Romascano et al., 2019 ). Rafael-Patino et al. (2020) showed this was a 
sufficient number of particles to obtain a robust estimation of the dif- 
fusion signal in complex fibre geometries. Particles initiated within the 
inner diameter of the fibres and outside the outer diameter of the fibres 
were used to generate the DW-MRI signal. The particles initiated be- 
tween the outer and inner diameter (in myelin water) were discarded. 
The voxel-wise intra-tubular volume fraction reaches 52% in the cen- 
tral portion of the numerical phantoms ( Rafael-Patino et al., 2021b ). 
The mean voxel-wise fibre diameter is 2 . 25 𝜇𝑚 with up to 82 tubular 
fibres per voxel and up to 5 distinct bundles ( Rafael-Patino et al., 
2021b ). 

The DW-MRI protocol is composed of 360 measurements, uniformly 
distributed over 4 b-value shells (1000, 1925, 3094, 13,191 𝑠 ∕ 𝑚𝑚 

2 ), as 
suggested in ActiveAx ( Alexander et al., 2010; Daducci et al., 2015 ), 
and corrupted with Rician noise with signal-to-noise ratio of 30. The 
resulting DW-MRI signal is affected by the microscopic properties of the 
synthetic white matter, such as fibre diameter, packing densities, fibre 
dispersion and water diffusing around fibres, while also having targeted 
macroscopic properties like the smoothness of the trajectories and fibres 
organized in bundles. 

2.2. Challenge task 

Participating teams had access to one dataset for training, which 
included the noisy and noiseless DW-MRI signals, the fibre volume 
fraction map, the label map of the ROIs defining the connectivity 
endpoints, the synthetic fibre trajectories and their diameter, and the 
ground-truth connectivity matrix. Additionally, participants had access 
to one dataset for validation with the noisy DW-MRI signal, label map 
and ground-truth connectivity matrix. Participating teams were pro- 
vided with the noisy DW-MRI signal and a label map (ROIs) of the 
test dataset, and were asked to submit a 16 × 16 weighted connectiv- 
ity matrix. Participants were free to select any method to compute 
the matrix weights. The estimated connection weights between any 
two pairs of ROIs were compared with the ground-truth total cross- 
sectional area of the synthetic fibres connecting both ROIs. The teams 
had to select methods to obtain estimates of the cross-sectional area 
from their tractography results, such as the proportion or volume of 
streamlines, or microstructure properties or geometrical features esti- 
mated for bundles ( Assaf et al., 2008; Daducci et al., 2014; Dimitri- 
adis et al., 2017; Hagmann et al., 2008; 2007; Messaritaki et al., 2019; 
Smith et al., 2015; Sotiropoulos and Zalesky, 2019; Tournier et al., 
2019; Yeh et al., 2021 ). Teams could submit up to ten connectivity 
matrices. 

2.3. Connectivity evaluation 

The Pearson correlation coefficient ( 𝑟 ) between the ground-truth ma- 
trix and the submitted matrices was used for ranking the teams ( Caminiti 
et al., 2021; Donahue et al., 2016 ). Moreover, the fraction of valid con- 
nectivity weight was computed to compare submissions ( Côté et al., 
2013; Maier-Hein et al., 2017 ). This fraction corresponds to the sum 

of the matrix weights in pairs of regions connected in the ground-truth 
connectivity matrix divided by the sum of all weights. A Receiver Oper- 
ating Characteristic (ROC) analysis was also performed ( Ambrosen et al., 
2020b; Girard et al., 2020; Maffei et al., 2022; Schilling et al., 2019b; 
Thomas et al., 2014 ). The true positives ( 𝑇 𝑃 ) and true negatives ( 𝑇 𝑁) 
are connections correctly identified as connected and not connected in 
both the participant matrix and the ground-truth matrix, respectively. 
The false positives ( 𝐹 𝑃 ) are connections wrongly identified as connected 
in the participant matrix. Similarly, the false negatives ( 𝐹 𝑁) are con- 
nections erroneously identified as not connected. The ROC curves were 
constructed by iteratively thresholding the submitted connectivity ma- 
trices, starting with a threshold higher than the maximum, thus yielding 
no pair of ROIs connected, resulting in a specificity ( 𝑇𝑁 

𝑇𝑁+ 𝐹𝑃 
) of 1 and 

sensitivity ( 𝑇𝑃 

𝑇𝑃+ 𝐹𝑁 

) of 0 (all pairs of ROIs not connected in the ground- 
truth are correctly identified, no ROIs are identified as connected). The 
threshold is then iteratively reduced until all ROIs are identified as con- 
nected, producing a sensitivity of 1. The quicker the sensitivity rises to 
1 while the specificity remains high, the better the binary connectiv- 
ity classification performance of the method. The Area Under the ROC 

Curve (AUC) summarizes the plot with a number between 0 and 1. The 
AUC approaches 1 if there are few or no classification errors (a random 

connectivity matrix would yield an AUC of 0.5). Moreover, we studied 
the accuracy ( 𝑇 𝑃+ 𝑇 𝑁 

𝑇 𝑃+ 𝑇 𝑁+ 𝐹 𝑃+ 𝐹 𝑁 

) of the submitted matrices using a thresh- 
old selected as 5% of their maximum value. This threshold was fixed 
following the connectivity weights of the ground-truth matrix. 

3. Results 

Fourteen teams participated in the DiSCo challenge and submitted 
111 connectivity matrices for the test dataset. Fig. 2 A shows the Pear- 
son correlation coefficient 𝑟 between the participant’s submitted matri- 
ces and the ground-truth connectivity matrix of the validation dataset. 
Fig. 2 B shows the fraction of valid connectivity weight in pairs of con- 
nected regions (non-zero connection strength) in the ground-truth con- 
nectivity matrix. The best-performing matrix of each team ranges from 

𝑟 = 0 . 874 to 𝑟 = 0 . 973 (mean 𝑟 = 0 . 950 ). The area under the ROC curve 
(AUC), computed from the submitted matrices and the ground-truth bi- 
nary connectivity matrix, is reported in Fig. 2 C. Fig. 2 D shows the ac- 
curacy of all methods when thresholding the submitted matrices at 5% 

of their maximum value. The ground-truth connectivity matrix of the 
test dataset is shown in Fig. 3 , alongside each team’s best-performing 
method (method with maximum 𝑟 ). 

Fig. 4 shows the ROC curves for the best-performing methods of each 
team. The corresponding area under the curve (AUC) is reported in the 
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Fig. 2. Challenge submission results of the 14 participating teams (111 submissions). (A) Fraction of valid connectivity weight in pairs of regions connected in 
the ground-truth connectivity matrix. (B) Pearson correlation coefficient between the participant’s submitted matrices and the ground-truth connectivity matrix of 
the validation dataset. (C) The area under the ROC curve (AUC) computed from the submitted matrices and the ground-truth binary connectivity matrix. (D) The 
accuracy (fraction of correctly identified pairs of ROIs, out of 120) of the binarised submitted matrices, thresholded at 5% of their maximal value. Numbers indicate 
the submission indices of each team. 

legend, ranging from 0.865 to 0.982 (mean AUC = 0.946). Fig. 5 shows 
the ground-truth binary connectivity matrix (top left) and each team’s 
pairs of ROIs classifications. Matrices were thresholded at 5% of their 
maximal value. The light green and dark green colours show the true 
positives and true negatives, respectively. The light red and dark red 
colours show the false positives and the false negatives, respectively. 

The percentage of classification error for each pair of ROIs for all 
submitted connectivity matrices is shown in Fig. 6 . The left subfigure re- 
ports the false positive connections. The worst performance is reported 
for ROIs 5–11 and 4–6 with 73% and 71% of matrices erroneously iden- 
tifying them as connected. The right subfigure reports the false negative 
connections, with ROIs 6–9, 4–16, and 3–14 showing the worst classi- 
fication, with 100%, 97% and 95% of methods erroneously identifying 
them as not connected, respectively, although connected in the ground- 
truth. Fig. 7 shows the location of the false positive bundles connecting 
ROIs 5–11 (blue) and 4–6 (green). Both pairs of ROIs are spatially lo- 
cated next to each other. Fibre ODFs show the corresponding ground- 
truth numerical fibre distribution. Fig. 8 shows the false negative bun- 
dles connecting ROIs 6–9 (green), 4–16 (red), and 3–14 (blue). They 
are the bundle with the lowest, second lowest and 5th lowest connectiv- 
ity in the ground-truth weighted connectivity matrix. All three bundles 
show long and straight configurations going through the centre of the 
numerical phantom. 

Each team’s best-performing method processing steps are listed 
in Table 1 . All teams submissions are described in supplementary 
material. 

4. Discussion 

The aim of this work was to test tractography algorithms in carefully 
designed numerical phantoms with intricate connectivity patterns. The 
challenge was to identify connected pairs of ROIs among 16 ROIs and 
estimate their connection strength, defined as the cross-sectional area 
of the synthetic fibres interconnecting them. The DiSCo challenge phan- 
toms were developed to feature challenging configurations found in the 
human brain, such as branching, crossing, and tortuous trajectories. Al- 
though these phantoms don’t mimic the anatomy of the human brain, 
they provide valuable data for studying tractography and connectivity. 
As such, results obtained on the DiSCo dataset are not directly transfer- 
able to real brain data. Rather, they should be used to evaluate the rela- 
tive performance among connectivity methods. Unlike traditional trac- 
tography numerical phantoms that use biophysical models, the DiSCo 
datasets were obtained from realistic Monte Carlo simulations. This ap- 
proach allows for a signal with rich microstructure and complex and 
coherent macrostructure properties, suitable to study properties of con- 
nectivity methods. 

4 
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Fig. 3. The test dataset’s ground-truth connectivity matrix (top left) and each team’s best-performing classification matrices. All matrices are symmetric, and the 
upper triangular matrices are normalized to sum to one. The 26 non-zero connections of the test dataset have weights ranging from 0.008 to 0.092. 

Fig. 4. Receiver Operating Characteristic (ROC) curves of the submitted ma- 
trix with the highest correlation for each team. The black dashed line shows 
the performance of a connectivity matrix with randomly generated weights. 
The corresponding area under the curve (AUC) is reported in the bottom right 
panel. 

Participating teams did remarkably well, despite the known limi- 
tations of diffusion tractography methods ( Jbabdi et al., 2015; Jones, 
2010 ). This is shown by the large fraction of connection weight re- 
ported in the pair of ROIs connected in the ground-truth matrix (0.89 
on average, see Fig. 2 A). Methods generally showed high accuracy (av- 
erage of 0.91) and high AUC (average of 0.95) for the identification 
of connected/non-connected ROIs ( Fig. 2 C,D). Overall, the mean Pear- 
son’s correlation coefficient across all submissions is 𝑟 = 0 . 95 , with a 
maximum of 𝑟 = 0 . 973 (see Fig. 2 B). Despite the macroscopic complexity 
of the numerical phantom, state-of-the-art tractography methods com- 
bined with state-of-the-art spherical deconvolution methods can cor- 

rectly identify connected ROIs, producing connectivity results predom- 
inantly faithful to the numerical substrate. 

4.1. Correlation coefficients with the ground-truth weights 

The correlation coefficients obtained on numerical data are higher 
than those reported in brain connectivity studies comparing DW-MRI 
weights estimation and labelled cell counts from tracing studies in the 
intraparietal sulcus ( Caminiti et al., 2021 ) ( 𝑟 = 0 . 65 ) and intrahemi- 
spheric ( Donahue et al., 2016 ) ( 𝑟 = 0 . 59 ) connections. This highlights 
that the DiSCo numerical substrates oversimplifies the complexity of real 
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Fig. 5. The test dataset’s ground-truth binary connectivity matrix (top left) and each team’s matrices. All matrices were thresholded at 5% of their maximal value. 
The light/dark green and light/dark red colours show the true positives/negatives and false positives/negatives, respectively. All matrices are symmetric. (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 6. Percentage of classification error for each pair of ROIs for the submitted matrices (111) and using the threshold at 5% of their maximal value. The left 
subfigure reports the false positive connections. Regions 5–11 and 4–6 show the worst performance, with 73% (81) and 71% (79) matrices erroneously identifying 
them connected. The right subfigure reports the false negative connections. Regions 6–9, 4–16, and 3–14 show the worst classification, with 100% (111), 97% (108) 
and 95% (105) of methods erroneously identifying them as not connected. Both matrices are symmetric. 

MRI signals. Indeed, tractography limitations could originate from other 
factors aside from the diffusion information, such as MRI artifacts (B0 
field inhomogeneity, susceptibility, motion, etc) and region-dependent 
T2 effects ( Le Bihan et al., 2006 ). Despite the complexity achieved with 
the DiSCo numerical phantoms, real tissue shows a higher heterogeneity 
( Andersson et al., 2021 ) that was not reproduced, which may affect the 
relevance of some findings on biological tissue data. However, it is pos- 
sible to know the ground-truth connectivity with higher accuracy than 
tracing studies, including the trajectory and diameter of the numerical 

fibres and the voxelwise compartmental volume fractions. Future stud- 
ies should investigate the effects of MRI artifacts and signal-to-noise ra- 
tio on the connectivity estimation. New numerical datasets should be 
generated with varying numbers of ROIs, ROI sizes, and connectivity 
strenghts. This would allow testing DW-MRI connectivity estimation 
methods in diverse and complex environments, improving the gener- 
alizability of our results. In addition, other evaluation metrics, such as 
Dice similarity coefficient, could be used to test bundle volume identifi- 
cation using tractography. Moreover, research should be done on com- 
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Fig. 7. False positive bundles connecting ROIs 5–11 (A, blue) and 4–6 (B, green). These 2 pairs of regions have been incorrectly identified as connected by 73% and 
71% of the submitted matrices, using a threshold at 5% of their maximal value, respectively. Glyphs show the local orientations of the ground-truth tubular fibres 
intersecting voxels, coloured with their orientation (left-right: red, anterior-posterior: green, superior-inferior: blue). Both pairs of regions are spatially located next 
to each other. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 8. False negative bundles connecting ROIs 6–9 (green), 4–16 (red), and 3–14 (blue), were erroneously reported non-connected by 100%, 97% and 95% of 
methods, respectively. A) show a 3D rendering of the ground-truth fibre trajectories of the three bundles. B) and C) show a 2D cross-sectional image of the local 
orientations of the ground-truth tubular fibres, with fibre segment intersecting the 2D plane. All three bundles show a long and straight configuration going through 
the centre of the phantom and mixing with the other bundles. Those three bundles are the bundle with the lowest, second lowest and 5th lowest connectivity in 
the ground-truth weighted connectivity matrix. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this 
article.) 

bining tractography performances in a single measurement as different 
measurements can lead to a change in the ranking of a specific method, 
sometime in opposite directions. 

4.2. Binary classification of the connectivity 

The performances of participating teams for binary classification of 
the connectivity is also higher on the DiSCo numerical phantoms than 
previously reported results on other synthetic data ( Maier-Hein et al., 
2017 ) and real brain ( Caminiti et al., 2021; Donahue et al., 2016; Gi- 
rard et al., 2020 ). For instance, teams 3 and 14 obtained a specificity 
of 1, i.e. no false positives (see Figs. 4, 5 ). Most teams have 3 to 5 false 
negatives, showing high sensitivity. Team 3 and 4 have the highest ac- 
curacy, with 4 and 5 misclassified pairs of ROIs, respectively, out of 
120 pairs of ROIs. Moreover, Team 3 and 14’s best-performing meth- 
ods had no false positives, even before applying the thresholding. This 
was achieved by the teams via thresholding of their matrices before the 
challenge submission, with a threshold value estimated using the train- 

ing dataset. This also suggest the DiSCo substrates, although complex, 
are oversimplifying real brain connectivity. 

Nonetheless, the errors (false positives/negatives) of methods are not 
randomly distributed among the connections of the numerical substrate. 
Rather, a subset of bundles is either consistently wrongly connected 
or wrongly not connected (see Fig. 6 ). The most frequently reported 
false negatives are non-dominant bundles with generally low connec- 
tion strength in the ground-truth matrix (fewer synthetic fibres than 
other bundles). They also have a straight geometric profile with syn- 
thetic fibres crossing with several other bundles in the central partition 
of the phantom, as shown in Fig. 8 . Contrarily, the most frequently re- 
ported false positives are bundles connecting adjacent ROIs (see Fig. 7 ). 
These bundles are likely the result of two portions of existing bundles 
wrongly merged due to a low angle crossing and bottlenecks configura- 
tions ( Girard et al., 2020; Maier-Hein et al., 2017 ). This may indicate 
that bundle metrics, such as volume and structural connectivity esti- 
mates, may be biased by the shape and size of white matter bundles, 
rather than being uniform across all of them. 
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Table 1 

Best-performing method for each team. Most of the best-performing methods used DW-MRI signal denoising, multi-shell multi-tissue spherical deconvolution, prob- 
abilistic or deterministic tractography, and microstructure informed-tractography filtering approaches. ASI ( Wu et al., 2019 ), AxCaliber ( Assaf et al., 2008; Fick 
et al., 2019 ), COMMIT ( Daducci et al., 2014 ), COMMIT2 tree ( Ocampo-Pineda et al., 2021 ), CSD ( Tournier et al., 2004; 2019 ), Deterministic RK4 ( Yeh, 2017 ), iFOD2 
( Tournier et al., 2010; 2019 ), iFOD1 ( Tournier et al., 2010; 2019 ), MPPCA ( Veraart et al., 2016 ), MRDS ( Coronado-Leija et al., 2017 ), msmt-CSD ( Jeurissen et al., 
2014 ), ms-fODF ( Tran and Shi, 2015 ), Probabilistic tractography ( Garyfallidis et al., 2014 ), RUMBA-SD ( Canales-Rodríguez et al., 2015 ), Radial DSI ( Baete et al., 
2016 ), SD_STREAM ( Tournier et al., 2019 ), SIFT2 ( Smith et al., 2015 ), SR-ASI ( Wu et al., 2020 ), PFT ( Girard et al., 2014 ), PTT ( Aydogan and Shi, 2021 ), U-net fODFs 
( Sedlar et al., 2021 ). 

𝑟 

Fraction of Valid 
Streamlines AUC Accuracy Denoising Local Modelling Tractography Algorithm Connectivity Weighting 

Team 1 0.945 0.966 0.918 0.942 MPPCA RUMBA-SD Probabilistic counts 
Team 2 0.960 0.937 0.955 0.942 MPPCA msmt-CSD SD_STREAM SIFT2 
Team 3 0.951 1.000 0.923 0.967 MPPCA Radial DSI Deterministic RK4 count, length scaling,thresholding 
Team 4 0.964 0.930 0.982 0.958 U-net fODFs iFOD2 SIFT2 
Team 5 0.940 0.900 0.964 0.925 msmt-CSD iFOD2 SIFT2 
Team 6 0.919 0.856 0.940 0.858 MPPCA ASI SR-ASI SIFT2 
Team 7 0.954 0.938 0.956 0.942 MPPCA msmt-CSD SD_STREAM counts 
Team 8 0.971 0.930 0.963 0.925 MPPCA msmt-CSD PTT COMMIT2 tree 

Team 9 0.960 0.938 0.956 0.942 MPPCA msmt-CSD SD_STREAM SIFT2 
Team 10 0.972 0.911 0.982 0.925 MPPCA msmt-CSD PTT SIFT2 
Team 11 0.874 0.861 0.906 0.900 CSD PFT COMMIT 
Team 12 0.964 0.912 0.964 0.942 MPPCA msmt-CSD iFOD1 AxCaliber 
Team 13 0.973 0.893 0.969 0.917 MPPCA ms-fODFs PTT COMMIT 
Team 14 0.946 1.000 0.865 0.942 MPPCA MRDS iFOD2 count, thresholding 

In this work, we fixed a threshold of 5% of each method maximum 

connectivity to binarise connectivity matrices. This will inevitably pe- 
nalise the identification of connections with low weights, where under- 
estimation may lead to the exclusion of connections. This is also the case 
in vivo , when connectivity matrices are binarised. As such, alternative 
matrix binarisation methods, such as using various fixed thresholds or 
using thresholds specific to each connection, should be investigated in 
future work. 

4.3. Characteristics of the best-performing methods 

The estimated connectivity matrices of the best-performing methods 
submitted by the teams are shown in Fig. 3 , and their corresponding pro- 
cessing methods are listed in Table 1 . Most of the team used the MPPCA 

denoising algorithm ( Veraart et al., 2016 ) before performing the local 
reconstructions. Although multiple local reconstruction methods ( Baete 
et al., 2016; Canales-Rodríguez et al., 2015; Coronado-Leija et al., 2017; 
Sedlar et al., 2021; Tournier et al., 2004; Wu et al., 2019 ) yield a high 
Pearson correlation coefficient, the multi-shell multi-tissue spherical de- 
convolution method was the most common ( Jeurissen et al., 2014 ). Var- 
ious tractography algorithms were selected ( Aydogan and Shi, 2021; 
Garyfallidis et al., 2014; Tournier et al., 2010; 2019; Wu et al., 2020; 
Yeh, 2017 ), with the probabilistic streamlines tractography methods be- 
ing the most common. In particular, the top 3 connectivity methods 
with the highest Pearson correlation coefficient ( 𝑟 ) all used the Paral- 
lel Transport Tractography (PTT) algorithm ( Aydogan and Shi, 2021 ). 
Notably, the method with the highest accuracy used the RK4 determin- 
istic tractography algorithm ( Yeh, 2017 ) combined with the Radial DSI 
reconstruction ( Baete et al., 2016 ). Moreover, most of the submitted ma- 
trices used microstructure-informed tractography ( Daducci et al., 2014; 
Frigo et al., 2021; Smith et al., 2013; 2015 ) to weigh the connectivity 
matrices, in particular, the top 3 all used the SIFT2 ( Smith et al., 2015 ) 
or the COMMIT ( Daducci et al., 2014 ) methods. However, teams us- 
ing streamline counts or thresholded streamline counts to estimate the 
connectivity also obtained a high Pearson correlation coefficient, partic- 
ularly when paired with deterministic tractography algorithms. Future 
work should target evaluating individual steps (e.g. denoising, local re- 
construction, tractography, connectivity weighting methods), fixing the 
other steps to assess it effects on the connectivity evaluation. Moreover, 
other methods, not selected by teams, may provide similarly good re- 
sults and shouldn’t discarded. Rather, results presented here serve as 
baseline for future method testing and development. Nonetheless, the 

geometry of the fibre in DiSCo substrates may favour some methods over 
others. Hence, conclusions derived from numerical substrates must be 
challenged against real data. 

5. Conclusion 

Current tractography and connectivity methods show exceptional 
performance on the DiSCo datasets. All methods selected by participat- 
ing teams were able to accurately estimate connectivity weights cor- 
responding to the cross-sectional area of the synthetic fibres connect- 
ing the network. Furthermore, they were able to accurately identify 
the pairs of ROIs interconnected by synthetic fibres. Previous phantoms 
were designed to validate either tractography or microstructure; we be- 
lieve that DiSCo phantoms enable an improved assessment of the relia- 
bility of quantitative connectivity methods thanks to their microscopic 
and macroscopic properties. Tractography is capable of accurately solv- 
ing complex configurations, as demonstrated by this challenge. How- 
ever, a noticeable gap exists between the challenge results and results 
in real data or from other validation techniques. As such, the complexity 
of the numerical substrates should be improved, for instance, by varying 
the tubular shape of the fibre, increasing the packing density, adding T2 
effects and simulating membrane permeability. Moreover, future work 
should modify the DW-MRI signal by adding MRI artifacts, changing 
spatial and angular resolutions, as well as varying the acquisition proto- 
col to test tractography in clinically realistic DW-MRI signals. Overall, 
this work contributes to the growing body of evidence suggesting that 
tractography research should focus on improving tractography in bot- 
tlenecks and other challenging fibre configurations. The DiSCo datasets 
are available publicly ( Rafael-Patino et al., 2021a; 2022 ) to foster the 
development of the next generation of structural connectivity methods. 
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