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ABSTRACT
In remote rendered virtual reality (VR), the rendering of the applica-
tion is moved to the cloud enabling high quality real-time content
to be consumed on low-powered standalone head mounted displays
(HMDs). The rendered frames are encoded to a video stream and
streamed to a thin client which relays user’s input to the server
and decodes and displays the incoming video. Latency and high
bandwidth requirements are key challenges for remote rendered
graphics. Foveation can be used to optimize the quality of the trans-
mitted frames to be in line with the human visual system (HVS).
In this paper we evaluate multiple different strategies on how to
apply foveation to spatially compress video frames, i.e., reduce their
resolution, before transmission. We also show how the foveation
methods can be used together with super resolution to alleviate the
bandwidth usage of real-time remote rendered VR and optimize the
perceived image quality.

CCS CONCEPTS
•Human-centered computing→Virtual reality; •Computing
methodologies → Mixed / augmented reality; Perception.
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1 INTRODUCTION
Remote rendering can be used to bring high quality content to 
low-powered standalone head mounted displays (HMDs). Latency 
from user’s action or movement to response is crucial in all VR 
applications and the problem is highlighted when the rendering is 
offloaded to a cloud or edge server. Remote rendering also requires 
a high bandwidth connection between the server and the client as 
high resolution and high-quality video transmission is needed for 
an immersive experience in VR applications. The available band-
width can be optimally utilized by using foveation methods which
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consider the properties of the human visual system (HVS) when
rendering and compressing frames.

The human visual system has spatially non-uniform acuity, sharp
central vision with progressively lower acuity in the peripheral
vision. The area of the highest visual acuity is only 2° due to cortical
magnification which quickly drops with respect to eccentricity.
The shape of the magnification curve has been the motivation for
rendering and encoding frames with similar quality characteristics;
highest quality where the user is looking at and lowest quality in
the periphery.

Different rendering and post-rendering projections have been
proposed in previous research for cloud-rendered VR. The idea is
to project the pixels of the frame into a smaller spatial dimension,
i.e., reduce the resolution of the frame, at the server side and to
re-project them back to the original resolution after streaming the
frames at the client side. This spatial compression is done in such
a way that quality reduction due to this compression is optimized
for HVS, hence we call it foveated spatial compression. Fisheye
and other radial projections have the wanted property of highest
sampling density in the middle of the frame which is often where
VR systems benefit the most from super sampling. The highest
sampling density can however be moved according to user gaze
by modifying the sampling function. Foveation is possible, as gaze
trackers are becoming more popular in the latest HMDs. Even
without gaze tracking, users tend to focus to the center of the
frame in VR and this saliency and the characteristics of the lenses
could still make it useful to utilize foveated streaming. Another
method, named Axis-aligned distorted transfer (AADT), divides the
frame into rectangular areas with different sampling rates. In this
paper we quantify the benefits of both radial distortions and AADT
methods for the perceived quality in remote rendered VR.

Super resolution is another technique related to spatial compres-
sion which tries to recover the quality of a low-resolution image
back to the original quality and resolution, so the input is already
spatially compressed. The increase of computing power for neural
network inference on mobile devices has made the use of super res-
olution neural networks on thin client devices viable. In this paper
we study the added benefit of super resolution together with the
different foveated spatial compression methods for image quality.

Our contributions are as follows. To the best of our knowledge,
we are first to quantify the effects of different foveated spatial com-
pression methods on image quality. We are also first to combine the
foveated spatial compression methods with client-side mobile super
resolution. Finally, we show a promising unique hybrid application
of learned downsampling on the server side to learn an optimal
downsampling method to match the light-weight upsampling neu-
ral network of the client. The results confirm that foveated spatial
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compression methods effectively focus the quality where the user
is looking at and even outperform traditional non-foveated super
resolution methods. We show that with bandwidth constraints, best
image quality is achieved when combining the foveated spatial
compression methods with super resolution.

2 RELATED WORK AND BACKGROUND
In this section, we introduce the related work and background on re-
mote rendered virtual reality, different foveated spatial compression
methods in addition to super resolution.

2.1 Remote Rendered Virtual Reality
Virtual Reality (VR) provides an audiovisual experience that im-
merses the human user into a virtual world that is entirely com-
posed of computer-generated graphics. Current VR HMDs are split
into tethered solutions which require a cable or a high-speed radio
link between the PC which renders the graphics and more afford-
able mobile standalone HMDs that perform the graphics processing
on device. The drawback of the standalone solutions is their limited
computing power. Remote rendering of graphics has been proposed
as a solution to bring the quality and immersiveness of mobile
stand-alone VR headsets on par with tethered solutions [10, 14, 19].
In remote rendering, the graphics processing is outsourced to a
cloud server equipped with a powerful GPU. In this work, we focus
for the scenario of remote rendered VR.

The main challenges with remote graphics rendering are latency
and network bandwidth. User’s interactions need to be perceived
on the headset as soon as possible. In addition, the transmission
of graphics from the remote rendering server to a mobile device
requires a significant amount of available bandwidth from the net-
work, even with lossy video compression. These challenges have
motivated the use of foveation techniques to reduce the workload,
bandwidth and latency when streaming remote rendered graphics.

2.2 Foveated Rendering, Encoding and
Transmission

Foveated graphics is a natural method to reduce the bandwidth
requirements of VR. In foveated rendering, the amount of computa-
tional work is reduced as the frames are rendered with non-uniform
acuity [6, 11]. Foveated rendering can be combined with foveated
encoding [4, 8, 21], where already rendered frames are encodedwith
a lesser quality outside the user’s foveal region. Both techniques and
their interplay has been researched in previous studies [9, 16, 27].

Different foveated spatial compression methods have also been
proposed in previous research as an optimized way of transmit-
ting a frame. Reinert et al. [28] proposed a hemispherical fisheye
projection to concentrate the density to the center of the frame
with gradual decay toward the periphery. Foveated warping [9]
has been proposed as a way to reduce the number of pixels within
each frame in a foveated manner. This yields a lower bitrate when
encoded to a video. Outside research, a similar pre-processing step
before streaming, named Axis-aligned Distorted Transfer (AADT),
is used in both a commercial use case for streaming VR [25] and in
an open-source system [2]. These methods spatially compress the
image in proportion of the distance from the gaze fixation point. In

our work, we quantify the effect of the different spatial compres-
sion methods for the perceived image quality for the user before
combining the methods with super resolution.

2.3 Super Resolution
Super resolution using deep learning has been extensively stud-
ied in recent years with increasing attention also to mobile super
resolution. The focus of the super resolution research has been
to recover a high-resolution image from low resolution images
which have usually been obtained using bicubic downsampling. A
multitude of different architectures with variable computational
requirements have been proposed [5, 13, 18, 19]. For mobile super
resolution, the focus has been in finding different ways to optimize
the neural network for mobile inference. In this work, we use a
light-weight super resolution model XLSR [3] to evaluate the possi-
bility of using light-weight super resolution models together with
spatial compression methods to optimize the bandwidth usage in
remote rendered VR.

Foveation has not been extensively researched together with
super resolutionmethods and VR. Zhang et al. proposed to use super
resolution for volumetric video streaming [30]. Wang et al. [29]
proposed a method which uses more neural network blocks in the
foveal area than in the periphery to focus the quality where the
user is looking at. Lee et al. [15] introduced a novel technique to
fuse low-resolution context with regional high-resolution context
in video super resolution. In contrast to previous foveated super
resolution research, we focus specially for the use case of remote
rendered virtual reality and combine mobile super resolution with
different foveated spatial compression methods.

3 FOVEATED SPATIAL COMPRESSION
In this section, we present and evaluate different foveated spatial
compression methods for optimizing foveal quality in real-time
remoted rendered VR.

3.1 Methods
Efficient use of bandwidth is important for all remote rendered
applications. In traditional cloud gaming, the view is typically trans-
mitted with a linear perspective projection which is the same pro-
jection as the game engine natively renders with. Linear perspective
projection has the unwanted property that the center of the image
has the lowest sample density while the periphery has the highest.
This problem is highlighted with high field-of-view displays such
as in VR, which is why local VR setups often render with a higher
resolution than the target display to have more samples available
when projecting the image to the HMD.

As stand-alone VR headsets are capable of processing graphics,
frames can be transmitted with intermediate projections before
finally showing the frames to the user. The motivation for these
projections is to lower the resolution of the image to reduce the
resource usage of the video encoder, decoder, and the required
bandwidth in the transport medium. They can be thought as fixed-
foveated compression with varying functions for foveation.

3.1.1 Foveated Radial Warp. Forms of radial warp functions which
mimic the properties of the HVS have been proposed in previous
work [9, 28]. The radial functions can be parameterized in numerous
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Figure 1: Example of a rendered frame (left) warped with a
foveated radial warp (FRW) function (center) and inversely
warped back to original shape (right). The gaze fixation point
is at the center of the frame.

ways, with the common property being that the sampling rate
reduces as the radial distance to the gaze fixation point increases.
Some radial functions leave black areas to the corners of the frame.
This can be rectified by slightly modifying the radial function. In our
tests, we utilize a similar function that is used by Google in Youtube
for equiangular cubemaps (EAC) taking advantage of the entire
rectangular video frame. Our modified version has a magnitude
variable which can be changed for different foveation rates. The
equation for the foveated radial warp when gaze is in the center of
the frame is:

𝑓𝑢,𝑣 = 2 ∗
tan(2 arctan(𝑀2 ) (𝑝𝑥,𝑦 − 0.5))

𝑀
(1)

where 𝑓𝑢,𝑣 are the warped coordinates in the range -1 to 1, M is
the warping magnitude, and 𝑝𝑥,𝑦 are the original coordinates in
the range 0 to 1. A warping magnitude of 1 would correspond to
regular bicubic sampling. Gaze point can be changed by shifting
the warp function and scaling the resulting coordinates accordingly.
The inverse foveated radial warp function 𝑓 −1𝑢,𝑣 is used to sample the
foveated frame back to the original form. A sample frame warped
using the foveated warping function with gaze in the center using
𝑀 = 4.66 is shown in Figure 1.

3.1.2 Axis-aligned Distorted Transfer. AADT is another foveated
spatial compression method which is used by Meta in its Quest Link
feature which can stream VR from a PC to a standalone headset
using a Wi-Fi connection. The details of it have not been fully
published and depending on the source [23, 24] it uses either a linear
warping function very similar to our FWR function or divides the
frame into two or more rectangular areas with each having fixed
sampling rates. As the linear version of AADT is almost identical
to our FRW function, we compare FRW to the fixed versions of
AADT, one with 2 sampling rate areas (AADT2) and one with three
(AADT3).

For AADT2, we divide the frame into 2 regions. The part where
the user is looking at is sampled with the original full rate, i.e. once
per each pixel, while the outer area is sampled with half rate, once
per two pixels. For AADT3, we divide the frame into three parts,
again using full sampling rate in the part where the user is looking
at, half rate in the intermediate region and sampling once per four
pixels in the periphery. A sample frame warped using the different
versions of the AADT function is shown in Figure 2.

Figure 2: Example of a rendered frame (left) warped with
AADT2 (top) and AADT3 (below) with both re-projected back
to original shape (right). The gaze fixation point is at the
center of the frame. The sampling rates are color coded for
clarity: 1 (green), 1/2 (yellow), 1/4 (red).

3.2 Experiment Setup
We evaluate the different foveated spatial compression strategies
using non-foveated bicubic interpolation to the same target reso-
lution as the baseline. The target resolutions chosen are 2x and 3x
smaller than the original resolution (1440x1440 for single eye) as
we want to pair the foveated spatial compression methods with a
super resolution network in Section 4.

We use three different metrics to evaluate the different strategies.
The difference between peak signal-to-noise ratio (PSNR) and eye-
tracking-weighted PSNR (EWPSNR) [17] measures how the quality
shifts where the user is looking at with the expense of the periphery.
EWPSNR assigns weights to pixels according to a 2D-Gaussian
model of human vision. It is calculated as follows.

𝐸𝑊𝑃𝑆𝑁𝑅 = 10 ∗ log( (2
𝑛 − 1)2

𝐸𝑊𝑀𝑆𝐸
) (2)

𝐸𝑊𝑀𝑆𝐸 =
1∑𝑀

𝑥=1
∑𝑁

𝑦=1𝑤𝑥,𝑦

𝑀∑︁
𝑥=1

𝑁∑︁
𝑦=1

(𝑤𝑥,𝑦 · (𝐼
′
𝑥,𝑦 − 𝐼𝑥,𝑦)2) (3)

𝑤𝑥,𝑦 =
1

2𝜋𝜎𝑥𝜎𝑦
𝑒
−( (𝑥−𝑥𝑒 )2

2𝜎2
𝑥

+ (𝑦−𝑦𝑒 )2

2𝜎2
𝑦 (4)

where I and I’ are the original frame and the compared frame, M
and N are the frame’s height and width in pixels, n is bit depth, and
𝑤𝑥,𝑦 is the weight for distortion at position (x, y).𝑤𝑥,𝑦 is calculated
based on the eye fixation (𝑥𝑒 , 𝑦𝑒 ) and 𝜎𝑥 and 𝜎𝑦 are two parameters
related to the distance and view angle, usually taken from fovea
size. We use 𝜎𝑥,𝑦 = 64 (roughly 5°) in our experiments.

FovVideoVDP [22] is a more advanced metric which models
the spatial, temporal, and peripheral aspects of perception and
is specially targeted for wide field-of-view video such as VR. We
enabled foveated mode in FovVideoVDP and configured the display
resolution to be 1440x1440 (single eye) with a diagonal field of
view of 113° to be in line with our dataset still closely matching
the resolutions and properties of typical standalone headsets. We
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Table 1: Results for the image qualitywith different foveation
methods for theUHDSR4Kdataset of images. The best results
are underlined for each metric and test case.

UHDSR4K (images)
↓ Bicubic, ↑ Bicubic

Scale Foveation PSNR EWPSNR FovVideoVDP

None 31.79 31.53 9.59
AADT2 30.99 35.25 9.68

2x AADT3 29.43 37.95 9.60
Warp (M=2.6) 31.20 36.43 9.60
Warp (M=4.7) 28.13 40.74 9.26

None 28.22 28.09 9.24
AADT2 27.77 30.40 9.34

3x AADT3 26.85 32.38 9.23
Warp (M=2.6) 26.90 30.59 9.00
Warp (M=4.7) 25.28 33.65 8.78
Warp (M=7.9) 22.95 33.59 8.38

utilized the single image mode of FovVideoVDP in our tests and
averaged the results over all frames in the video quality tests.

The test set of the UHDSR4K [31] dataset is used to measure the
perceived quality for spatially compressed single images represent-
ing single frames in a remotely rendered scenario. However, for a
more realistic scenario, we also quantify the effects of video com-
pression in a remote rendered scenario and use a continuous trace
of a high fidelity architectural visualization scene, named Archviz
including 5406 captured frames. An example frame of this scene is
depicted in Figure 1. We apply the spatial compression methods for
the trace and encode the resulting frames into compressed video
using the NVENC [26] H.264 video codec with a constant bit rate
(CBR) setting (10M and 5M for 2x and 3x respectively) and decode
them prior to applying the inverse spatial compression.

3.3 Results
The measurement results for images and for the compressed video
trace with a constant bit rate are shown in Tables 1 and 2. As
expected, non-foveated downsampling has best overall PSNR as it
samples the frames with a spatially uniform quality. The EWPSNR
results show how the quality is shifted where the user is looking at
using the foveated spatial compression methods. For 2x scaling, the
radial warp function with magnitude 4.7 gives the highest score for
both single images and with video compression in between. Scaling
with a factor of 3 gives similar results for EWPSNR, although there,
a higher magnitude gives the best results for the Archviz dataset.

FovVideoVDP gives the best score for the AADT2 spatial com-
pression scheme for all tests. The metric seems to be configured
for a low amount of preferred foveation. Overall, the results show
that foveated spatial compression methods can focus the quality
where the user is looking at and depending on the use case (and
metric) different levels of foveation should be applied. In the next
section, we measure how both a light-weight client-side and a
learned downsampling-based server-side super resolution strategy
can be combined with the foveated spatial compression methods.

Table 2: Results for the image qualitywith different foveation
methods for the Archviz dataset with video compression
in between (CBR). The best results are underlined for each
metric and test case.

Archviz (video w/CBR)
↓ Bicubic, ↑ Bicubic

Scale Foveation PSNR EWPSNR FovVideoVDP

None 29.45 30.79 9.44
AADT2 29.02 32.33 9.52

2x AADT3 27.00 32.64 9.11
Warp (M=2.6) 28.62 32.39 9.46
Warp (M=4.7) 27.46 33.85 9.33

None 27.55 28.81 9.15
AADT2 27.21 30.07 9.24

3x AADT3 26.21 30.86 9.04
Warp (M=2.6) 26.53 30.12 9.06
Warp (M=4.7) 25.50 31.08 8.88
Warp (M=7.9) 24.04 31.59 8.53

4 SUPER RESOLUTION
In this section we combine the foveated spatial compression meth-
ods of the previous sectionwith both a light-weight client-side super
resolution network (Section 4.1) and also couple the client-side SR
network with server-side learned downsampling (Section 4.2).

4.1 Client-side Super Resolution
The goal of this experiment is to evaluate the plausibility of us-
ing a light-weight super resolution network which can be run on
a mobile device together with the foveated spatial compression
methods. We are mostly interested in the relative gains of super
resolution compared to the bicubic case without foveation. This
shows how much additional perceived quality can be recovered
when the input to the SR model is a spatially compressed image
instead of a uniformly rendered linear perspective image.

We chose XLSR [3] as the light-weight SR model for our experi-
ments as it has been extensively benchmarked on different mobile
platforms [7] showing real-time performance on the latest mobile
SoCs. We validate the inference speed of the model in Section 4.3.
The network was trained with the DIV2K [1] dataset as in the origi-
nal work, both for 2x and 3x scales using the same training strategy
as in the original paper. We combined the super resolution network
with the spatial compression methods introduced before using the
same datasets introduced in Section 3.2. An example of the super
resolution pipeline is presented in Figure 3. The frames are rendered
and spatially compressed on the server. On the client, we however
introduce a new step which applies the super resolution model to
the foveated frame before re-projecting it back to the original form
and displaying it.

The results of the experiment are presented in Tables 3 and 4. The
non-foveated version and all the foveation strategies benefit from
the SR except for AADT3, which seems to be incompatible with the
kernel size of the x2 SR model. The overall PSNR values of the other
foveated strategies are 0.4-3.2 higher for images and 0.6-2.0 higher
with video compression. Excluding AADT3, the EW-PSNR scores
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Figure 3: Example of the proposed super resolution pipeline.
The original rendered frame (left) is spatially compressed on
the server with a warp function before video compression.
The client decodes, super-resolves and inversely warps the
frame back to original shape (right).

Table 3: Results for the image quality with different foveated
spatial compressionmethods and client-side super resolution
(XLSR) for the UHDSR4K dataset of images. The best results
are underlined for each metric and test case.

UHDSR4K (images)
↓ Bicubic, ↑ XLSR

Scale Foveation PSNR EWPSNR FovVideoVDP

None 35.62 35.34 9.79
AADT2 33.81 40.25 9.83

2x AADT3 27.28 35.76 9.04
Warp (M=2.6) 34.12 39.90 9.87
Warp (M=4.7) 30.90 42.37 9.72

None 30.77 30.62 9.48
AADT2 29.99 33.78 9.57

3x AADT3 27.28 35.05 9.15
Warp (M=2.6) 30.14 33.74 9.63
Warp (M=4.7) 28.33 36.18 9.46
Warp (M=7.9) 26.02 36.78 8.98

are 1.6-5.0 higher for images and 1.3-2.2 higher for video, while the
FovVideoVDP scores are 0.1-3.5 and 0.1-0.5 higher for images and
video, respectively. Overall, the results show that super resolution
is a viable method to increase the overall quality in remote rendered
VR, also coupled with different foveation strategies.

We also did an experiment where we fine-tuned the trained su-
per resolution network with foveated spatially compressed images
matching the warping magnitude of the test case. This did not lead
to image quality improvements compared to the model without fine-
tuning. The result shows that regular super resolution networks
generalize also for different foveated use cases which could enable
the use of dynamic foveation magnitudes with a single network.

4.2 Server-assisted Mobile Super Resolution
Information is lost in the process of image downscaling both in bicu-
bic downsampling and the foveated spatial compression methods.
In super resolution, task-aware image downscaling (TAD), which
uses auto-encoder based architecture, has been proposed [12] to
jointly learn the downscaling and the upscaling of the image to
maximize the restoration performance. Their performance has been
shown to improve over traditional super resolution networks. In

Table 4: Results for the image quality with different foveated
spatial compression methods and client-side super resolu-
tion (XLSR) for the Archviz dataset with video compression
in between (CBR). The best results are underlined for each
metric and test case.

Archviz (video w/CBR)
↓ Bicubic, ↑ XLSR

Scale Foveation PSNR EWPSNR FovVideoVDP

None 30.65 32.15 9.52
AADT2 30.03 33.70 9.58

2x AADT3 27.11 33.47 9.12
Warp (M=2.6) 30.21 33.99 9.62
Warp (M=4.7) 28.96 35.64 9.60

None 28.73 30.18 9.27
AADT2 28.27 31.50 9.35

3x AADT3 26.79 32.14 9.12
Warp (M=2.6) 28.46 31.73 9.40
Warp (M=4.7) 27.47 33.02 9.36
Warp (M=7.9) 25.95 33.75 9.03

remote-rendered VR, the cloud server is often equipped with a GPU
capable of neural network inference in addition to rendering.

In this work, we evaluate if a hybrid super resolution network
could be combined using the encoder part of the model introduced
by Kim et al. [12] and the light-weight super resolution model
XLSR [3] introduced before as the decoder. The architecture of
the hybrid autoencoder model is shown in Figure 4. We trained
the network with the commonly used DIV2K dataset [1] using
Charbonnier loss [20] with 𝜖 = 0.1. We used a guidance loss for
the downscaled version of the image which was compared to an
image produced with bicubic downsampling. The guidance loss
was equally weighted with the loss for the super-resolved image.
We trained the network for 800 epochs with a triangular cyclic
learning rate scheduling with a maximum learning rate of 0.001.

We evaluate the encoded images with quantization to 8 bits so
that the images are useful in typical applications using super reso-
lution. The results of the experiment for the UHDSR4K dataset of
images are presented in Table 5 where TAD is task-aware downscal-
ing. The results show that task-aware downscaling is a promising
approach also for remote rendering. Overall, the results are the
best in all metrics. Compared to the XLSR upsampling with bicubic
downsampling case of the last section, the overall PSNR values
are 1.3-4.1 higher depending on the use case. The foveated scores
are also 0.1-5.4 and 0.1-0.6 higher for EWPSNR and FovVideoVDP
respectively. The rank order remains the same, with lower warp-
ing magnitudes giving best results for FovVideoVDP and higher
magnitudes for EWPSNR.

While the image-based results are promising, when we applied
video compression to the TAD encoder output and then decom-
pressed it prior to feeding it to the XLSR decoder, the results were
slightly worse compared to bicubic downsampling combined with
the XLSR super resolution. We leave the adjustment of the auto-
encoder network with video compression for future work.
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Figure 4: The auto-encoder network for non-symmetrical
server-assisted mobile super resolution. XLSR [3] network is
used for upscaling. 𝑆 is the upscaling ratio.

Table 5: Results for image quality with different foveated spa-
tial compression methods for the UHDSR4K dataset of im-
ages using an auto-encoder based super resolution network
(TAD) for learned downsampling and XLSR for upsampling.

UHDSR4K (images)
↓ TAD, ↑ XLSR

Scale Foveation PSNR EWPSNR FovVideoVDP

None 37.85 40.04 9.91
AADT2 35.08 40.30 9.90

2x AADT3 29.43 37.95 9.60
Warp (M=2.6) 35.97 41.69 9.92
Warp (M=4.7) 32.55 42.81 9.80

None 34.90 35.02 9.78
AADT2 33.19 38.78 9.83

3x AADT3 30.16 36.96 9.53
Warp (M=2.6) 33.59 39.11 9.87
Warp (M=4.7) 30.69 40.86 9.74
Warp (M=7.9) 27.53 40.78 9.33

4.3 Inference Time
The spatial compression methods evaluated before can all be im-
plemented with a computationally light-weight shader which is
trivial even for a mobile GPU to compute. The SR methods are
however computationally heavy, and their inference time needs
to be considered. We benchmarked the XLSR network with high
resolution inputs with three mobile SoCs: Qualcomm Snapdragon
XR2, Snapdragon 888 and Snapdragon 8 Gen 2. For the first, a stan-
dalone headset HTC Vive Focus 3 was used, for the second and
third Samsung Galaxy Z Fold3 5G and Samsung Galaxy S23 Ultra
mobile phones were used. We ran quantized versions of the models
so we could leverage the neural network accelerators on the SoCs.

The results of the inference tests are shown in Table 6. Qualcomm
Snapdragon XR2 SoC, which is used in popular standalone HMDs
like the Meta Quest 2 and HTC Vive Focus 3, is by an order of
magnitude slower than the newer SoCs on which we were able to
utilize the Hexagon Tensor Processor. On the most recent SoC, the
Snapdragon 8 Gen 2, the XLSR network could be run in 13.9 ms and
6.1 ms for 2x and 3x scales. This translates to 72 and 164 frames per
second, which is promising for running real-time neural networks
for SR in the next generation of standalone HMDs.

Table 6: Inference times of the XLSR SR model on mobile
SoCs for 2x and 3x upscaling ratios.

Inference time

Scale Input Snapdragon Snapdragon Snapdragon
resolution XR2 888 8 Gen 2

2x 720x1440 468.0 ms 22.1 ms 13.9 ms
3x 480x960 197.0 ms 10.7 ms 6.1 ms

5 DISCUSSION
Lowering the resolution of the transmitted frames in remote ren-
dered VR is an effective way of lowering its bandwidth require-
ments. Since in practical scenarios the frames will additionally be
compressed using a video codec, the spatial compression has also
the added benefit of reducing the latency of the video encoder and
decoder as their induced latency is proportional to the number of
bits that need to be coded [9]. In our experiments, we showed that
foveated spatial compression methods can effectively retain the
quality in parts of the frame where the user is looking at with the
expense of the periphery. This can be quantified using foveated
metrics such as EWPSNR and FovVideoVDP. Spatial compression
can be however also useful even without gaze tracking, as the lens
distortion of current VR HMDs distort the image in the periphery.
This is however, to best of our knowledge, not modelled in the
foveated metrics. In future work, the results obtained here should
be validated with user testing using real HMDs.

The foveated spatial compression methods together with the
light-weight super resolution network could be taken into use with
current hardware (with the right SoC) in remote rendering systems.
The server-assisted SR version however needs additional work
to also be useful in real-world scenarios with video compression
present. For future work, it would be beneficial to model the effects
of real-world video encoders to bring them to be part of the super
resolution training pipeline. Recent advances in completely neural
network-based encoders and decoders could also be studied to be
combined with foveation methods.

6 CONCLUSION
Foveated spatial compression methods can be combined with gaze
tracking to reduce the resolution of the transmitted frames without
sacrificing the perceived image quality in remote rendered VR. This
reduces used bandwidth and lowers the overall latency as fewer
bits need to be encoded, transmitted and decoded. In this paper, we
quantify the effects of foveated spatial compression methods and
show how they can be combined with a light-weight client-side
super resolution network with and without video compression. We
show that with the latest mobile SoCs, the light-weight super reso-
lution network can be run in real-time even with high resolutions
required by remote rendered VR.
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