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Abstract—Dense video captioning (VC) aims at generating a
paragraph-long description for events in video segments. Borrow-
ing from the success in language modeling, Transformer-based
models for VC have been shown effective also in modeling cross-
domain video-text representations with cross-attention (Xatt).
Despite Xatt’s effectiveness, the queries and outputs of attention,
which are from different domains, tend to be weakly related.
In this paper, we argue that the weak relatedness, or domain
discrepancy, could impede a model from learning meaningful
cross-domain representations. Hence, we propose a simple yet
effective Post-Attention Modulator (PAM) that post-processes
Xatt’s outputs to narrow the discrepancy. Specifically, PAM mod-
ulates and enhances the average similarity over Xatt’s queries
and outputs. The modulated similarities are then utilized as a
weighting basis to interpolate PAM’s outputs. In our experiments,
PAM was applied to two strong VC baselines, VTransformer
and MART, with two different video features on the well-known
VC benchmark datasets ActivityNet Captions and YouCookII.
According to the results, the proposed PAM brings consistent
improvements in, e.g., CIDEr-D at most to 14.5%, as well as
other metrics, BLEU and METEOR, considered.

I. INTRODUCTION

Dense video captioning (VC) [1], [2] aims at automati-
cally generating a human understandable text paragraph that
describes the contents in the given video frames. Along
with other vision and language (VL) models for various VL
tasks, such as visual captioning [3], [4], [5], visual question
answering (VQA) [6] and VL retrieval [7], models for VC are
supposed to be capable of learning to align and reason from
different modalities.

Inspired by the great improvement in attention modules [8],
[9] introduced for resolving natural language understanding
tasks, Transformer networks composed of self-attention (Satt)
along with cross-attention (Xatt) layers have been proposed
for several VC tasks [5], [10], [11]. These two attention
mechanisms have been shown effective in modeling cross-
modal representations. A typical way to utilize Xatt for VC is
to take the textual representations as queries and video features
as keys and values [5]. Conventionally, also a shortcut path is
created from the textual queries to Xatt’s outputs, which are
then normalized with layer normalization [8].

Though the efficacy of Xatt has been demonstrated, the
queries and keys lie in different domains, i.e. the queries are
from language and the keys are from vision, inheriting large
domain discrepancy in, e.g., Xatt’s queries and outputs. For
example, it could be seen from Fig. 1 that Xatt’s queries
and outputs tend to be weakly related in the first and second

Fig. 1: The average cosine similarity between Xatt’s queries
and outputs of samples in VTransformer (left) and MART
(right) on ActivityNet Captions.

layers of VTransformer [5] and MART [11]. In line with
[12], which shows that the relatedness between the queries
and the attentive outputs can affect the captioning results, we
argue that the weakly-relatedness could hinder the model from
learning meaningful cross-domain representations.

We thereby propose Post-Attention Modulator (PAM) which
enhances the similarities over Xatt’s queries and outputs. PAM
is placed after Xatt and refines Xatt’s outputs along with
Xatt’s queries. Specifically, with their similarities used as the
weighting basis, Xatt’s queries and outputs are combined to
interpolate PAM’s outputs. The core of PAM comes with a
similarity modulation scheme that modulates the similarities
between Xatt’s queries and outputs. We propose three different
means realized by different loss functions with the similar aim.

PAM, when applied to two strong VC baselines VTrans-
former and MART, shows its effectiveness quantitatively and
qualitatively on on two popular benchmark datasets: Activ-
ityNet Captions [1] and YouCookII [2]. Better captioning
results are similarly obtained with different types of pre-
extracted features, such as appearance/motion features [5] and
COOT video-text feature [13]. Our main contributions are
summarized as follows:

1. We propose PAM along with three different modulation
schemes. PAM is placed after Xatt for dense VC to refine
Xatt’s outputs where the refined outputs share greater similar-
ity with Xatt’s queries.

2. We assess PAM on two strong baselines on two well-
known benchmark VC datasets with two pre-extracted video
features. The empirical results demonstrate the effectiveness of
PAM and some differences between the modulation schemes.

3. We provide qualitative analysis on how the similarities



between Xatt’s queries and outputs correlate with the caption-
ing accuracy.

II. RELATED WORK

A wide range of Transformer-based [5], [11], [10] dense VC
models have been proposed. Notably, Zhou et al. [5] proposed
VTransformer which follows the architectures proposed in [8]
for predicting sentences in the dense VC task. The model
gains fluent continuity and coherence in sentence-level predic-
tions while accurately capturing concrete events in segments1.
However, while connecting the generated sentences into a
paragraph, repetitions of words and erroneous logical order
can usually be found because the model does not consider
relations between the segments in the video. As such, the
model’s applicability is restricted due to context fragmentation,
i.e. modelling each segment independently without interacting
with its surrounding context.

A popular approach is to account for history informa-
tion from video frames [14], [15]. Dai et al. [16] proposed
Transformer-XL with a segment-level recurrence mechanism
in which predictions of the sequences are dependent on the
previous language segments. Motivated by this, Lei et al.
[11] proposed a memory-augmented recurrent Transformer
(MART) to summarize the previous video segments into the
memory states which provides richer historic context to predict
the next sentence. Notable improvements have been achieved,
however, the model may be misled to generate incorrect
captions by the attentive outputs that can be weakly related
to the queries in the attention mechanism [12]. Attention on
Attention (AoA) is then proposed for image captioning to
filter out less relevant elements to the queries in the attentive
outputs. Motivated by [12], we propose a novel Post-Attention
Modulator (PAM) to be applied to Transformer-based models
for dense VC problem. PAM refines Xatt’s outputs with its
queries by looking at the enhanced similarities between Xatt’s
queries and outputs. When applied to VTransformer, PAM
enhances video-text relationships; when applied to MART, it
jointly models the history context and the current segment
more effectively.

III. METHODS

Here we describe the proposed PAM and how it is used with
the two selected baselines, i.e. VTransformer [5] and MART
[11]. Given ordered video clips [C1, · · · , CT ], either VTrans-
former or MART generates a paragraph consisted of sentences
[L1, · · · , LT ] describing the content of those clips. Note that
VTransformer generates orderless sentences which are to be
rearranged to produce the final paragraph; while MART, which
predicts the next sentence conditioned on the previous video
and sentence segments, always generates ordered sentences. In
what follows, we introduce VTransformer and MART along
which we highlight where PAM comes into play.

1A “segment” here, if not defined separately, refers to a video segment
consisting of multiple frames.

A. Background

1) Vanilla Transformer: Vanilla Transformer (VTrans-
former) [5] is an extension of the Transformer [8] for the
dense VC task. The scaled dot-product attention, formulated
in Eq. (1), generates the weighted sum of the value matrix V
∈ Rsk×d via calculating similarities between the query and
key matrices, Q ∈ Rsq×d and K ∈ Rsk×d, respectively:

Attention(Q,K, V ) = softmax(
QKT

√
d

)V, (1)

where sk and sq are the sequence lengths, and d is the hidden
dimension. The multi-head attention, or MultiHead(Q,K, V )
[8], is usually used instead to enable modeling the repre-
sentations in different subspaces. As shown in Fig. 2, the
VTransformer is composed of several cascaded encoder and
decoder layers. Self-attention (Satt), where the queries, keys
and values are constructed from the same input features,
is utilized in these layers. Cross-attention (Xatt), where the
queries are from a different domain than the keys and values,
is utilized in the decoder layers. Specifically, the encoder
takes video as input and calculates correlations between video
frames via Satt. In the decoder layer, masked Satt is operated
over the outputs from the previous decoder layer. Masking is
applied on each word’s representation to prevent leaking the
information to the network on the subsequent words to be
modeled. Afterwards, Xatt between visual and textual modal-
ities takes the masked Satt’s outputs to construct queries, and
outputs from the same level of encoder layers to construct keys
and values. What follows is the feed-forward layer utilized
for a more fine-grained representation. Moreover, the skip
connection and layer normalization [17] are added to prevent
the output from degeneration and to stabilize the hidden state
dynamics, respectively [18].

2) Memory Augmented Recurrent Transformer: Different
from Transformer and VTransformer [8], [5] that adopt sep-
arate encoder and decoder networks, Memory Augmented
Recurrent Transformer (MART) [11] shares encoders and
decoders, as shown in Fig. 2. A memory updater is proposed to
encode the history information of video and caption segments
in a recurrent way. Specifically, in the lth decoder layer, the
memory updater at step t takes its history value M l

t−1 ∈ Rd

from the previous step t−1 and the hidden states Y l
t ∈ Rsh×d

from the feed-forward layer as inputs, and generates a new
output M l

t for the next step. Operations in the memory updater
are formulated as:

M l
t = (1− Z̄l

t)⊙ Cl
t + Z̄l

t ⊙M l
t−1 (2)

Cl
t = tanh(W l

mcM
l
t−1 +W l

scS
l
t + blc) (3)

Z̄l
t = sigmoid(W l

mzM
l
t−1 +W l

szS
l
t + blz) (4)

Sl
t = MultiHead(M l

t−1, Y
l
t , Y

l
t ), (5)

where W l
mc,W

l
sc,W

l
mz,W

l
sz ∈ Rd×d are the learnable

weights, blc, b
l
z ∈ Rd are biases, and ⊙ is the element-wise

product. Motivated by LSTM [19] and GRU [20], the update
gate Z̄l

t ∈ Rd gauges history information’s contribution.



B. Post-Attention Modulator (PAM)

1) PAM’s Motivation: Xatt produces cross-modal repre-
sentations via correlating queries and keys. However, large
discrepancies may exist between Xatt’s outputs and queries
which are constructed across domains. This can be seen
in their weak similarities in Fig. 1. Therefore, the residual
shortcut path from the queries to Xatt’s outputs can confuse
the predictions. Thus, we propose Post-Attention Modulator
(PAM) that better correlates Xatt’s outputs with its queries
to reduce the domain discrepancy. We introduce and study
variants of PAM with three different modulation schemes.

2) PAM’s Formulation: As seen in Eq. (1), Xatt’s outputs
are generated by positively weighing the values that reside in
a modality different from the queries. Enforcing Xatt’s queries
and its outputs to be more correlated, e.g. sharing larger cosine
similarity, could help better align the representations of the two
modalities. To achieve this, we propose PAM to extend Xatt in
Transformer to absorb the relevant information of the queries
into its outputs. PAM takes Xatt’s outputs X and its queries
Y as inputs and generates Z as:

Z = g(X,Y ), (6)

where g(·, ·) is the combination function. Note that X,Y, Z
represent different quantities in VTransformer and MART as
will be described later in this section, hence, we intentionally
specify their dimensionalities only later. PAM linearly weights
xi and yi, the i-th row vectors of X and Y , respectively, based
on their cosine similarity α(xi, yi), to generate the output zi,
the i-th row vector of Z. Formally,

zi = g(xi, yi) = (1− α(xi, yi)) xi + α(xi, yi) yi, (7)

α(xi, yi) =
xi · yiT

∥xi∥ ∥yi∥
. (8)

zi is interpolated and extrapolated when xi and yi are pos-
itively and negatively related, respectively, as shown in the
vector plot in Fig. 2. When the similarity between xi and yi
is weak, i.e. α(xi, yi) ≈ 0, as it initially inclines so (shown
in Fig. 1), the PAM’s outputs are close to Xatt’s outputs, i.e.
zi ≈ xi. As such, PAM takes no effect and its outputs reduce
to those from either VTransformer or MART.

C. Modulating α(xi, yi) in PAM

Recall that PAM is proposed for enhancing the correlation
between Xatt’s outputs and queries. To ensure this, one has to
prevent zi ≈ xi in Eq. (7), otherwise, PAM is ineffective. We
propose three different loss functions to modulate α(xi, yi).

1) Direct Modulation (DM): DM directly increases
α(xi, yi) via:

LDM =
1

sh

L∑
l=1

sh∑
i

−α(xl
i, yli), (9)

where L is the number of encoder and decoder layers, and sh
is the number of row vectors in X , Y and Z. LDM explicitly
pulls Xatt’s queries and outputs closer.

2) Query Modulation (QM): DM may make zi too close
to yi if α(xi, yi) is enlarged too much. Hence, as the second
approach, we propose a triplet loss LQM to minimize the
hinged difference between two similarity measurements, i.e.
the similarity between PAM’s output Z and Xatt’s queries
Y , and that between Xatt’s outputs X and the same queries.
Formally,

LQM =
1

sh

L∑
l=1

sh∑
i

max(bl + α(xl
i, yl

i)− α(zli, yli), 0), (10)

where bl is a positive (possibly layer-specific) scalar. LQM in-
creases α(zli, yl

i) as it encourages α(zli, yli) > α(xl
i, yli)+bl. In

other words, α(xi, yi), which weighs yi in Eq. (7), emphasizes
more on yi to pull zi and yi closer. In addition, α(xi, yi) will
be encouraged to be positive, otherwise, α(xl

i, yli)−α(zli, yl
i) >

0 (see Fig. 2). Furthermore, α(xi, yi) would not be enhanced
to its extreme, i.e. α(xi, yi) ≈ 1, otherwise, it leads to zi ≈ yi
and so α(zli, yl

i) ̸> α(xl
i, yli) + bl.

3) Key Modulation (KM): In our third variant KM, Xatt’s
queries yli are replaced with keys Kj in Eq. (10):

LKM =
1

shsk

L∑
l=1

sh∑
i

sk∑
j

max(bl + α(xl
i,K

l
j)− α(zli,K

l
j), 0), (11)

where Kl
j denotes the jth row vector of the key matrix Kl of

sk rows. KM implicitly enhances α(xl
i, yl

i) by differentiating
xi and zi via keys Kl

j as what it is realized by LKM . One can
see from Eq. (7) that, in order to differentiate xi and zi, more
yi should be included in zi, thus, calling for a larger α(xi, yi).
bl is in Eq. (11) to gauge the similarity difference which will
be studied in Section IV-C.

The final training loss Ltrain is composed of the cross
entropy loss Lxe over the generated and ground-truth
word tokens and the modulation loss variants Lcos ∈
{LDM ,LQM ,LKM}:

Ltrain = Lxe + γcos Lcos, (12)

where γcos is a non-negative hyperparameter whose value we
will examine in Section IV.

D. Applying PAM in Transformers

1) PAM in VTransformer: PAM can be easily compati-
ble with, but not limited to, VTransformer and MART. In
Vtransformer, given video embeddings V ∈ Rsv×d and text
embeddings T ∈ Rst×d, respectively for the encoder and
decoder, the lth encoder and decoder layers generate their self-
attentive representations V̄ l and Y l, respectively. sv and st
are the lengths of the video and text sequences, respectively.
d is the dimension of the representations. Xatt in lth decoder
layer outputs X l by attending to V̄ l and Y l with the former
being embedded as keys and values and the latter as queries,
as shown in Fig. 2. PAM generates the refined representations
Zl based on Xatt’s outputs X l and queries Y l.
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Fig. 2: The architectures of VTransformer and MART with the proposed Post-Attention Modulator (PAM). xi, yi, and zi denote
single row vectors in matrices X,Y, and Z, and scalar α is short for α(xi, yi) in Eq. (7). X and Y represent Xatt’s outputs
and queries, respectively. In the original VTransformer and MART, inputs Zl are obtained directly from X l without Y l.

2) PAM in MART: MART takes the joint video-text em-
bedding Ht = [Vt, Tt] ∈ R(sv+st)×d as inputs at step t, where
[·, ·] denotes the row-wise concatenation of two matrices. Xatt
in lth layer outputs X l

t given the queries Y l
t , i.e. the self-

attentive video-text representations, and the keys and values
being formed by [Y l

t ,M
l
t−1], i.e. the concatenation of the

queries and the previous memory state. Likewise, PAM outputs
Zl
t = g(X l

t , Y
l
t ) as in VTransformer.

IV. EXPERIMENTS

We evaluate PAM by applying it to two baseline models
with two pre-extracted features on two benchmark datasets,
ActivityNet Captions [1] and YouCookII [2].

A. Experimental Setup
1) Datasets: Table I summarizes the statistics of Activi-

tyNet Captions [1] and YouCookII [2]. Each video is com-
posed of several segments and each segment is described by a
sentence. We assess the models on the val split on YouCookII.
On ActivityNet Captions, we use the models with the highest
CIDEr-D score [21] on the ae-val split and evaluate them on
the ae-test split.

TABLE I: Statistics of the datasets. Num and Avg denote the
number of videos and the average number of segments per
video, respectively.

Dataset Split Num Avg Dataset Split Num Avg

ActivityNet Captions

train 10,009

3.65 YouCookII
train 1333

7.7val 4,917
ae-val 2,460 val 457ae-test 2,457

2) Video Features: For fair comparison, we adopt the same
pre-extracted and pre-processed video features, appearance
and motion features (App+Mot) [11] and COOT video-clip
features [13], as the baselines.

3) Evaluation Metrics: Following [11], [13], we consider
the automated captioning metrics: BLEU (B) [22], METEOR
(M) [23], CIDEr-D (C) [21], and Repetition (R) [14]. BLEU,
METEOR and CIDEr-D measure the similarity between the
candidate and reference sentences, while R score measures the
amount of redundant information in the generated paragraph.
As suggested in [11], we set n = 4 for the n-grams considered
in BLEU and R, which are labeled as B@4 and R@4,
respectively, throughout this section.

4) Implementation Details: All architectures have two en-
coder and decoder layers, i.e. L = 2, with hidden layers
of size d = 768 and 10% dropout probability. All the Satt
and Xatt layers have twelve attention heads. Adam [24] is
used with initial learning rate η = 1e − 4, β1 value 0.9, β2

value 0.999, L2 weight decay value 0.01. The batch size is
16 segments. Models are trained from scratch for at most 50
epochs and CIDEr-D is monitored for early stopping for 10
epochs. As in [11], [13], greedy decoding with maximum 22
steps is applied while generating captions. We set the loss
weight γcos = 1 in Eq. (12). We provide ablation studies on
bl and γcos in Section IV-C.

B. Results

1) Baselines: We compare our proposed PAM method
against the baselines as follows:
Transformer-XL [16]: Transformer-XL models correlations
between language segments with recurrence. It is adapted for
video paragraph captioning tasks in [11]. Two variants are
experimented: Transformer-XL and that with Recurrent Gra-
dient (Transformer-XLRG). They differ in whether allowing
gradient flow between different recurrent steps.
AoANet [12]: Originally proposed for image captioning,
AoANet, in which another attention is added on Xatt for
filtering out irrelevant elements in Xatt’s outputs to its queries,
is adapted here for the dense VC task.



VTransformer [5]: VTransformer generates unordered sen-
tences, which are then re-organized to make a paragraph, given
video segments. We use the same model also adpoted in [11].
MART [11]: MART devices a memory module to augment
the model’s representations with information from the history
video and text segments. The sentences in the paragraph are
recurrently generated in the same order as the video segments.

2) Quantitative Results: Table II shows the results on
YouCookII val and ActivityNet Captions ae-test splits.

TABLE II: Captioning results on the YouCookII val, Activi-
tyNet Captions ae-test split. Results of models with an asterisk
(∗) are reported in [11], [13]. Results with a dagger (†) are
our reproduction. Bold and underlined indicate the best and
the second best results, respectively.

YouCookII val ActivityNet Captions ae-test
Model bl B@4 M C R@4↓ bl B@4 M C R@4↓

Feature: App+Mot

Transformer-XL∗ [11] – 6.56 14.76 26.35 6.30 – 10.25 14.91 21.71 8.79
Transformer-XLRG∗ [11] – 6.63 14.74 25.93 6.03 – 10.07 14.58 20.34 9.37
AoANet† [12] – 7.54 15.88 32.02 3.38 – 9.85 16.21 22.15 7.32

VTransformer∗ [11] – 7.62 15.65 32.26 7.83 – 9.31 15.54 21.33 7.45
VT+PAM DM – 7.56 15.94 34.85 3.35 – 9.84 15.65 22.95 5.85
VT+PAM QM 0.30 8.11 15.66 35.32 5.94 0.25 10.01 15.98 23.20 8.39
VT+PAM KM 0.55 7.61 15.71 36.94 4.13 0.55 10.00 15.62 23.07 6.38

MART∗ [11] – 8.00 15.90 35.74 4.39 – 9.78 15.57 22.16 5.44
MART+PAM DM – 7.77 15.91 36.00 3.63 – 10.26 15.80 23.10 6.30
MART+PAM QM 0.20 8.12 16.00 36.86 4.98 0.05 10.27 15.77 23.53 6.11
MART+PAM KM 0.55 8.00 16.00 38.10 2.76 0.55 10.41 15.81 23.90 6.47

Feature: COOT

Transformer-XL∗ [13] – – – – – – 10.57 14.76 22.04 15.85
Transformer-XLRG† – – – – – – 10.62 14.85 23.99 12.46

VTransformer∗ [13] – 11.09 19.34 54.67 4.57 – 10.47 15.76 25.90 19.14
VT+PAM DM – 11.05 19.34 57.05 7.80 – 10.54 15.68 26.45 18.58
VT+PAM QM 0.30 11.42 19.86 57.68 6.08 0.25 10.60 15.70 26.58 17.99
VT+PAM KM 0.60 11.19 19.50 58.20 6.76 0.55 10.68 15.75 26.86 17.58

MART∗ [13] – 11.30 19.85 57.24 6.69 – 10.85 15.99 28.19 6.64
MART+PAM DM – 11.60 19.71 57.97 6.55 – 11.11 15.84 28.33 8.86
MART+PAM QM 0.20 11.85 19.82 60.83 6.77 0.20 11.18 15.99 29.10 6.57
MART+PAM KM 0.55 11.68 20.02 58.34 5.30 0.55 11.31 16.00 29.77 7.16

Assessing PAM. One can firstly observe that PAM DM
obtains consistent increments on VTransformer and MART
while PAM QM and KM bring further improvements in
most of the cases. For instance, PAM QM and KM improve
VTransformer by 8.1% − 14.5% on C scores with App+Mot
and 2.6% − 6.4% with COOT features across benchmark
datasets. On a stronger baseline MART, C scores are improved
by 3.1%−7.8% with App+Mot and 1.9%−6.2% with COOT.
It is worth noting that larger improvements from adding PAM
on VTransformer than on MART can be seen in the most
cases, showing PAM’s capability on improving originally less
performant models. Of all the modulation schemes, PAM KM
often delivers the best scores. Putting these improvements
aside, PAM, nevertheless, occasionally seems to generate more
repetitive words as indicated by slightly larger R scores.
Effect on Features: App+Mot vs. COOT. VTransformer
and MART with COOT embeddings generate more accurate
captions than with appearance and motion feature in all cases.
Models with PAM similarly improve both baselines in B@4,
M and C with both features.

Fig. 3: Effect of models’ seven
random initialization on Ac-
tivityNet Captions ae-test split
with the App+Mot feature.

3) Significance of Differ-
ences: We examine the dif-
ferences in the C scores
brought by the models’ ran-
dom initializations with the
box plots showing in Fig. 3.
The PAM variants’ effec-
tiveness is verified by their
higher lower bounds on
the C scores compared to
the upper bounds of the
VTransformer and MART
baselines (bl), respectively.

C. Ablation Studies

We study how bl in Eqs. (10-11) and the loss weight γcos
in Eq. (12) affect the model behavior and performance.

1) Effect of α(xi, yi) on C scores: We examine our main
argument – enhancing the correlation between Xatt’s queries
and outputs benefits a model’s predictions – by analyzing
α(xi, yi) against the individual C scores. Fig. 4 shows the
average similarities, each of which is calculated over α(xi, yi)
for all input pairs (xi, yi) in each video in ActivityNet Cap-
tions ae-test split. The average α(xi, yi) of the baselines either
completely without PAM or without the modulation scheme
in PAM are small and spread around zero with smaller C
scores. PAM with the modulation schemes appear to improve
the C scores with the increased similarities between Xatt’s
queries and outputs. When adopting LDM , α(xi, yi) is pushed
to the greatest value it could achieve, leading to the improved
accuracy. This observation supports our argument, however,
to the extreme case, if a Xatt’s output xi and a query yi are
perfectly aligned, then either of them becomes redundant. As
such, PAM with QM and KM obtain better accuracy by not
overly enhancing α(xi, yi).

2) Effect of bl on α(xi, yi): Here we study how bl mod-
ulates the similarities, whose values are shown against bl in
Fig. 5. One can see that first increasing the bl value from
zero leads to larger similarities. However, once bl goes beyond

Fig. 4: The average similarities α in Eq. (7) of the first decoder
layer versus the C scores of samples in ActivityNet Captions
ae-test split on VTransformer- (left) and MART-based (right)
PAM models. In each panel, the right figure provides a close-
up look to the left. The black upper triangles denote the
average C scores and similarities α. “PAM” denotes PAM
without using Lcos.



Fig. 5: The average α in Eq. (7) of the first decoder layer
versus the choice of bl on VTransformer+PAM (left) and
MART+PAM (right) on ActivityNet Captions ae-test split.

Fig. 6: Effects of γcos on LKM on VTransformer (left) and
MART (right) C score in ActivityNet-Captions ae-test split.

a certain value, the penalty forced by it in either LQM or
LKM starts to decrease the similarities. This phenomenon
could be explained as follows: with a large bl, minimizing
α(xi, yi)−α(zi, yi) in Eq. (10) tends to minimize α(xi, yi) and
maximize α(zi, yi), individually, leading to a lower α(xi, yi).

3) Effect of bl on model accuracy: Table III shows the
results of using PAM with varing values for bl. It can be seen
that setting a large value of bl, e.g. 0.7, in both PAM QM
and KM hurts the accuracy. We owe this to the fact that a
large value of bl inclines to reduce the similarities between
Xatt’s queries and outputs, as discussed in Section IV-C2.
Empirically, the best results are obtained with a moderately
large value of bl in both PAM QM and PAM KM.

TABLE III: Captioning results with different bl values on the
ActivityNet Captions ae-test split.

Model Modulation bl B@4 M C R@4↓ Modulation bl B@4 M C R@4↓

VT+PAM – – 9.42 15.50 21.78 8.06 – – – – – –
VT+PAM QM 0.1 9.88 15.79 22.88 6.97 KM 0.1 9.78 15.61 22.84 7.03
VT+PAM QM 0.3 9.96 15.85 23.09 8.42 KM 0.3 9.79 15.65 22.89 6.81
VT+PAM QM 0.5 9.82 15.72 22.95 7.98 KM 0.5 9.85 15.72 22.94 6.92
VT+PAM QM 0.7 9.79 15.64 22.86 7.72 KM 0.7 9.76 15.59 22.86 6.54

MART+PAM – – 9.80 15.60 22.46 7.23 – – – – – –
MART+PAM QM 0.1 10.23 15.79 23.42 6.29 KM 0.1 10.22 15.71 23.27 6.82
MART+PAM QM 0.3 10.17 15.74 23.25 6.25 KM 0.3 10.29 15.66 23.18 6.71
MART+PAM QM 0.5 10.19 15.68 23.22 6.18 KM 0.5 10.31 15.78 23.72 6.58
MART+PAM QM 0.7 10.18 15.74 23.33 6.02 KM 0.7 10.23 15.69 23.45 6.64

4) Effects of γcos: We study how the weight γcos in the
loss Ltrain of Eq. (12) affects the model accuracy. In Fig. 6,
we observe the different values of γcos influence the models’
C scores and the peaked values are obtained with γcos = 1.

D. Qualitative Results

Some sample captions generated by the models are shown
in Fig. 7. Compared with the two baselines, PAM captures
the key activities with more precise descriptions. For exam-
ple, PAM specifically identifies that a man is performing a

martial arts moves and routines while the other two baselines
are only to describe the basic movements involved, such as
moving and kicking legs. Moreover, in the second example,
VTransformer+PAM KM captures that the woman holds the
stick and uses the balls to play the game while VTransformer
does not recognize the stick. MART+PAMs are better than
MART by being more descriptive on the actions (holds a stick
and hits the ball) that the woman is performing.

Ground truth: A man is seen bowing before a large group of people and performing
a martial arts routine on a large stage. The man continues moving his arms and legs
around and ends with him bowing to the audience.
VTransformer: A man is seen standing in a circle and begins moving himself
around and kicking his legs around. The man continues to spin around while the
camera captures his movements.
VTransformer+PAM QM: A man is seen walking around a large stage and leads
into a man performing various martial arts moves. The man continues to dance around
while the camera captures his movements.
VTransformer+PAM KM: A man is seen walking into a large circle and leads into a
man performing a martial arts routine. The man performs a series of kicks and throws
in the air.
MART: A man is seen standing in a large circle and begins performing a routine in
front of a large crowd. The man continues moving around while the camera captures
his movements.
MART+PAM QM: A man is seen standing in a large circle and begins performing a
martial arts moves. The man continues moving around and ends with him jumping off
the side.
MART+PAM KM: A man is seen standing in a circle and begins performing a
martial arts routine. The man continues moving around the area while the camera
captures his movements.

Ground truth: A woman is seen speaking to the camera on a red carpet while
holding sticks in her hands. The woman then begins hitting the balls around an area
playing the game of crochet. The woman continues hitting the balls and ends by
speaking to the camera.
VTransformer: A woman is seen speaking to the camera while holding up various
objects and leads into her cutting a ball, A close up of a table is shown followed by a
woman speaking to the camera and holding up various. The woman then demonstrates
how to use the mop and bucket as well as her hand.
VTransformer+PAM QM: A woman is seen speaking to the camera while holding up
a large ball and leads into her playing a. A woman is seen standing in a room holding
a stick and speaking to the camera. She then shows how to use the balls to hit the ball.
VTransformer+PAM KM: A woman is seen speaking to the camera and leads into
her holding a ball. A woman is seen speaking to the camera and leads into her
holding up a stick. She then demonstrates how to use the balls to play the game.
MART: A woman is seen walking into frame and leads into a person playing a game
of bag. The person begins playing the game of curling. The person continues to play
and ends with text across the screen.
MART+PAM QM: A woman is seen speaking to the camera while holding up
various objects in her hands. She then uses a stick to hit the ball around the area. She
then holds up a rag and shows off the tools to the camera.
MART+PAM KM: A woman is seen speaking to the camera while holding up a stick
and leads into her holding up a. She then puts the balls into the bucket and begins
hitting the ball around. She then puts the ball down and hits the ball around the area.

Fig. 7: Results with different models for ActivityNet videos
BRuansCVV3U (top) and 9Xrw-WOipSI (bottom). Some key
activities in texts are highlighted in red.

V. CONCLUSION

This work focused on the dense video captioning (VC)
problem and provided a study on the weak correlation between
the queries and outputs of multi-modal cross-attention in
Transformer. We proposed a novel Post-Attention Modulator
(PAM) with three different modulations, with which the cap-
tioning accuracy was improved due to the enhanced correla-
tion. Experimental results demonstrated that PAM is capable
of predicting better captions than the strong VTransformer and
MART baselines on the ActivityNet Captions and YouCookII
datasets. As a future direction, we aim to study how the
repetitions in the generated captions could be further reduced.
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