
This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail.

Powered by TCPDF (www.tcpdf.org)

This material is protected by copyright and other intellectual property rights, and duplication or sale of all or 
part of any of the repository collections is not permitted, except that material may be duplicated by you for 
your research use or educational purposes in electronic or print form. You must obtain permission for any 
other use. Electronic or print copies may not be offered, whether for sale or otherwise to anyone who is not 
an authorised user.

Getman, Yaroslav; Phan, Nhan; Al-Ghezi, Ragheb; Voskoboinik, Ekaterina; Singh, Mittul;
Grosz, Tamas; Kurimo, Mikko; Salvi, Giampiero; Svendsen, Torbjorn; Strombergsson, Sofia;
Smolander, Anna; Ylinen, Sari
Developing an AI-assisted Low-resource Spoken Language Learning App for Children

Published in:
IEEE Access

DOI:
10.1109/ACCESS.2023.3304274

Published: 01/01/2023

Document Version
Publisher's PDF, also known as Version of record

Published under the following license:
CC BY

Please cite the original version:
Getman, Y., Phan, N., Al-Ghezi, R., Voskoboinik, E., Singh, M., Grosz, T., Kurimo, M., Salvi, G., Svendsen, T.,
Strombergsson, S., Smolander, A., & Ylinen, S. (2023). Developing an AI-assisted Low-resource Spoken
Language Learning App for Children. IEEE Access, 11, 86025-86037.
https://doi.org/10.1109/ACCESS.2023.3304274

https://doi.org/10.1109/ACCESS.2023.3304274
https://doi.org/10.1109/ACCESS.2023.3304274


Received 30 June 2023, accepted 14 July 2023, date of publication 10 August 2023, date of current version 17 August 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3304274

Developing an AI-Assisted Low-Resource Spoken
Language Learning App for Children
YAROSLAV GETMAN 1, NHAN PHAN 1,
RAGHEB AL-GHEZI1, (Graduate Student Member, IEEE), EKATERINA VOSKOBOINIK1,
MITTUL SINGH1,2, TAMÁS GRÓSZ 1, MIKKO KURIMO1,
GIAMPIERO SALVI 3,4, (Member, IEEE), TORBJØRN SVENDSEN 3, (Life Senior Member, IEEE),
SOFIA STRÖMBERGSSON 5, ANNA SMOLANDER6, AND SARI YLINEN 6
1Department of Information and Communications Engineering, Aalto University, 02150 Espoo, Finland
2Silo AI, 00180 Helsinki, Finland
3Department of Signal Processing, Norwegian University of Science and Technology, 7034 Trondheim, Norway
4EECS, KTH Royal Institute of Technology, 114 28 Stockholm, Sweden
5Department of Clinical Science, Intervention and Technology, Karolinska Institutet, 141 52 Huddinge, Sweden
6Logopedics, Welfare Sciences, Faculty of Social Sciences, Tampere University, 33100 Tampere, Finland

Corresponding author: Yaroslav Getman (yaroslav.getman@aalto.fi)

This work was supported by NordForsk through funding to technology-enhanced foreign and second-language learning of Nordic
languages under Project 103893.

This work involved human subjects or animals in its research. Approval of all ethical and experimental procedures and protocols was
granted by the Regional Ethical Review Board in Stockholm.

ABSTRACT Computer-assisted Language Learning (CALL) is a rapidly developing area accelerated by
advancements in the field of AI. A well-designed and reliable CALL system allows students to practice
language skills, like pronunciation, any time outside of the classroom. Furthermore, gamification via mobile
applications has shown encouraging results on learning outcomes andmotivates young users to practice more
and perceive language learning as a positive experience. In this work, we adapt the latest speech recognition
technology to be a part of an online pronunciation training system for small children. As part of our gamified
mobile application, our models will assess the pronunciation quality of young Swedish children diagnosed
with Speech Sound Disorder, and participating in speech therapy. Additionally, the models provide feedback
to young non-native children learning to pronounce Swedish and Finnish words. Our experiments revealed
that these new models fit into an online game as they function as speech recognizers and pronunciation
evaluators simultaneously. To make our systems more trustworthy and explainable, we investigated whether
the combination ofmodern input attribution algorithms and time-aligned transcripts can explain the decisions
made by the models, give us insights into how the models work and provide a tool to develop more reliable
solutions.

INDEX TERMS ASR, children’s speech, L2 speech, speech rating, SSD, wav2vec2.

I. INTRODUCTION
Learning foreign or second languages (L2) is a challenge
for most adult learners, whereas children starting L2
learning early may eventually obtain better proficiency
in different aspects of language [1], [2]. Therefore, it is
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often recommended to start language learning early on. For
young illiterate children, L2 exposure and activities should
be based on spoken language rather than text, yet also
older children benefit from spoken language skills. Smart
mobile systems coupled with automated game-based spoken
language learning (GBLL) provide a unique opportunity
to enhance spoken L2 acquisition for young learners.
To be interactive, such systems are, however, dependent
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on speech technology. Therefore, there has been increasing
interest in applying machine learning techniques to the
field of spoken language learning for children. We aimed
to develop a mobile application for children to practice
language learning in an interactive and gamified fashion (see
Section V for more details). It leverages recent advances
in self-supervised machine learning to develop automatic
speech recognition (ASR) for children’s L2 speech in two
low-resource languages such as L2 Finnish and Swedish
spoken in Finland, which are scarcely studied in the field
of computer-assisted language learning (CALL). In addition,
this work has the potential to affect the language learning
process in children with speech sound disorder (SSD).
An engaging speech training app can help provide immediate
feedback regarding their speech production. Usually, children
with SSD constitute a large portion of speech-language
pathologists’ caseloads [3], and given the value of a
high training dose frequency in speech intervention [4],
an engaging speech training app could potentially relieve the
burden of clinicians as well as children and their families
alike.

Previous studies have shown that CALL and GBLL can be
effective ways to learn L2 and particularly its vocabulary [5],
[6], [7], [8], [9], [10]; for reviews, see [11], [12], [13],
and [14]. Digital games have also been used to support
speech therapy [15]. According to [11], the aspects of
GBLL contributing to this include ease of use, challenge,
reward-and-feedback, control/autonomy, goal-directedness,
and interactivity. These factors may increase learners’
motivation for rehearsal and activate the reward system
of the brain [16]. The game features may also interact
with players’ individual characteristics and their learning
styles [17], implying that the gaming effects vary across
individuals. To train spoken language and pronunciation
skills, DLL and GBLL have also been combined with
speech technology [15], [18], [19]. ASR that provides
feedback to learners has been shown to improve vocabulary
and pronunciation [20], [21], [22]. In addition to learning
effects observed in behavior, the effects of gaming with
ASR-based feedback have been shown to improve children’s
neural representation of L2 speech sounds and words in the
brain [23].

Based on these earlier findings, we expect that a system
combining gaming and ASR, with its interactive and
engaging nature, will prove to be a valuable teaching tool
for developing the spoken language skills of L2 learners.
Outside the educational setting, the system could also be
beneficial for children with SSD, and encourage them to
reach the high levels of practice and repetition that are often
recommended in clinical intervention. This research will
contribute to the body of knowledge on the use of technology
in language teaching and clinical intervention, especially in
low-resource languages, and provide valuable insights for
educators, clinicians, researchers, and developers working
in the field of spoken language learning. Furthermore, the
described system will be a useful and practical resource for

educators and parents, providing them with effective tools to
assist children in second language acquisition.

A systematic literature review on automatic pronunciation
assessment for L2 children and children with SSD has been
conducted in [24]. However, the scope of this review is
substantially different from our work, which makes it hard to
compare the results and methods. To the best of our knowl-
edge, in the context of Computer-Assisted Pronunciation
Training (CAPT) for L2 Swedish and Finnish children, there
are no previous work on automatic pronunciation assessment,
not even for L2 Swedish and L2 Finnish adults. For other
languages, pronunciation verification systems use a common
method called Goodness of Pronunciation (GOP) [25], [26].
GOP is estimated as the probability that the expected phone
is observed with respect to all the other observable phones.
The GOP method has been successful in a wide range
of pronunciation verification systems [27], [28]. However,
it requires the development of a performant ASR system to
function well. This is not always feasible in settings where
labeled data are scarce, such as children’s speech or low-
resource languages. Children’s speech differs from adults’
speech in F0, speaking rate, and formant frequencies [29],
making ASR systems for adults not applicable to the
task. Nevertheless, recent developments in ASR, notably
the availability of large mono- and multilingual pre-trained
speech models, such as wav2vec2 [30], have demonstrated
success in developing ASR systems using relatively small
amounts of training data [31] on target tasks, making it
possible to develop ASR systems for low-resource children’s
speech.

In this work, we make the following contributions. Firstly,
we introduce a multitask wav2vec2 approach that performs
ASR and pronunciation scoring simultaneously. Previously,
these two steps were done separately, and this novel approach
improves the computational efficiency and the speed of the
system, making it fit for mobile-based gamified systems.
Secondly, we investigate how well the proposed system can
represent children’s speech internally via an interpretability
method called Integrated Gradients [32]. Finally, we evaluate
the effectiveness of the proposed solutions on three different
speech datasets: Swedish SSD and Swedish and Finnish L2
learning.

II. DATA
In this study, we employ three children’s speech datasets for
training the ASR and pronunciation rating systems. During
data collection, the ethical boards provided approval and
informed consent was obtained from the parents of all the
children participants. After the data collection phase, the
speech samples were manually rated by human annotators.
Since our target users are very young (below the age of 10),
we were quite limited in the options for feedback; in the
end, we opted to use the well-known five-star rating system,
which might be already familiar to the children. As a result,
we unified the rating scales across the datasets and converted
the scores accordingly, more details can be found in the
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TABLE 1. Rating scale and descriptions.

following sections. The final level distributions are shown in
Figure 1, and the level descriptions are provided in Table 1.
It should be noticed that separation between neighboring
levels is expected to be a challenging task, both for human
raters and automatic rating systems. In assessing speech
accuracy in a clinical context, speech-language pathologists
typically attend to specific features of speech, documented
in phonetic transcription or as a percentage of consonants
in a speech sample that are produced ‘‘correctly’’. Hence,
a global rating of speech accuracy with regards to a 1-5 scale
is an unfamiliar task even to expert listeners. Furthermore, the
datasets are heavily imbalanced in terms of ratings towards
the highest level: about half of the speech samples belong to
level 5.

While the data have human ratings, it should be noted that
the speech samples were not transcribed. Instead, only the
target word was provided for each recording along with the
rating. Therefore, we used all the data in the speech rating
experiments, while samples only with ratings 4 and 5 were
used for training and evaluating the ASR systems, expecting
that the uttered word corresponds to the target word in these
recordings.

A. SweSSD
The first dataset used in this study, named SweSSD, consists
of 6027 isolated word recordings (2 hours) collected from
28 native Swedish children aged 4 to 10 years by the
Functional consequences of misarticulation in children’s
connected speech project [33]. The vocabulary of 1109 words
was compiled based on the articulation test LINUS [34]
and the Swedish Test of Intelligibility for Children
(STI-CH) [35]. Among the participants, 16 children had an
SSD and the remaining 12 speakers had typical speech. After
the data collection, the speech samples were pseudonymized
to prevent the identification of speakers and rated on a 5-level
scale by a native Swedish speech-language pathologist, for
more details see Table 1. In addition, we asked the annotator
to re-rate a randomly sampled 20% of the dataset half a
year after the first data annotating trial. We compare the
new ratings to the corresponding original ones and report the
results in Section IV-C.

B. L2 SWEDISH AND FINNISH DATA
Our L2 data were collected from children of ages 7 to 11 who
had not studied the target language at school yet. The Swedish
samples were recorded from L1 Finnish speakers, while the

Finnish recordings were collected from Ukrainian children
whose mother tongue is Ukrainian or Russian.

For each language, we prepared a word list containing
all the sounds that were considered important for the target
language. These words either exist in the target (L2) language
but not in the children’s native language, or are expected to
be difficult for L2 learners in general, such as Finnish words
that contain front vowels ä, ö, and y (/æ/, /ø/, and /y/).
The Swedish set was composed of 121 unique words, while
the Finnish one had 90 words.

During the data collection, children were instructed to put
on headsets and repeat the words that they heard. We used
a toy animal as a proxy to which the child repeated the
word. As the recording was relatively long from the kids’
perspective, it was sometimes necessary to take small breaks
every 3-4 minutes or change the toy animal, while some
children were able to record all the words in one go. A quality
check was implemented for each file by manually listening to
them, modifying the labels to cover the child’s utterances, and
marking extra sounds and noises.

The collected data were rated by native Finnish university
students in the last year of their master’s studies, majoring in
Swedish language and specializing in language teaching, with
practical teacher experience. Furthermore, the annotators
were trained by an experienced annotator with the same
qualities and who was also one of the developers of the
used speech technology rating platform [18], [23], [36], [37],
[38]. At the beginning of the annotators’ training period, they
assessed a training set from the data together and discussed
the rating procedure until a consensus was reached and they
were feeling confident on their annotation.

The L2 Swedish data set consists of 2384 speech utterances
collected from 20 children (90 minutes), while the Finnish
one is composed of 2124 utterances from 24 speakers (83
minutes). The distribution of the data in the rating levels is
shown in Figure 1.

III. METHODS
A. BASELINE
As a baseline for the end-to-end pronunciation assessment
models, we applied a phoneme-level GOP score [25], [26]
based on traditional Gaussian mixture models combined
with Hidden Markov models (GMM-HMMs). This method
compares the likelihood of the spoken utterance given the
models and, assuming a canonical pronunciation, to the
best possible likelihood when the model is free to choose
any possible pronunciation. If the pronunciation is close to
canonical, the two likelihoods are similar and the likelihood
ratio is close to one (or, equivalently, the log-likelihood
ratio is close to zero). If there is a significant deviation in
pronunciation, the canonical likelihood is always lower than
the best possible likelihood, giving negative log scores. The
GMM-HMM models are phonetic, allowing for a detailed
assessment of pronunciation deviations. However, because
the task in this paper was to predict a human assessor score at
the word level, only word-level likelihoods were considered.
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FIGURE 1. Data distribution in different rating levels.

The GMM-HMM models were trained on the NST
Swedish database [39] and adapted on child speech from
the PFstar dataset [40]. We used context-dependent HMMs
(triphones) with 64 Gaussian components per state trained
on MFCC features. The log-likelihood ratio scores obtained
from the model had to be mapped to the 5-star rating scale.
The decision tree was chosen as a simple tool to perform the
transformation of GOP scores into rating categories, which
made it directly comparable to other systems used in this
study (explained later). In Section IV, we refer to this method
as MFCC+GMM-HMM+DT.

B. Wav2vec2
Wav2vec2 [30] is a self-supervised framework consisting of a
series of convolutional layers followed by a Transformer [41]
network. The model learns general deep acoustic represen-
tations during pre-training from large amounts of unlabeled
speech data. More precisely, it masks spans of consequent
audio representations and is trained to distinguish between
the true quantized latent representation and the negative
examples randomly sampled from the same speech utterance.
The second training phase involves fine-tuning the model
with labeled data to a downstream task. For example, for
ASR, a linear layer is added on top of the Transformer
network, and the system is trained with a connectionist
temporal classification (CTC) [42] loss. For utterance-level
classification tasks, the representations of the last hidden
layer are reduced in dimensionality by a projection layer, then
combined using average pooling and fed into a classification
layer. Cross-entropy (CE) loss is then used as a loss function.
In addition, wav2vec2 can be fine-tuned for both ASR
and speech pronunciation classification simultaneously by
feeding the last hidden layer’s outputs to multiple heads and
jointly minimizing the corresponding loss functions.We refer
to the single-task wav2vec2 models in Section IV as W2V2
ASR and W2V2 rating and the multi-task ones as W2V2
multitask.

C. MODEL INTERPRETATION
While AI tools are routinely developed for various tasks
thanks to the numerous frameworks which streamline the

training and deployment process, they are generally viewed
as ‘‘black boxes’’. Unfortunately, not understanding how the
system works could lead to catastrophic failures when the
AI model learns to exploit some unintended artefact in the
training data [43], thus resulting in a model that is not well
generalized and performs under our expectations on unseen,
real-life test data. Motivated by this, we perform model
interpretation with the Integrated Gradients (IG) [32] tool to
ensure our models do not rely on special properties of the
training data.

IG is a popular solution for visual interpretation as it is
applicable to any differentiable model. It only requires a
baseline input (in our case, it was complete silence) and
calculates the attributions of each input feature toward the
final output. In practice, IG uses the gradients of the output
with respect to the input to estimate the attributions and to
ensure that the attributions satisfy the Sensitivity criteria,
it calculates the attributions of various inputs, which are an
interpolation of the baseline and the actual input. Formally,
IG attributions are defined as the path integral of the gradients
along the straight line path between the baseline and input
vectors [32]. These input attributions could offer insights
into which parts of the audio are mostly considered when
the model rates the pronunciation of the words. Furthermore,
it could highlight potential weaknesses of the system, which
should be addressed before we deploy the models in the
mobile application.

We would like to note that while model interpretation
techniques are commonly used to inspect models visually,
employing them to discover systematic problems of the
networks is still rare. Perhaps one rare but well-known
example is the Husky or Wolf model, which learned to
separate the two categories based on the presence of snow
in the background [43]. Naturally, such a system is not
trustworthy, as it makes predictions based on irrelevant parts
of the input.

Inspired by this, we developed a novel solution to
investigate our solutions and their potential weaknesses.
As our system is essentially one single neural network,
we could use IG to estimate the input attributions of each
value in the raw audio input. To perform a systematic
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analysis, we also utilized the ASR component of our
proposed solution to generate a so-called forced-aligned
transcript of the expected word. This procedure provided
us with timing information on when the expected word
begins and when it ends, thus separating the relevant part
of the audio from those that should not be considered when
evaluating the pronunciation. Our experiments focused on the
distribution of input attributions among these two recorded
components to ensure that the most influential regions
belong to the expected word and not to the environmental
noises and other sounds recorded before and after the
pronunciation.

IV. EXPERIMENTS
A. SPEECH RATING SYSTEM
Our primary goal was to design and train models that
analyze recordings of single words uttered by children
and estimate the goodness of their pronunciation. Due to
the limited amount of training data, we selected the GOP
baseline and our wav2vec2-based classifiers and compared
them thoroughly using the largest dataset at our disposal
(SweSSD). In Figure 2, we can see the overall workflow of all
the systems employed in this study. First, we tested two rela-
tively simple solutions that used the standard Mel-frequency
cepstral coefficients (MFCC) extracted from the audio file.
The traditional GOP approach usedGMM-HMMs to estimate
the ratings from the MFCC input, and the deep learning
alternative replaced the GMM-HMM with a convolutional
recurrent deep neural networks (CRDNN), which is a
quite popular encoder model for audio processing [44].
The architecture of the CRDNN is a relatively simple one; the
input is first processed by two convolutional layers along the
time axis. Following the convolutional layers, a bidirectional
LSTM layer summarizes the utterance-level information.
Lastly, a feed-forward layer transforms the embeddings
before the final softmax layer. We refer to this approach as
MFCC+CRDNN in our experiments.

Next, we investigated modern, self-supervised wav2vec2
solutions. Although these models are very good at speech
recognition [30], [31], spoken emotion recognition [45],
disfluency detection [46], and many other related tasks,
they have a considerable computational cost. Training such
models require expensive infrastructure (GPUs and large
memory) and a considerable amount of time, even if the
training data is limited. Naturally, the most straightforward
option is to fine-tune the models using all available data,
and we demonstrate that it leads to the best systems, but it
might not be a possibility for those with limited resources.
To explore lightweight alternatives, we decided to use the
wav2vec2 as a feature extractor only, thus avoiding the costly
second fine-tuning procedure after the ASR training. Three
different systems were compared; one used a simple Decision
Tree (DT) to assign a rating based on the character error
rate (CER) between the expected word and the transcript
produced by wav2vec2, also referred to as W2V2 CER+DT
in Section IV. Our GOP (MFCC+GMM-HMM+DT) is

directly comparable and acts as a baseline for the W2V2
CER+DT system as both apply a speech model to produce
a score, which is transformed into a rating by a DT.

The second alternative employed a CRDNN that received
the character-level log probabilities from the wav2vec2,
while the third used a CRDNN and the so-called context
embeddings to estimate the pronunciation quality. We refer
to these methods in the results as W2V2 logp+CRDNN
and W2V2 emb+CRDNN, respectively. We should note
that although our DT and CRDNN models are orders of
magnitude smaller than wav2vec2 and their training takes
considerably less time and resources, they still required
a computationally expensive fine-tuning of the wav2vec2
model for ASR. Moreover, the inference using all three
approaches still requires a pass through the wav2vec2
network.

B. EVALUATION METRICS
In this study, we have access to only a limited amount of
data, which we aim to utilize as much as possible for training
and evaluation of the models. To achieve this, we opted for
6-fold cross-validation (CV) with no overlap between folds
in the ASR and speech rating experiments. With CV, we were
able to use the entire dataset to test our models, and the fact
that we had to train 6 models for each task enabled us to
assess the robustness of our proposed systems toward data
selection.

The secondmajor issue we had to address was the choice of
evaluation metric. In our work, accuracy could be misleading
because of the unbalanced nature of the corpora used in
this study; for example, a classifier that assigns the most
frequent class label (rating 5) to everything would achieve
relatively good accuracy (approx. 50%) compared to random
choice (approx. 20%), still, it would be useless in a real-
world application. Unweighted average recall (UAR) [47]
is designed to measure performance better in case of
unbalanced data by calculating the recalls, or sensitivity, of
each category and averaging them to get a final performance
measure. Although UAR already addresses the unbalanced
data problem, neither recall nor accuracy takes the distance
between ratings into account. For instance, both recognizing
the lowest level sample as the highest level and confusion
between the neighboring classes are treated equally by these
metrics. To solve this limitation, we also opted to use mean
absolute error (MAE), which could be viewed as the expected
difference between the model prediction and the human
annotation.

Lastly, we employed the word and the character error
rate (WER and CER) to evaluate our children ASR systems.
One reason behind measuring the CER is that the WER
could often mislead as it is sensitive to minor mistakes such
as getting only one character wrong in the word would
categorize it already as an error. Additionally, it should be
noted that our children’s speech corpora are single-word
utterances, therefore, the CER would provide us with a more
informative estimate of the ASR performance.
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FIGURE 2. The overall workflow of our experiments.

C. SweSSD
In the first phase of our experiments, we selected the SweSSD
corpus and comparedmultiple solutions to determine the best.
We used the entire dataset for the speech rating experiments
without removing underrepresented classes or merging them
into a single class.

In Table 2, we report the attempt to reproduce the
experiments proposed in [48]. Some results deviate from
the ones reported by [48] due to several reasons. First,
we trained the wav2vec2-based ASR systems following
the cross-validation setup instead of using all data with
a high rating to train a single ASR model. Additionally,
we selected a publicly available monolingual wav2vec2
model1 already fine-tuned on adult Swedish speech as a
base model in our experiments. According to [48], adapting
a wav2vec2 model already fine-tuned for ASR on the
same language but different domain leads to considerably
lower error rates in comparison to fine-tuning a pre-trained
model directly for the under-resourced target task. Second,
we used different hyperparameters for the wav2vec2 models.
The main observation is that wav2vec2-based solutions
proved quite good, reducing the gap between human and
AI performance considerably. Our main observation from
these results is that the training of the wav2vec2 model is
highly beneficial but also relatively slow. The baseline GOP
system (MFCC+GMM-HMM+DT), in contrast, provided
the lowest performance due to the small size of our
training data compared to the wav2vec2-based methods
that benefit from the large pre-trained models. As a
result, it was not selected among the methods for further
experiments.

We would like to note that the system with the second-best
UAR score, W2V2 CER+DT, required only a few seconds
to train, whereas training the other wav2vec2 sub-models
took approximately 4.5 hours. Nevertheless, after the training

1https://hf.co/KBLab/wav2vec2-large-voxrex-swedish

TABLE 2. Previous results on the SweSSD of various techniques proposed
in [48].

procedure, the difference between their inference speed was
negligible. One significant limitation of our best model
(W2V2 rating) is that the wav2vec2 fine-tuned to provide
ratings lost its ability to recognize the word spoken.
In contrast, all solutions that are built upon the wav2vec2
ASR model (W2V2 logp+CRDNN, W2V2 emb+CRDNN,
and W2V2 CER+DT) can still leverage the ASR capability.
Maintaining the ASR capability is important because then
the output of the same model can be used to verify that the
child indeed tried to utter the expected word and not just said
something completely different. In fact, by comparing the
recognized text with the expected word, we can determine
with about 90% accuracy whether the child uttered the
expected word or not. We would like to note that most
(approx 65%) of the false rejections are in the case of very
low ratings (1 or 2) when even the human annotators had
trouble determining whether the child said the target word or
not.

Unsurprisingly, the human expert (Human (20% data) in
Table 2) considerably outperformed our automatic systems
in this task. However, the obtained results clearly demon-
strate the degree of complexity of the task: rating these
samples on a 5-level scale is not trivial even for a human
annotator.

Next, we focused on understanding how the best wav2vec2
model made its decisions. For this, we employed an input
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attribution method called Integrated Gradients (IG). This
method aided us by revealing the most influential parts
of the input by calculating their contributions towards the
final decision of the network. IG is capable of generating
so-called saliency maps, which enables us to gain insights
into how large neural networks work [49]. Additionally,
understanding how our methods function is a prerequisite
of trustworthy systems [43], and the generated explanatory
information could be helpful for experts to better under-
stand the problem [50] and developers for building better
solutions.

Naturally, input attribution methods, including IG, are
known to be fragile [51], so we estimated the Infidelity [52]
of the Integrated Gradients by perturbing the raw audio
input with a small Gaussian noise (µ = 0, σ = 0.03) to
ensure that we can trust the observations that we made
based on the outputs of IG. Our analysis revealed that the
input attributions had an Infidelity of 2.4 (std 7.4), and only
≈ 14% of the samples showed a high response (infidelity>4)
to the added noise. In a few extreme cases, the generated
IG explanations became unreliable, which resulted in a high
standard deviation compared to the mean. Based on this
observation we concluded that the IG attribution maps can
be trusted in general and proceeded with our further analysis
of the models’ behaviors.

In Figure 3, we show examples of how one can use
input attribution to justify the predicted ratings and provide
more detailed feedback to the users. Unfortunately, we also
noticed that in some cases, the system learned to focus
on the environmental noises (i.e. the non-speech parts
at the beginning and the end of the recording), which
is an undesirable behavior (see Figure 3d). After careful
investigation, we determined that approx 35% of the samples
were rated predominantly based on the non-speech parts
before and after the word. To prevent this, we opted to add
a Voice Activity Detector (VAD) [53] to our solution, which
clipped away the silent parts of the recordings. This had two
beneficial effects: it prevented our system from exploiting
other information beyond the actual speech of the user and,
at the same time, sped up the audio processing by reducing
the duration of all recordings.

Lastly, to maintain the speech recognition capabilities
of the W2V2, we employed multitask learning during the
fine-tuning procedure. This ensured that the system could
provide ratings and the recognized text simultaneously.
Table 3 compares monotask models with the multitask one
and demonstrates the effects of adding VAD to the system.
Multitask training provides almost as good results as normal
monotask training. The WER and the CER of the multitask
system increase by 1.18% and 1.59% relative to the separate
ASR model, and the UAR score increases by 1.47% relative
to the individual classification model, while the accuracy
and the mean absolute error stay unchanged. In contrast
to the monotask models, using the multitask solution lets
us get both outputs from the same model for the price of
a small degradation in performance, which also brings us

the advantages of halved memory and computational time
requirements.

Training the models on the audio preprocessed by a
VAD system did not improve these performance metrics,
but actually degraded them a bit. The most evident reason
for this slight degradation in the performance of all systems
lies probably in the reduced overall amount of training data.
These silent parts proved to be beneficial for our ASR
systems and might have improved their ability to learn
the blank label and to distinguish between the non-speech
events ignored by the VAD algorithm and the actual speech.
Additionally, some background information, such as acoustic
conditions, might have been present in the parts cut by the
VAD system, and, consequently, the wav2vec2 models were
not able to exploit them. As a result, we decided to discard
the VAD in further experiments, however, we still plan to
use it in our mobile game application to avoid undesired
biases.

D. SweL2
Our next experiments were performed on the children’s
Swedish L2 data. Similarly to the previous experiments,
we followed the 6-fold cross-validation setup and excluded
the samples with a rating lower than 4 when training
and evaluating the ASR systems. Additionally, apart from
SweSSD, wemanaged to split the folds here by speaker, since
this dataset includes also child speaker IDs.We used the same
adult Swedish wav2vec2 system as we did for SweSSD to
serve as a base model for further training.

The monotask ASR model provides 8.95% WER and
3.70% CER, while the ASR component of the multitask
system achieves slightly higher error rates of 9.95%/4.04%
WER/CER. These results are very good for the difficult L2
children’s speech, but this is probably because, as discussed
in Section II-B, there were only 121 unique target words in
the L2 Swedish corpus. Even though theASR system does not
use any lexicon or language model, the ASR models trained
on these data are expected to know these words very well, and
introducing new prompts would probably degrade the ASR
performance.

Table 4 summarizes the results of the rating experiments
performed on the L2 Swedish data. Similarly to the
SweSSD experiments, the multitask system here slightly
underperformed the monotask one for the price of pre-
served ASR capability. According to the recall results,
our simple CER-based decision tree performs the best.
However, it should be noted that the recall metric treats all
misclassifications equally and does not take into account
the distance between the true score and the predicted level.
We analyzed the predictions made by the systems and
discovered that our decision tree, despite producing the
highest UAR score, predicts almost always either the lowest
or the highest level, in other words, it basically learned to
provide a binary decision. This can be seen also from a
much higher MAE score of the decision tree compared to
those of other systems. In contrast, the wav2vec2 models are
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FIGURE 3. Input attributions (multiplied with the actual input values) of the best wav2vec2 model. The pictures demonstrate the influence of each
individual input on the final model output, i.e. large values signify a considerable impact on the system’s final decision.

TABLE 3. wav2vec2 results on SweSSD.

mostly confused between the neighboring levels, moreover,
they are prone to provide higher scores than humans. In other
words, our wav2vec2 systems seem more lenient compared
to human raters, which has been a beneficial feature for a
CALL system to encourage language learners [54]. Lastly,

we also had some data, which were rated by both human
annotators, which allowed us to estimate how well human
experts can perform this task. At first glance, based on
accuracy and UAR, we could say that humans are far
superior in this task, but once we consider the average
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TABLE 4. Rating performances of automatic systems compared to those
of the human raters on SweL2.

errors (MAE) it demonstrates that although classifiers make
more mistakes, those misrecognized samples, in general,
receive a rating very close to the human annotation. Looking
at the MAE results, we can see that the gap between W2V2
models and humans is much smaller on this challenging
corpus compared to the one we observed in the case of
SweSSD.

E. FinL2 (UKRAINIAN)
Next, we repeated the set of experiments done for L2 Swedish
on the L2 Finnish data. The dataset was split into 6 folds
with no speaker overlap, and the samples with a rating
lower than 4 were excluded when training and evaluating
the ASR systems. Because there is no monolingual Finnish
wav2vec2 model available yet, we used as a base model
the multi-lingual wav2vec2 model [55] pre-trained on the
European parliamentary session recordings in 3 languages
from the Uralic language family, including Finnish, Estonian,
and Hungarian, and preliminarily fine-tuned on 100 hours
of colloquial adult Finnish speech from the Lahjoita Puhetta
(Donate Speech) corpus [56].
All our ASR models adapted to the FinL2 data have low

error rates. Such good ASR performance is a consequence of
having a very limited word vocabulary in the dataset. Since
all children were asked to utter the same set of 90 words,
our models memorized it during training and easily predicted
these words in the evaluation step. Our model trained for
ASR exclusively achieves the best results: it provides 4.47%
WER and 1.36% CER. The multitask system still provides
high ASR performance, although not as good as themonotask
model: the WER and the CER are 6.30% and 2.13%,
respectively.

The results of speech rating experiments are summarized in
Table 5. As in the Swedish experiments, the CER between the
ASR output and the expected word does not solely comprise
enough information needed to predict the pronunciation
level, as a result, our decision tree underperformed in
comparison to more complex wav2vec2-based solutions. The
monotask model fine-tuned for classification provides the
highest accuracy and recall, while the multitask one slightly
outperforms it in terms of MAE.

V. MOBILE GAME APPLICATION
The goal of our project is to develop a mobile game applica-
tion that facilitates pronunciation learning for young children.
The idea is to observe a picture, listen to, and produce words
and short phrases, initially with a model pronunciation and

TABLE 5. Rating prediction results on FinL2.

later without it. The speech task is combined with the visual
game elements as follows. The players interact with multi-
color shapes on the screen by simply pressing or dragging
them. Each successful interaction triggers a voice sample
replay to reinforce the word’s auditory memorization and
familiarity. After several interactions, with the actual number
depending on the game’s difficulty and the player’s learning
progress, a picture card representing the word will appear on
the screen. The player can hear the word once again before a
notification sound is played, indicating that the microphone
is ready for recording. Players have a few seconds to say
the word they heard and then receive immediate feedback on
the success of their pronunciation. The feedback is simplified
into a replay of their recorded attempt, followed by the correct
pronunciation and 1 to 5 stars ratings. Collecting the stars is
required for proceeding in the game, making the feedback an
essential game element. The ratings could be personalized
to give positive feedback if the player made several bad
attempts.

The speaking task embedded in the game is aimed to
tap speech, language, and reward processing in the brain.
Speech production requires a neural representation for the to-
be-produced speech sounds and words, as well as complex
motor skills in speech production. Therefore, in the long
term, repeated listening of speech sounds and practice of
speech production with the game is expected to result in
the establishment of the required representations, as well as
improve and eventually automatize the motor skills needed
in speech production. In addition, the perceive-and-produce
design of the game is based on the fact that speech perception
and production are closely connected in the brain [57],
and the code of transformations between them is based on
mappings between speech input and output that are learned
in childhood during babbling [58]. In line with the models
of the brain mechanisms of speech production [59], [60],
the transformation between speech input and output through
sensory-motor integration mechanisms is essential for long-
term practice. Moreover, the feedback provided by the speech
rating model of the game is expected to reinforce learning
via the activation of the cortico-striatal reward system of the
brain [61], [62].
The game is designed to help children learn by imitation;

therefore, they are immersed in audio and visual illustrations
without any textual explanation (see Figure 4 for some
illustrations of the game user interface). It has playful
characters that can appear on the screen to encourage players
to practice. Guardians and teachers can control the use of
the game with a username and password on the login screen
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FIGURE 4. Screenshots of in-game experience.

FIGURE 5. The game processing flowchart.

and can access details of their child’s performance through a
different platform.

There are several game modes available. The simplest one
requires the player to press on random shapes appearing
on the screen, and more challenging modes require a
combination of hand and eye coordination skills, such as
matching the color or catching the fast-moving shapes. There
is also a classic memory-matching game, in which children
need to match several face-down word cards from memory
by flipping them one at a time. The child retention ability can
also be tested with a silent mode, in which the child has to
speak the word illustrated in the card without any audio cue.
Similar to the rating system, the game modes and difficulties
can also be personalized to motivate the child to engage with
the game.

A. SPEECH SERVER
The speech server processes audio collected from the mobile
app, provides speech rating, and collects other encrypted
metadata (see Figure 5). As explained in Section III, the rating
ismainly decided bywav2vec2models, and the collected data
are stored with the MongoDB program. Our server hardware
and design allow us to handle a maximum of 20 children
playing the game simultaneouslywithout a significant latency
in providing feedback.

Our server handles the feedback and game settings for all
the user groups evaluated in this article. Different groups have
different target languages, backgrounds, and, consequently,
different game settings. Furthermore, the server contains our
algorithms to analyze other data collected from the players.
It can provide children with tailored lessons by instructing
the game to adjust game mode, difficulty, and rating based on
their performance.

VI. CONCLUSION
This work describes the steps taken to develop a CALL
system for children practicing oral Swedish and Finnish
with the use of the latest machine and deep learning meth-
ods. We demonstrated that a state-of-the-art deep learning
model, wav2vec2, can be applied for speech assessment
of specific target groups such as L2 speakers or children
with SSD. Moreover, we implemented multitask learning of
ASR and speech rating, which provided us with systems
with considerably reduced overall latency and competitive
performance compared to the constituent models. We also
demonstrated the importance of understanding the automatic
systems and used an input attribution algorithm to highlight
the most influential parts of the recording, on which the
model based its decision. This analysis revealed a weakness
of the original system, namely that it learned to exploit
some non-speech information present in the audio files.
We addressed this problem by employing a VAD component
to remove non-relevant information from the input. Finally,
we integrated our best models into a speech-based mobile
game application which we will next use for pedagogical
studies.

Our future plans include the systematic pedagogical
evaluation of the best models via the game app, and further
data collection for other languages to broaden the capabilities
of our game. Additionally, we wish to explore new ways of
using the input attributions to provide detailed feedback to the
experts and parents about the pronunciation problems of the
children.
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