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In conventional inductive wireless power devices, the energy is transferred via only reactive near fields,
which is equivalent to nonradiative Förster energy transfer in optics. Radiation from transmitting and
receiving coils is usually considered as a parasitic effect that reduces the power-transfer efficiency. As
long as the distance between the two antennas is small compared to the antenna size, conventional wireless
power-transfer devices offer rather high power-transfer efficiency, of the order of 80%–90%. However, for
larger distances, the transfer efficiency dramatically drops, making such devices impractical. In this paper,
we develop a dynamic theory of wireless power transfer between two small loop antennas, clarify the role
of far-field radiation, and find a possibility to realize efficient wireless power transfer at large distances
utilizing the regime of radiation suppression due to optimized mutual dynamic interactions between the
transmitting and receiving antennas. The analytical results are validated by simulations and measurements,
and they open a possibility to greatly expand the range of distances of compact wireless power-transfer
devices. The developed theory can also be applied to coupling between antennas of different types and to
energy transfer between nano-objects.

DOI: 10.1103/PhysRevApplied.20.014044

I. INTRODUCTION

Wireless power-transfer (WPT) technologies have
become more and more important for many diverse appli-
cations, such as charging of mobile telecommunication
devices, electric vehicles, implantable medical devices,
robots, wearable electronics, and in energy harvesting sys-
tems (see, e.g., Refs. [1–3]). In recent decades, the pro-
liferation of wireless devices has especially motivated fast
developments of wireless powering and charging technolo-
gies.

All WPT systems can be classified into near-field and
far-field ones (see, e.g., Ref. [4]). When the distance
between the transmitting and receiving antennas is small
compared to the wavelength, the reactive near fields at the
receiver position are much stronger than slower decaying
fields of propagating waves created by the transmitting
antenna. In this short-range WPT regime, the power is
transferred predominantly by the near fields, whereas the
radiation is usually considered as a parasitic factor result-
ing in some radiation loss that decreases efficiency (see,
e.g., Refs. [5–12]). In this regime it appears that it is desir-
able to suppress antenna radiation. However, the radiative
fields are also present in the near zone and they may
contribute to the received power.

If the distance between the transmitting and receiv-
ing antennas is electrically large, the near fields of the
transmitting antenna become negligibly small compared

*nam.havan@aalto.fi

to the radiation fields. For electrically small and weakly
directive antennas, the transfer efficiency becomes very
small. For this reason, in long-range radiative WPT sys-
tems high-directivity antennas are used in both receiving
(RX) and transmitting (TX) devices. Obviously, in this
case, radiation is used as the main power-transfer mech-
anism, and radiation losses can be reduced only by using
higher-gain antennas of large sizes in comparison with the
wavelength.

In this paper, we consider the intermediate case of
midrange wireless power transfer, where at the receiver
position near fields of the transmitter significantly decay
and the slower-decaying radiative fields become com-
parably strong or even stronger. Specifically, we define
the midrange regime in terms of the electromagnetic dis-
tance kd between the two antennas. In the magnetic dipole
regime of a loop antenna, the radius of the loop a is
restricted so that a < λ/6π . Taking this condition into
account we define the midrange as 0.2π ≤ kd ≤ 2π . In
this situation, radiation of energy into the far zone is still
unwanted, as this is one of the loss mechanisms. On the
other hand, radiative fields can significantly contribute to
the power transfer to the receiving antenna. In practice,
this situation corresponds to scenarios where the distance
between the transmitting and receiving antennas is large
compared to the sizes of the antennas, while the anten-
nas themselves are electrically small. Realization of such
WPT systems would allow wireless power transfer using
compact devices, as the transfer distance can be large
compared to both connected devices. It is expected that the
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power-transfer efficiency, in this case, will be lower than
for near-field coupling devices working at small transfer
distances, but it may be possible to also realize reasonable
efficiency at large separations by exploiting coupling by
both near fields and radiative fields.

In this study, we develop the dynamic theory of wire-
less power transfer between two magnetic dipole antennas
and use it to study the role of radiation fields (interme-
diate and far zone) in the transfer of power. In all works
on electromagnetic coupling between two antennas, one
distinguishes the quasistatic model that neglects the radia-
tive coupling and takes into account only the term 1/r3

in the Green function. Whereas the dynamic model is
based on the exact Green function, also incorporating the
intermediate- and near-field term 1/r2 and the far-field
term 1/r. By taking these factors into account, the dynamic
theory offers a comprehensive analysis of the electromag-
netic coupling between two antennas and clarifies the role
of radiation in power transfer. We answer the following
questions. What is the dominant role of dynamic (far-
zone) fields—disadvantage of parasitic radiation loss or
an advantage of higher electromotive force induced in the
receiving antenna? Is it possible to create WPT devices
where radiation into the far zone is suppressed while the
dynamic fields between the antennas effectively deliver
power to the load? How to properly engineer the optimal
regime of long-distance WPT between small antennas? To
our knowledge, these questions have not been answered
in the available literature. In spite of the great diversity of
radio-frequency WPT systems, the comparative role of the
radiative and nonradiative regimes is not properly eluci-
dated. An important issue is the suppression of radiation in
short-range systems of nonradiative WPT. Dynamic cou-
pling between two loop antennas was recently considered
in Ref. [13], where this issue was addressed, focusing on
visualizations of the power flow in space. In that paper,
it was found that it is possible to maximize the ratio of
the delivered power to the power available from the source
and at the same time minimize the radiated power by opti-
mizing the load resistance for a fixed value of the internal
resistance of the source.

In this paper, we find simple formulae for the opti-
mal load impedance and the corresponding maximized
power-transfer efficiency that are valid for arbitrary inter-
nal impedance of the source. We use these results to under-
stand physical mechanisms of power delivery accounting
for dynamic interactions, clarify the role of far fields,
and find the optimal frequency range where the para-
sitic radiation into the far zone is effectively suppressed,
while dynamic, far-zone fields strongly contribute to the
power delivered to the source. In particular, we reveal
a possibility of achieving high transfer efficiency, above
80%, at distances of approximately 5 times the antenna
size at the optimal frequency in the hundred-megahertz
range.

FIG. 1. Equivalent circuit model of the WPT system.

The developed theory of optimal load impedance and
maximized power-transfer efficiency can be used for opti-
mizing coupling between arbitrary antennas, including
electric dipoles. However, we focus the study on loop
antennas, because electric dipoles are used in WPT devices
quite rarely [14–16], mainly in very short-range systems
for high power transfer via capacitive coupling [17,18]
and in WPT systems operating in lossy media, e.g., for
biomedical implants [19]. Most WPT systems operating in
free space utilize magnetic dipoles implemented as coils
[1,2,20–22].

This study is also relevant for the understanding and use
of nonradiating antennas—those creating only near fields,
such as anapole antennas [23,24]. The evident advantage
of anapole antennas is negligibly small parasitic radiation
for all arrangements of the two antennas where mutual
coupling of the antennas does not destroy the anapole prop-
erties. In Ref. [25], anapole antennas were claimed to be
more beneficial for the short-range WPT than magnetic
dipoles due to suppressed radiation. The use of the the-
ory developed in this work allows us to understand full
implications of radiation cancelation for power coupling
between antennas.

The paper is organized as follows. In Sec. II, we theo-
retically analyze the dynamic coupling between two small
WPT antennas, and elaborate the model of power-transfer
efficiency (PTE) applicable for a maximally broad fre-
quency range and maximal range of distances. In Sec. III,
we study two key arrangements of TX and RX loops: coax-
ial and coplanar. Finally, the developed analysis is verified
by full-wave simulations and experiments in Sec. IV.

II. WPT SYSTEM ANALYSIS

Figure 1 shows the equivalent circuit of WPT systems
formed by two coupled antennas. The two antennas are
represented by their individual input impedances Z1 and
Z2. The transmitting antenna is fed by a voltage source VG
with internal impedance ZG, and the receiving antenna is
loaded by the load impedance ZL = RL + jXL, whose real
part RL is the useful load.

Similarly to Ref. [13], we find it convenient to express
the electromotive forces (EMFs) induced by antennas in
one another through the complex coefficient M = MR +
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jMI instead of the commonly used mutual impedance,
generalizing the notion of mutual inductance to dynamic
regimes, applicable to arbitrary distances between the
antennas:

Vemf,i = j ωMIi. (1)

Here, i = 1, 2 denote the first and second antennas. For
inductive wireless power-transfer devices and in the qua-
sistatic limit, M is real valued and equals the usual mutual
inductance between the two coils. The value Zm = j ωM
is the mutual impedance, not to be confused with the
induced impedances Z11 = Vemf,2/I1 = ZmI2/I1 and Z22 =
Vemf,1/I2 = ZmI1/I2). For voltages V1,2, we have

V1 = Z1I1 + j ωMI2 = VG − I1ZG, (2)

V2 = I2ZL = −I2Z2 + j ωMI1, (3)

where Z1,2 = R1,2 + jX1,2 are complex-valued antenna
input impedances. The impedances seen from the source
and the load (see Fig. 1) can be expressed in terms of the
complex-valued mutual inductance M in the usual form:

Zin = V1

I1
= Z1 + ω2M 2

Z2 + ZL
, (4)

Zout = V2

I2

∣
∣
∣
∣
VG=0

= Z2 + ω2M 2

Z1 + ZG
. (5)

Aiming for the maximal power coupling between anten-
nas, we use the conventional definition of the PTE as the
ratio of the power delivered to the load PL and the power
accepted by the input port of the transmitting antenna Pin
(see, e.g., Ref. [2]):

PTE ≡ PL

Pin
= |I2|2RL

Re{V1I∗
1 } . (6)

In this definition, the transfer efficiency does not depend
on the internal impedance of the source ZG, because the
received power is normalized to the power accepted by the
transmitting antenna. Using Eqs. (3) and (4), we write Eq.
(6) in the form

PTE = |I2|2RL

|I1|2Re{Zin} =
∣
∣
∣
∣

ωM
Z2 + ZL

∣
∣
∣
∣

2 RL

Re{Zin} . (7)

The optimal load ZL,opt maximizing the PTE can be found
by nullifying the derivatives [26], i.e.,

∂PTE
∂XL

= 0,
∂PTE|XL,opt

∂RL
= 0, (8)

from which we obtain the reactance and resistance of the
optimal load that depends on the operational frequency and

complex-valued mutual inductance:

XL,opt = −X2 − ω2MRMI

R1
, (9)

RL,opt =
√

R1R2 − ω2M 2
I

√

R1R2 + ω2M 2
R

R1
. (10)

This result generalizes expressions in Ref. [26], taking into
account dynamic interactions between TX and RX anten-
nas. Substituting Eqs. (9) and (10) into Eq. (7), the PTE of
devices loaded by optimal loads after some algebra can be
expressed in a very simple form:

PTE = 1 − 2

1 +
√

(R1R2 + ω2M 2
R)/(R1R2 − ω2M 2

I )

.

(11)

Parameters MR, MI , R1, R2 can be found analytically,
numerically, or experimentally.

The same expression for PTE can also be written in
the form of the classical definition of impedance param-
eters, where R1 = r11, R2 = r22, ωMI = r12, and ωMR =
x12 are the real and imaginary parts of the corresponding
components of the impedance matrix of the wireless link:

PTE = 1 − 2

1 +
√

(r11r22 + x2
12)/(r11r22 − r2

12)

. (12)

In this form, this result can be used for optimization of
power transfer between arbitrary emitters and receptors,
not necessarily loop antennas.

The found simple analytical expression for the power-
transfer efficiency at the optimal load allows us to perform
a broadband analysis of the efficiency, find the optimal
operational frequency, and clarify the role of radiation in
short- and midrange WPT systems. Before moving to the
analysis of systems with specific antennas, let us make
some general observations. First, it is obvious that in order
to increase the PTE we should increase the value of the
square root in Eq. (11) or (12). Assuming that the two
resistances are fixed, it is clearly beneficial to increase MR,
which, in the case of electrically small distances, simply
means that the transfer efficiency is larger at smaller trans-
fer distances. More interestingly, we see that increasing
the imaginary part of M also leads to higher efficiency.
The denominator under the square root cannot reach zero
(which would mean 100% efficiency), because the mutual
impedance cannot be higher than the impedance of both
coupled circuits, but it can become rather small under some
conditions. In the following, we discuss these two factors
in an example of two coupled electrically small loops.
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Since the power-transfer efficiency (6) and the optimal
load impedance (9)–(10) do not depend on the internal
impedance of the source ZG, that can be chosen based
on application requirements. It is also important to distin-
guish between the PTE and the system efficiency ηE that
refers to the ratio of the power delivered to the load and
the total input power from the power source [2]. If the
WPT device should deliver the maximal power to the load,
the source impedance can be conjugate matched to Zin,
in which case the source provides the maximum available
input power. However, the system efficiency in this regime
is limited by 50%. To maximize the system efficiency ηE ,
the internal resistance of the source ZG is made as small
as possible, to minimize dissipative losses. Thus, attempt-
ing to maximize ηE by matching the input impedance to
the source impedance can cause the converter to reach
its boundaries of the rated power. In this case, the con-
verter losses can increase significantly, resulting in a high
equivalent source impedance that is impractical for most
WPT power sources. Importantly, our conclusions regard-
ing optimization of PTE remain valid for any value of ZG
as long as the load impedance ZL is equal to the optimal
load given by Eqs. (9) and (10). If the load resistance is dif-
ferent, a matching circuit can be used at the receiver side.
This approach and the ultrabroad range of possible opera-
tion frequencies is qualitatively different from that of Ref.
[13], where the optimization was done for the case where
RG ≡ Re{ZG} = 50 �, and the operation frequency range
was specified in advance.

III. ANALYSIS OF A SYSTEM BASED ON LOOP
ANTENNAS

Our goal is to clarify the role of intermediate and far
fields in WPT systems in the maximally broad range of fre-
quencies and for both short and middle ranges of distances,
that is, when the distance between antennas can be compa-
rable with the wavelength or electrically small. With this
goal in mind, we restrict the size of both antennas so that in
the whole possible operational frequency range the anten-
nas remain electrically small. Otherwise, the comparison
of the two regimes would be veiled by the size resonances
of antennas.

In order to clarify the role of radiative fields, we con-
sider small loop antennas and study WPT for coaxial and
coplanar arrangements of the TX and RX antennas, as
shown in Fig. 2. Because the loops are electrically small,
we model them as magnetic dipoles (MDs). In the coaxial
arrangement, the loops are coupled solely by near fields,
since a magnetic dipole does not radiate along its mag-
netic moment. In this case, there is no radiative WPT, and
the radiation resistances of the loops are purely parasitic
contributions to resistances R1,2. Thus, in order to increase
PTE, it is desirable to realize a regime of suppressed
radiation. In the coplanar arrangement, the situation is

nearly opposite. In this case, the quasistatic mutual cou-
pling is weak because the mutual inductance is small,
and the radiative WPT can dominate already at midrange
distances.

A. Analytical model

1. Coaxial arrangement

Let us consider two loops, TX and RX, with radii a
and b, respectively, positioned in free space and distance
d apart, as shown in Fig. 2(a). In the spherical coordinate
system, the magnetic field components are (see, e.g., Ref.
[27])

Hr = j
ka2I1 cos θ

2d2

[

1 + 1
jkd

]

e−jkd, (13)

Hθ = − (ka)2I1 sin θ

4d

[

1 + 1
jkd

− 1
(kd)2

]

e−jkd. (14)

Here k = ω/c is the wave number in free space. When
a, b � d, we can approximate Hz ≈ const(x, y) in the area
z = d, x2 + y2 < b2, i.e., the z component of the mag-
netic field created by TX in the area of the RX loop
is nearly equal to its r component at the receiving loop
center:

Hz ≈ Hr = j
kATI1

2πd2

[

1 + 1
jkd

]

e−jkd (15)

with AT = πa2. From Eq. (15) and Faraday’s law Vemf,2 =
−j ωμ0πb2Hz, we find the complex mutual inductance M
defined by Eq. (1) as

M ≡ MR + jMI = j μ0kATAR

2πd2

[

1 + 1
jkd

]

e−jkd, (16)

where AR = πb2 is the area of the RX loop. In the qua-
sistatic limit kd � 1, Eq. (16) transits to the known mutual
inductance of two coaxial loops, applicable when d �
max(a, b) [28].

2. Coplanar arrangement

Now we consider two loops positioned in the same x-y
plane, as shown in Fig. 2(b). If a, b � d, we can write

Hz ≈ −k2ATI1

4πd

[

1 + 1
jkd

− 1
(kd)2

]

e−jkd. (17)

Then we have

M ≡ MR + jMI = −μ0k2ATAR

4πd

[

1 + 1
jkd

− 1
(kd)2

]

e−jkd.

(18)

In the low-frequency limit, this expression also transits
to the known quasistatic mutual inductance, when d �

014044-4



EFFECTIVE MIDRANGE WIRELESS POWER TRANSFER. . . PHYS. REV. APPLIED 20, 014044 (2023)

z

x

y
O

≫ ,

z

x

y
O

(a) (b)

≫ ,

FIG. 2. Two magnetic dipoles
in two case studies: (a) coaxial
position; (b) coplanar position.

max(a, b) [28]. When a = b, the quasistatic approximation
is applicable with high accuracy when d > 4a.

3. Input resistances of TX and RX loops

The input resistances R1 and R2 of the TX and RX
antennas are the sums of the Ohmic resistances RO1,O2 and
radiation resistances Rr1,r2, i.e., R1,2 = Rr1,r2 + RO1,O2. For
electrically small loops made of thin round wires in the
regime of strong skin effect, we have (e.g., Ref. [27])

RO1 = a
r0

√
ωμ0

2σw
, RO2 = b

r0

√
ωμ0

2σw
. (19)

Rr1 = η
π

6
(ka)4, Rr2 = η

π

6
(kb)4. (20)

Here, r0 is the radius of the antenna wire, σw is the con-
ductivity of the wire, and η = √

μ0/ε0 is the free-space
impedance. In numerical examples, we assume copper
wires with σw = 58.7 × 106 S/m, a = b = 36 mm, and
r0 = 2 mm.

Using Eqs. (16), (18), and (20), it is easy to verify
that ω2M 2

I ≤ Rr1Rr2 for d ≥ max(a, b) in both coaxial and
coplanar cases, confirming that in Eq. (11) the expression
under the square root is always positive.

B. Suppression of radiation of power into space

As discussed in Sec. I, it is important to clarify the role
of radiation fields, since on the one hand, they create par-
asitic radiation of power into space, but on the other hand,
far fields can carry power to the receiver. In this part, we
consider this issue for coaxial loops.

Let us first discuss the case when the dissipation of
energy in both transmitting and receiving coils can be

neglected. Then, the quasistatic theory of wireless power
transfer between two loops tells us that PTE = 1 iden-
tically, because the power accepted by the transmitting
antenna can go only to the load in the receiver. How-
ever, it is expected that the fully dynamic model will show
finite transfer efficiency even in the limit of zero distance
between antennas, because the antennas will radiate some
power into space. Thus, in Ref. [13] it was claimed that
suppression of radiation into the far zone is a useful mean
to increase power-transfer efficiency. Let us analyse this
issue using the analytical formulae for the complex-valued
mutual inductance and power-transfer efficiency. First, we
note that in the absence of losses in coils, the resistances
R1,2 in Eq. (11) contain only radiation resistances of the
two loops [see Eq. (20)]. On the other hand, the term ωMI
in Eq. (11) is the mutual resistance of the two antennas. It
is obvious that, in the limit d → 0, the mutual resistance
becomes equal to the radiation resistance of the loops (for
simplicity, we consider two identical loops), and PTE (11)
tends to unity, although the radiation of energy from both
loops is fully accounted for. Physically, this means that at
small transfer distances, selection of the optimal load value
given by Eqs. (9) and (10) leads to a WPT system with
suppressed radiation into the far zone.

Perfect radiation suppression takes place only in the
limit of zero distance, because the mutual resistance decays
with increasing transfer distance. For the case of two cou-
pled loops, this decay is illustrated in Fig. 3. We see that,
for d < 0.2λ, the mutual resistance exceeds 80% of the
radiation resistance. This means that if the currents in the
loops have opposite phases, the dynamic interaction of
the two loops will cancel at least 80% of the radiation
into space, enhancing the received power. To show that
the mutual coupling decreases the radiation, we derive the
ratio between I2 and I1 for the case when RL = RL,opt and
XL = XL,opt, which reads

I2

I1
= −R1ω(MI + jMR)

R1R2 + j ω2MRMI +
√

(R1R2 − ω2M 2
I )(R1R2 + ω2M 2

R)

. (21)
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FIG. 3. Ratio of the mutual resistance to the radiation resis-
tance for coaxial and coplanar arrangements of the TX and
RX loops versus the normalized distance d/λ between the loop
centers.

It can be observed from Eq. (21) that, when R1 =
R2 = ωMI , the ratio between the currents indeed equals
−1, which indicates that the currents have equal ampli-
tudes and opposite phases (180◦). Obviously, the magnetic
dipole radiation of the set of two antennas is suppressed
in this case. Next, we plot the ratio of the currents in
the two loops, I2/I1, for both the amplitude and phase;
see Figs. 4(a) and 4(b). We take as an example the case
when the distance between the loops is 5 times larger than
the loop radius, d = 5a. We see that at the optimal load
(dashed curves) the regime of radiation suppression holds
in the low-frequency range, since the currents in the two
loops are approximately equal in amplitude and opposite
in phase.

Thus, such a set of two antennas radiates into the far
zone only via its higher-order multipoles. An estimation of
the ratio between the radiated power from a single mag-
netic dipole and the power radiated from a quadrupole
formed by two counterdirected dipoles of the same
amplitude (both in the coaxial and coplanar arrangements)

gives

Pq

Pd
= 1

48π
(kd)2, (22)

which is approximately 6 × 10−4 for kd = 0.5. Thus, for
the case of midrange WPT distances, this higher-order
multipole radiation can be neglected.

Corresponding calculations for nonoptimal values of the
load resistance (solid curves in Fig. 4) show that radia-
tion is compensated in a certain frequency range but not
in the low-frequency regime. However, the analysis of
the PTE dependence [Fig. 4(c)] reveals that the efficiency
remains practically unity in a broad frequency range, and
also at low frequencies even for nonoptimal loads, which
is due to the fact that radiation is in any case weak at
low frequencies. The frequency of the sharp drop of effi-
ciency at high frequencies corresponds approximately to
the frequencies above the first null of the dependence of
the mutual resistance on the frequency (Fig. 3). The value
d/λ = 0.5 corresponds to approximately 8 × 108 Hz for
the chosen example value of d. We conclude that if the dis-
sipative losses in the loop antennas can be neglected, the
radiation into the far zone is effectively suppressed due to
dynamic antenna interactions up to the transfer distances of
the order of one wavelength. Obviously, there is no need to
use any special means to suppress parasitic radiation losses
in this regime.

Let us next consider midrange interactions of loop
antennas, taking onto account dissipation in the loops.
Figure 5 shows the same plots as Fig. 4, but account-
ing for dissipative losses in both loops, as defined by Eq.
(19). We see that in this case by selecting the optimal load
impedance, we realize the regime of effective suppression
of radiation, but only in a certain frequency range, approx-
imately between 108 and 109 Hz. In this range, the currents
in the two loops are approximately of the same amplitude

(a) (b) (c)

FIG. 4. Midrange coupling between two lossless loops: (a) phase difference between the loop currents; (b) magnitude of the current
ratio I2/I1; (c) PTE for different values of the load resistance RL. The dashed curves correspond to the optimal resistance, maximizing
PTE.
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(a) (b) (c)

FIG. 5. Midrange coupling between two lossy loops: (a) phase difference between the loop currents; (b) magnitude of the current
ratio I2/I1; (c) PTE for different values of the load resistance RL. The dashed curves correspond to the optimal resistance, maximizing
PTE.

and of opposite phase. At low frequencies, the phase differ-
ence between the currents is rather close to 90◦ for a broad
range of load resistances (in all cases, the load reactance is
the optimal one). This conclusion follows from Eq. (21) by
setting the imaginary part of the mutual inductance MI to
zero.

To understand these effects, we need to consider the
relative values of the Ohmic resistance and the radiation
resistance, because the significance of radiation loss sup-
pression is determined by the relative level of losses due
to dissipation in the antennas and parasitic radiation into
the far zone. To estimate this ratio, in Fig. 6 we plot all
relevant resistances as functions of the frequency for the
considered example of two loops.

We see that at low frequencies the loss resistance
strongly dominates over the radiation resistance. For this
reason, radiation suppression has a negligible effect on
performance in the quasistatic regime. The power-transfer
efficiency is low because the quasistatic coupling between
loops at such large distances is weak. On the other hand,

FIG. 6. Comparison of Ohmic resistance (19) and radiation
resistances of one loop antenna (20), together with the mutual
resistance between two antennas ωMI . The loop radius a =
36 mm, and d = 5a.

we observe that exactly in the frequency range of the radi-
ation loss suppression for each considered value of the
loss resistance, the power-transfer efficiency has a strong
peak.

For electrically small transfer distances, the imaginary
part of the mutual inductance MI is negligibly small, and
the general formula (11) tells us that higher efficiency
corresponds to smaller distances d between the antennas
(equivalently, to large values of the mutual inductance
MR). This holds for conventional inductive WPT devices.
Now we see that at electrically larger distances between
the two antennas there is another possibility to realize high-
efficiency wireless power transfer. This regime takes place
when MI is large and the far-field radiation is suppressed.
In this regime, we do not need high values of the real
part of the mutual inductance. These results open a pos-
sibility to realize high-efficiency wireless power transfer
to distances that are large compared to the antenna sizes.

The results may also have importance for nano-optics,
namely, for the so-called Förster resonant energy trans-
fer between a fluorescent donor molecule and an acceptor
one (usually fluorescent at lower frequencies). Quantum
electrodynamics (QED) allowed Salam [29] to prove that
the matrix elements of the resonant energy exchange
between two molecules can be correctly calculated using
the model of their multipolar electromagnetic response.
For two-level quantum systems, whose fluorescence and
absorption spectra are Lorentzian, this means that their
electromagnetic coupling should obey the laws of classical
electrodynamics. However, the literature on the resonant
intermolecular energy transfer prefers to use the QED
theory methods. On the other hand, this literature uti-
lizes a very simplistic treatment of the results obtained
with the use of QED. If the donor-acceptor distance d
is smaller than the so-called critical or Förster’s distance
dF (this regime is called Förster resonant energy trans-
fer), the energy transfer between molecules is claimed in
this literature to be radiationless (see, e.g., Refs. [30–35]).
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Papers treating Förster resonant energy transfer (FRET)
start from the assertion that FRET is a radiationless process
in which only virtual photons take part. In this literature,
virtual photons suddenly disappear, being substituted with
real photons when d > dF . At these distances FRET trans-
forms into radiative energy transfer (RET) [34], sometimes
treated simply as resonant energy transfer [35]. In the
theory of RET, quantum electrodynamics is used as well
and explains why so many radiated photons are absorbed
by a small acceptor located at a large distance [35].

To treat FRET as a radiation-free process and RET as
a purely radiative process is a rough and potentially mis-
leading approximation. In Ref. [30] it was correctly noted
that dF is the distance at which only one half of emitted
photons are transferred to the acceptor, whereas another
half are real photons radiated to free space. Indeed, for
d < dF , the virtual photons dominate (because the near
field is larger than the wave field), but the real photons are
emitted as well and this emission can be neglected com-
pared to the virtual photon exchange only when d � dF .
Indeed, for d > dF , the real photons dominate (because the
wave field is larger than the near field), but the coupling
by virtual photons is also present and becomes negligible
only when d � dF . The fact that a significant amount of
radiated photons is absorbed by the small acceptor is the
classical effect of resonant absorption (see, e.g., Ref. [36]).
Briefly, we believe that the developed model of dynamic
coupling between two dipoles and the found conditions for
radiation suppression can be used as a classical electrody-
namic model for a correct and simple description of both
FRET and RET. In particular, we think that the present
work points out the regime in which the RET efficiency
may exceed 50%, because we see that the efficiency ver-
sus d does not drop monotonously and there is a revealed
possibility of radiation suppression in short- and midrange
coupling regimes.

C. Analytical results for optimized midrange WPT

Next, we study high-frequency midrange power trans-
fer in more detail, considering various transfer distances
and both coaxial and coplanar orientations of the loops. In
our analysis, we focus on the almost radiation suppression
regime in the midrange WPT, where the corresponding dis-
tance d is not very small compared to the wavelength but
large compared to the loop radii a, b. In this case MI is
large in a rather broad range of frequencies, which helps to
achieve high power-transfer efficiency.

In order to better clarify the roles of MR and MI in attain-
ing the maximal PTE, we introduce two normalized cou-
pling parameters κR = ω2M 2

R/R1R2 and κI = ω2M 2
I /R1R2,

so that Eq. (11) takes the form

PTE = 1 − 2
1 + √

(1 + κR)/(1 − κI )
. (23)

We fix the radii of the loops a = b = 36 mm and plot their
values versus the normalized distance kd for many values
of d from d = 5a to d = 50a and compare these coupling
parameters with the similar plots of PTE. For each curve,
the value of d is fixed, that is, the curves effectively show
dependence on k (the frequency). The three correspond-
ing plots are presented in Fig. 7 (coaxial arrangement) and
Fig. 8 (coplanar arrangement).

We see that at kd < 1, at all midrange distances, PTE
is low because the real part of the mutual inductance is
large only in the near-field zone, when d < a, and also the
imaginary part MI is small compared to the Ohmic resis-
tance. In other words, when d � a and kd < 1, the loops
are weakly coupled, leading to small values of PTE. In
the conventional quasistatic regime of WPT, when kd � 1
and the antenna size a is comparable to the distance d, the
mutual reactance ωM ≈ ωMR is significantly larger than
the Ohmic resistance. Therefore, in this conventional case
of small distances and large loops we can achieve a high
PTE according to Eqs. (11) and (23). Since the dipole-
moment model of loops is not applicable in the quasistatic
case, we study the quasistatic regime numerically and
calculate the PTE in both coaxial and coplanar arrange-
ments. The results are shown as dash-dot lines in Figs. 7(a)
and 8(a), respectively. For very large electromagnetic dis-
tances where kd � 1, both coupling parameters and the
PTE again exhibit low values. This is because the mutual
impedance decreases in the far zone, whereas the radia-
tion resistance of antennas rapidly grows versus frequency,
i.e., versus kd. Thus, we can conclude that at midrange
distances, where kd ∼ 1, for any d � a, there is a range
of optimal electrical distances kd corresponding to the
maximal total coupling and, therefore, to the maximized
PTE.

For the coaxial case, when there is no contribution of
far fields to the power transfer, the decrease in the PTE
at high frequencies is more rapid than its increase at low
frequencies. For the coplanar case, the PTE curves are
more symmetric, because at high frequencies not only does
the radiation loss increase, but the far-field coupling also
becomes stronger.

For the coaxial arrangement, the maxima of κR and κI as
functions of kd occur at different values of kd. For example,
for d = 5a, these maxima take place at kd ≈ 0.3 and kd ≈
0.5, respectively. For kd = 0.5, we have, from Eqs. (16)
and (20),

ωMI = πηk2a4

2d2

(
sin kd

kd
− cos kd

)

≈ πηk4a4

6.15
, (24)

which is close to πηk4a4/6 = Rr1,r2. This shows that the
radiation resistance of each of the two loops is almost
compensated by the mutual resistance, and this case corre-
sponds to the optimal nonradiative power transfer. Because
of some residual radiation and the presence of losses
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(a) (b) (c)

FIG. 7. Coaxial arrangement: (a) PTE versus kd; (b) κR versus kd; (c) κI versus kd for different values d/a from 5 to 50.

PTE|kd=0.5 ≈ 0.89, i.e., about 11% of the power is dissi-
pated in resistors RO1,O2 and radiated. However, the max-
imum of PTE (also about 0.9) holds not at kd = 0.5 but
at kd = 0.4. At this point the sum κR + κI = ω2|M |2/R1R2
is maximal. This regime can still be called the radiation-
suppression regime because the maximum of function
κI (kd), as we can see in Fig. 7, is wide and overlaps with
the maximum of κR(kd), which is also wide, in accor-
dance with Fig. 8. We note that, for our specific example,
kd = 0.4 in the case d = 5a corresponds to a frequency
of 110 MHz. Below we see that this is the optimal WPT
frequency for the considered example of two loops.

In the coplanar arrangement, maxima of κR(kd) and
κI (kd) occur at kd = 0.4 and kd = 0.8, respectively,
whereas κR|kd=0.4 ≈ 190 and κI |kd=0.8 ≈ 0.7. In this case
the PTE also attains its maximum close to 0.7 at kd = 0.6
in the middle between the maxima of κR(kd) and κI (kd).

In the coaxial case, the far field plays a parasitic role,
because the TX loop does not radiate into the RX direc-
tion. However, the important coupling parameter κI attains
the maximum at a substantial electromagnetic distance
(kd > 1) because the expression for MI comprises two
terms that compete with one another when kd is not very
small and not very large. At still larger distances the

efficiency quickly decays, since far-field coupling becomes
small. For example, the maximal PTE at d = 50a is as
small as 0.001.

In the coplanar midrange (1 < kd < 10) case, the far
field brings a contribution into both MR and MI , but also
brings radiation loss measured by Rr1,r2. The optimal WPT
is achieved for a substantial electromagnetic distance kd ≈
5 where κI is maximal and κR is close to the middle-range
maximum. The far field plays an advantageous role at this
distance, and the PTE in this optimal case is equal to 0.007.
In other words, due to the contribution of radiation, the
maximal PTE in the midrange region turns out to be 7
times higher than that obtained for the same large physical
distance in the coaxial arrangement. In terms of the elec-
tromagnetic distance kd, the advantage granted by the far
field is even higher because the optimal kd for the copla-
nar case (kd = 5) is larger than that for the coaxial case
(kd = 4).

To conclude the discussion of Figs. 7 and 8, it is
worth noting that in the far zone (kd > π ) there are peri-
odic maxima and minima of κR,I (kd), whereas maxima
of κR(kd) coincide with the minima of κI (kd) and vice
versa (which results in a smooth decrease of PTE with the
normalized distance kd). Two adjacent maxima (and

(a) (b) (c)

FIG. 8. Coplanar arrangement: (a) PTE versus kd; (b) κR versus kd; (c) κI versus kd for different values d/a from 5 to 50.
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(a) (b)

FIG. 9. PTE in a broad frequency range for different normalized transfer distances d/a: (a) coaxial arrangement; (b) coplanar
arrangement.

minima) of κR (and κI ) are distanced by 2π because the
phase shift between the TX excitation and the field at the
RX antenna position oscillates with period λ. At such large
distances, we approach the far-field WPT regime, where
one needs to use directive antennas instead of small dipole
antennas.

Figure 9(a) shows PTE for the coaxial arrangement at
frequencies from 500 kHz to 5 GHz with the normal-
ized distance d/a changing from 5 (d = 18 cm) to 50
(d = 1.8 m). These results allow us to find the optimal
operation frequency for practical long-distance (i.e., the
transfer distance is much larger than the antenna sizes)
WPT devices. Therefore, we perform a numerical valida-
tion of the model using a full-wave electromagnetic solver
CST Studio together with the ADS simulation tool that
models lossless matching circuits for the receiving loop at
any frequency.

In Fig. 9(a), besides the analytical results (solid curves),
we show the simulated PTE for d = 5a (dash-dot curve).
Qualitatively, this curve confirms the analytical model.
Quantitative differences are as follows: the optimal oper-
ation frequency is 160 MHz instead of 110 MHz, and
PTEmax = 0.7 instead of 0.9. The reasons for the disagree-
ment are clear. In the analytical model, we replace the
TX loop by a magnetic dipole, whereas in the simula-
tions it is a split loop fed by a generator connected to a
finite gap of width g. Therefore, besides a magnetic cur-
rent mode, there is an electric dipole mode induced in the
TX loop. The electric coupling of two loops also results in
an electric dipole mode in the RX loop. Parasitic impact of
electric coupling leads to a shift of the optimal frequency
and makes cancelation of radiation less effective. At first
glance, this parasitic effect can be made negligible by
decreasing g; however, simulations show that g � 1 mm
corresponds to a large split capacitance that completely
shunts the loop, preventing its excitation.

In principle, it is possible to analytically optimize the
loop even if the split is large. For such optimization, it
is necessary to take into account the electric coupling of
loops together with the magnetic one. However, this is
not the purpose of this study. We aim to develop a the-
ory that clearly explains the role of near and far fields
in midrange WPT, which calls for the simplest possible
analytical model to be used. Therefore, in simulations we
simply numerically optimize the gap width g. The best
correspondence of simulations and analytical theory holds
when g = 1 mm and when the wire of the loop is slightly
enlarged in the near vicinity of the split edges. Note that
the problem of a finite gap exists only for the TX loop and
does not arise for the RX loop. The electromagnetic solver
allows us to load it by a lumped resistance whose value is
determined by Eq. (10).

The corresponding numerical curve for the coaxial
arrangement and d = 5a is depicted in Fig. 9(a). In
Fig. 9(b), we present a similar set of theoretical curves and
the validation of the upper curve (d = 5a) for the coplanar
arrangement.

Besides comparison of the analytical results with full-
wave simulations, Figs. 9(a) and 9(b) lead to the following
observations. First, we see that the optimal frequency of
110 MHz is the same for the coaxial arrangement at any
considered d/a. The coincidence of these frequencies for
the cases d = 5a and d = 50a has already been discussed
above. Now, we observe it in the whole range d/a. Second,
for the coplanar arrangement, as can be seen in Fig. 9(b),
the absolute maximum of PTE shifts versus d/a. In accor-
dance to the theory, it shifts from about 80 MHz (d = 5a,
PTEmax = 0.5) to nearly 180 MHz (d = 50a, PTEmax =
0.007). Third, for both arrangements, the optimal fre-
quency range is about 100–200 MHz, which is signifi-
cantly lower than the self-resonance frequency of a wire
loop with radius a = 36 mm. This frequency range results
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(a) (b)

FIG. 10. PTE in a broad frequency range for different antenna sizes. The distance between the two antennas d = 0.5 m. (a) Coaxial
arrangement; (b) coplanar arrangement.

from the formulae of the analytical model, confirmed by
numerical simulations, and it is general: if a WPT device
is based on two MDs, the maximal efficiency is achieved
at a frequency much lower than the self-resonance of the
individual antenna. However, this frequency is higher than
those corresponding to the quasistatic regime—the regime
in which ωMI � Rr1,r2.

In Ref. [37], numerical calculations similar to those pre-
sented in Fig. 9 were done for a different type of WPT. In
Ref. [37], a spherical muscle phantom with a very small
receiving antenna in the center was excited by a uniformly
distributed source over the sphere surface. That ideal TX
was creating a fixed incident electromagnetic power at all
frequencies (reflections from the sphere boundary were
assumed to be eliminated by an ideal antirefelecting coat-
ing). The RX antenna was assumed to be perfectly matched
with the load and RL was optimized for the maximal power
transfer at every frequency. Full-wave simulations were
performed in Ref. [37] with the aim of finding the opti-
mal frequency of WPT for both electric and magnetic RX
antennas. Interestingly, the set of curves plotted in Fig. 3
of Ref. [37] for different d/a qualitatively resembles our
plots in both Figs. 9(a) and 9(b). The main qualitative dif-
ference is a negative shift of the optimal frequency versus
d in Ref. [37]. This shift definitely results from electro-
magnetic energy dissipation in the medium. In the muscle
tissue, the near-field coupling exponentially decays when
d increases, and this decay factor is proportional to the fre-
quency. Meanwhile, in the considered case two MDs are
located in free space, and their near field at a given dis-
tance weakly depends on the frequency. However, the main
qualitative result of the study [37] is the optimal frequency
range for WPT located below the self-resonance of RX but
higher than the low-frequency region in which the qua-
sistatic approximation for the whole system is applicable.
This result agrees with our result. In Ref. [38], the coupling

of two MD-based antennas in a lossy medium is considered
with the purpose of optimizing the antenna sizes for the
given operating frequency. Again, the operation frequency
turns out to be located between the low-frequency region
and the band of the antenna self-resonance. And the same
refers to the range of optimal operation frequencies when
the TX and RX antennas are located in free space.

In Figs. 10(a) and 10(b), we present PTE versus fre-
quency for both cases of coaxial and coplanar arrange-
ments for a comparatively large fixed transfer distance
d = 0.5 m and different loop radii a. We see that the
optimal frequency decreases versus a. This decrease, evi-
dently, results from the increase in the coupling for given
frequency when the loop gets larger. The top theoreti-
cal curves in Figs. 10(a) and 10(b), i.e., the case a =
4 cm, are validated by numerical simulations. Again, we
note a qualitative agreement, but the simulated PTEmax is
triply lower than the theoretical prediction for the coax-
ial arrangement and twice lower for the coplanar one. In
other words, the numerical disagreement between the the-
ory and simulations in the case d = 12.5a is much larger
than that in the case d = 5a, when the radiation suppres-
sion regime is achieved. This result confirms our insight
that the main inaccuracy of the magnetic dipole model is
not in the approximate formulae for the mutual inductance,
but mostly in negligence of the electric dipole mode. For
the loop a = 4 cm, this mode is more noticeable than for
the loop a = 3.6 cm operating at the same frequency.

To conclude this section, let us formulate the most
important theoretical observations.

(a) In the midrange coupling regime between two elec-
trically small loops there is a possibility to reach reason-
ably high power-transfer efficiency due to suppression of
radiation into the far zone (compensation of the radiation
resistances of both loops), as presented in Figs. 7 and 8.
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(a) (b) (c)

(d) (e) (f)

FIG. 11. Measurement setup and results: (a) two loop antennas in coaxial and coplanar arrangements; (b) phase difference of the
loop currents; (c) magnitude ratio I2/I1; (d) κR; (e) κI ; (f) PTE comparison between calculated, simulated, and measured results for
coaxial and coplanar antenna arrangements.

(b) This regime is realized by tuning the load
impedance to the optimal value for the maximal transfer
efficiency [cf. Eqs. (9)–(11)]. Limitations of the optimal
load matching are studied in detail in the Supplemental
Material [39], which includes Refs. [27,40–43].

(c) The optimal frequency for WPT between two small
loops to distances much larger than the loop sizes in both
cases of the arrangement of TX and RX loops lies above
the low-frequency region (in which the coupling of two
antennas is quasistatic and strong) but below the resonance
band of the individual loop antennas.

(d) To realize effective wireless power delivery at the
maximally possible distance between small antennas, the
midrange regime with the coplanar arrangement of loops is
suitable. In this case, the far-field coupling grants a signifi-
cant improvement of PTE compared to the case when WPT
holds solely due to near fields, which makes the copla-
nar arrangement of loops advantageous compared to the
coaxial one (as observed in Figs. 9 and 10).

IV. EXPERIMENTAL VERIFICATION

In this section, we present an experimental validation
of the theoretical results. The experimental setup con-
sists of two loop antennas designed for the frequency

range of interest. In order to minimize the effect of
the electric dipole mode, we use shielded loop anten-
nas made from coaxial cables. The center conductor of
the cables forms transmitting and receiving loops, and
the cable screen serves as a shield, minimizing the elec-
tric dipole mode current. The two terminals of the inner
copper wire of the loop are welded to the center pins
and the ground parts of SMA connectors. The shield is
cut close to the connection points. Both TX and RX
loops have the same radius of 3.6 cm and are placed at
a center-to-center distance of 18 cm (d = 5a) for coax-
ial and coplanar arrangements, as shown in Fig. 11(a).
For each arrangement, the antennas are connected to
two ports of the ZND vector network analyzer to mea-
sure Z parameters of the system in a wide frequency
range, which allows evaluating the optimal frequency and
PTE for the optimal load. The measured Z parameters
are used for analytical calculations of the optimal load
impedance and power-transfer efficiency using the formu-
lae presented above. The experimental results are shown in
Fig. 11.

We see that the phase difference and magnitude ratio
I2/I1 of the currents in the transmitting and receiving
loops show a qualitative agreement with numerical calcu-
lations (see the blue dashed lines in Fig. 5). At the optimal
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frequency of 59.38 MHz for the coaxial and coplanar
cases, the currents in the two loops have approxi-
mately opposite phases (−177.451◦, −175.341◦) and sim-
ilar amplitudes (0.67, 0.607), as seen in Figs. 11(b) and
11(c). Here, the PTE has a peak (0.35/0.353) correspond-
ing to the peak of κI , although κR is small, as seen in
Figs. 11(d)–11(f).

Let us also compare PTE in the dynamic regime with
the system working in the conventional quasistatic cou-
pling regime. In this case, the loop coupling is defined by
the mutual inductance, conventionally determined by the
geometry and positions of the loops. To do that, we mea-
sure the mutual inductance and the Z parameters of the
two coupled loops at distance d = 5a and at a frequency
of 4 MHz. The measured mutual inductance is approxi-
mately 0.56 nH for the coaxial case (around 0.508 nH in
the numerical calculations) and 0.384 nH for the coplanar
case (0.313 nH in the numerical calculations). Substituting
the measured mutual inductances and measured resistances
R1,2 = Re{Z11,22} into Eq. (11), we find an estimation for
the maximal achievable PTE at this distance of PTE ≈
0.0065 for the coaxial arrangement and PTE ≈ 0.0035
for the coplanar arrangement. These values are dramati-
cally smaller than those corresponding to the theoretical,
simulated, and experimental curves shown in Fig. 11(f),
confirming a possibility to significantly enhance power-
transfer efficiency using properly tuned dynamic coupling.

Overall, we observe qualitative agreement between the
theoretical and experimental results. Quantitative differ-
ences are a small shift in the optimal frequency range and
an order of smaller magnitude of the PTE in the experiment
compared to the numerical calculations. This big difference
can be explained by losses in the dielectric support and in
the galvanic contacts. Additionally, similarly to the simu-
lations, the loop antennas used in the experiments consist
of split loops with a finite gap. This deviation from the
idealized analytical model introduces a parasitic impact of
electric coupling. Furthermore, the presence of a slit in the
loop creates a parasitic capacitance, resulting in a signifi-
cantly lower self-resonance frequency as compared to the
pure magnetic dipole. As a consequence, this leads to a
shift in the optimal frequency and an increase of losses.

V. CONCLUSION

In this paper, we develop the dynamic theory of wireless
power transfer between two antennas, specializing it for
identical loop antennas. We consider WPT systems in free
space to thoroughly investigate the radiation suppression
regime based on analytical formulae available for anten-
nas in free space. Generally speaking, WPT in free space
is close to practical situations. The theory covers a very
broad range of frequencies and refers to both short-range
and midrange distances between the loops. Assuming that
the RX antenna reactance is properly matched at every

possible operational frequency and its useful load resis-
tance is similarly optimized, we aim to find the optimal
frequency range for a given loop size and track how and
why the power-transfer efficiency changes with the dis-
tance. We study two most important mutual arrangements
of the loops: the coaxial and the coplanar ones. In the first
arrangement, the coupling between the TX and RX anten-
nas is solely due to the near fields, in the second case the
near-field coupling is low and the radiative, far-zone cou-
pling exists. We show that, when the distance d is very
small compared to the antenna size, and dissipation is neg-
ligible, the power-transfer efficiency can approach unity at
whatever (low enough) operation frequency, and the only
issue is proper matching of antennas. However, if d is
larger than the loop diameter 2a, finding the optimal oper-
ation frequency becomes crucial for WPT system design.
For the coaxial arrangement, we find the optimal frequency
that turns out to be unique for a broad range of distances
(5a ≤ d ≤ 50a). For the coplanar arrangement, the optimal
frequency depends on the distance, but this dependence is
quite weak. In both cases, the optimal frequency lies below
the self-resonance of the loop but above the band in which
the quasistatic model is applicable for the WPT system. In
this frequency range the interaction between the loops is
dynamic, measured with both inductive and resistive parts
of the mutual impedance.

The maximum value of the PTE turns out to be quite
high in spite of the geometrically and electromagnetically
substantial distance between the two antennas. In this opti-
mal regime, the mutual coupling of two loops suppresses
the radiation from the system, and almost all the power,
which is not lost due to parasitic dissipation in the TX
antenna, is transferred to the RX. We thoroughly study
the prerequisites and peculiarities of this regime, which
holds for both coaxial and coplanar arrangements, consid-
ering contributions and advantages of the near-field and
far-field couplings for midrange distances. The developed
analytical model is verified by full-wave simulations and
is partially validated experimentally. We believe that the
regime of the radiation suppression is very important not
only because it grants high PTE for substantial transfer dis-
tances, but also because it prevents parasitic heating of the
ambient around the WPT system. In reality, the effects of
conventional foreign objects are usually not significant, as
we typically do not place blocking conducting or magnetic
objects in between the coils. The effect of foreign objects in
the vicinity of the device will somewhat change the values
of the impedance parameters, but the main effects of radi-
ation compensation will remain in place. In this respect, it
is noted that the revealed regime of radiation suppression
in fact reduces interference with foreign objects as com-
pared to conventional systems, due to the suppression of
far fields.

Finally, our future research aims to further improve the
experimental demonstration by incorporating the optimal
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load on the receiver end and carefully measuring the power
delivered to the load. Within the scope of this paper, we
have placed emphasis on the concept of the developed
dynamic theory and the identified radiation suppression
regime in midrange WPT. We believe that these findings
make a substantial contribution to the advancement of
wireless power-transfer technologies and provide valuable
insights for future research in this field.
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