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Quantum-disordered models provide a versatile platform to explore the emergence of quantum excita-
tions in many-body systems. The engineering of spin models at the atomic scale with scanning tunneling
microscopy and the local imaging of excitations with electrically driven spin resonance has risen as a
powerful strategy to image spin excitations in finite quantum spin systems. Here, focusing on S = 1/2 lat-
tices as realized by Ti in MgO, we show that dynamical spin excitations provide a robust strategy to infer
the nature of the underlying Hamiltonian. We show that finite-size interference of the dynamical many-
body spin excitations of a generalized long-range Heisenberg model allows the underlying spin couplings
to be inferred. We show that the spatial distribution of local spin excitations in Ti islands and ladders
directly correlates with the underlying ground state in the thermodynamic limit. Using a supervised-
learning algorithm, we demonstrate that the different parameters of the Hamiltonian can be extracted
by providing the spatially dependent and frequency-dependent local excitations that can be directly mea-
sured by electrically driven spin resonance with scanning tunneling microscopy. Our results put forward
local dynamical excitations in confined quantum spin models as versatile witnesses of the underlying
ground state, providing an experimentally robust strategy for Hamiltonian inference in complex real spin
models.

DOI: 10.1103/PhysRevApplied.20.024054

I. INTRODUCTION

The engineering of entangled states of matter is one of
the most-powerful strategies for designing exotic quantum
materials. A paradigmatic example is the case of quantum-
disordered ground states, generically emerging in quantum
spin models, many-body ground states featuring long-
range entanglement, and fractional excitations [1]. Besides
a variety of bulk materials hosting potential quantum-spin-
liquid ground states [2–6], an alternative strategy to design
these states relies on bottom-up assembly atom by atom
[7,8]. This strategy has been systematically exploited with
scanning tunneling microscopy (STM), with which artifi-
cial spin lattices have been assembled with atomic preci-
sion [9–14]. Excitations in these artificial lattices can be
measured with inelastic spectroscopy [15–17] and via elec-
trically driven paramagnetic resonance [8,18–22]. These
techniques allow the probing of the spin excitations locally
in space, in contrast with neutron-scattering methods used
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in bulk materials [3]. However, systematic methods for
inferring the ground state and microscopic description of
a spin system from experimentally available data remain
an open problem in quantum materials.

The bottom-up design of quantum spin lattices presents
unique opportunities to understand the buildup of
quantum-disordered states [1,7]. In particular, the spatial
resolution of STM techniques allows the direct inference
of the impact of finite-size effects on many-body excita-
tions of quantum spin models [7,8]. From the experimental
point of view, excitations in confined models provide the
opportunity of inferring the Hamiltonian of the underly-
ing system by exploitation of finite-size effects [23–25].
While this strategy has been widely demonstrated in elec-
tronic systems [23,26–34], spin systems are a much big-
ger, remarkable challenge due to the complex many-body
nature of the ground states. Parameters from a Hamilto-
nian can be extracted in simple cases explicitly [8], yet
quantum spin models with multiple parameters require
more-powerful strategies [35]. Machine-learning-powered
Hamiltonian learning has arisen as an effective strategy to
infer descriptions of complex systems [36–41]. However,
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FIG. 1. (a) Artificial spin island of Ti in MgO whose magnetic excitations are measured with ESR-STM. (b),(c) Spatial distribution
of spin excitations in different spin islands at frequencies ω = J1 for a 2 × 2 lattice, ω = 2.2J1 for a 4 × 4 lattice, ω = 1.5J1 for a 4 × 6
lattice, ω = 1.1J1 for a 6 × 2 lattice, ω = 2.4J1 for an 8 × 2 lattice, and ω = 0.8J1 for a 12 × 2 lattice. (b) Quasi-2D lattices of size
2 × 2, 4 × 4, and 6 × 4. (c) Quasi-1D lattices of size 6 × 2, 8 × 2, and 12 × 2. (d) Magnetic phase diagram realized by the frustrated
spin Hamiltonian in the thermodynamic limit of a square lattice [Eq. (1)]. AF, antiferromagnetic; QSL, quantum spin liquid; VBS,
valence bond state.

their potential for inferring the nature of frustrated quan-
tum spin models from experimentally accessible spatially
resolved and frequency-resolved excitations has not been
demonstrated.

In this article, we show that excitations in finite quan-
tum spin lattices provide a promising strategy to infer the
underlying physics of the spin Hamiltonian by exploiting
interference from finite-size effects. In particular, we show
that a phase transition in the thermodynamic limit has a
dramatic impact on the spatial distribution of the many-
body modes of finite quantum spin islands, both in the
presence and in the absence of magnetic fields. Further-
more, we demonstrate that this strong dependence allows
the development of a strategy to learn the Hamiltonian
parameters of the spin model directly from the spatially
dependent and frequency-dependent excitations, accessi-
ble with direct experimental measurements. Our results
demonstrate that finite-size effects provide a valuable strat-
egy for Hamiltonian learning of quantum spin models.

II. MAGNETIC PHASES IN A CONFINED
QUANTUM MAGNET

In the following, we focus on the spin model realized
by Ti atoms on MgO [8,21,42,43], which was recently
demonstrated to realize spin excitations in 2 × 2 lattices
[8]. Figure 1(a) shows a schematic of the experimental
procedure based on STM and single-atom electron spin
resonance (ESR) used to probe these artificial spin islands
and to measure their spin excitations. Different island
geometries with various sizes are illustrated in Figs. 1(b)
and 1(c), showing the appearance of a spatial pattern in
the spin excitations at specific energies. This pattern in
the spin excitation constitutes the fundamental idea for our
analysis.

The associated spin Hamiltonian that describes these
spin islands takes the form

H = J1

∑

〈ri,rj 〉
Sri · Srj + J2

∑

〈〈ri,rj 〉〉
Sri · Srj , (1)

where J1 and J2 are the nearest and next-nearest antiferro-
magnetic spin exchanges; for simplicity, we take J1 = 1
[44]. In the thermodynamic limit, this frustrated Hamil-
tonian develops different magnetic phases depending on
the J2/J1 ratio [45–49], including antiferromagnetic Néel,
stripe, quantum-spin-liquid, and bond-ordered phases, as
summarized in Fig. 1(d). The antiferromagnetic interac-
tions leading to these phases are the ones that appear in
Ti due to superexchange. For Ti in MgO, the couplings
J1 and J2 are controlled by the distance between Ti and
the thickness of MgO layers. It is also worth noting that
the thickness of MgO may have an impact on the J1, J2,
and J3 due to the contribution to the exchange mediated by
the underlying silver substrate in experiments. The impact
of silver on the magnetic properties of Ti and other 3d
atoms was addressed previously [50–53], demonstrating
the notable role of the MgO substrate in modifying the
effective spin Hamiltonian.

The physical quantity that we use to characterize the
magnetic phase in the confined quantum magnets is the
spin dynamical correlator S(ω, ri), defined as

S(ω, ri) = 〈GS|Sz
ri
δ(ω + EGS − H)Sz

ri
|GS〉, (2)

where |GS〉 and EGS are the many-body ground state and
its energy [54–56]. The parameter ω accounts for the
frequency of the excitation, which in ESR experiments
corresponds to the frequency of the applied voltage. It is
worth noting that the line shape of the ESR can be differ-
ent from the dynamical spin correlator, yet the frequencies
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FIG. 2. Total spin spectral function in (a) an 8 × 2 ladder and
(b) a 4 × 4 ladder as a function of J2. (c) Local spectral function
at different energies ω and J2 for the 8 × 2 ladder. (d) Local spec-
tral function at different energies ω and J2 for the 4 × 4 ladder.
It is observed that both in the ladder and in the island the con-
fined modes depend on the energy ω and the second-neighbor
coupling J2.

at which the features appear will be the same for both
quantities. Equation (2) characterizes local spin excita-
tions, which directly influence inelastic-electron-tunneling
spectroscopy and electron paramagnetic resonance [17,50,
57,58]. It is worth noting that in both inelastic-electron-
tunneling spectroscopy and electron paramagnetic reso-
nance, additional form factors stemming from transport
can slightly modify the signal in comparison with the pure
spin spectral function [59].

For concreteness, we focus on the dynamical spin cor-
relator for two different geometries: a quasi-1D 8 × 2
ladder and a quasi-2D 4 × 4 dot. The spin systems are the
most-realistic ones that may be assembled from the

already-demonstrated structures, which achieved an engi-
neered 2 × 2 cluster [8]. Figure 2 shows the total dynami-
cal correlator Stot(ω) = ∑

ri
S(ω, ri) and the local correla-

tor for different regimes of J2/J1 of the spin Hamiltonian.
The total correlator [Figs. 2(a) and 2(c)] shows a clear
dependence on J2/J1, thus providing a hint as to where in
the phase diagram the system is. In Figs. 2(b) and 2(d), we
can observe the strong spatial dependence of the local spin
correlator S(ω, ri) for different J2/J1 values. This dramatic
difference suggests that the change of the confined many-
body spin excitations can provide a useful strategy to infer
the form of the underlying spin Hamiltonian and determine
the regime of the phase diagram in which the system is.

We can analyze in a more-systematic way the evolu-
tion of the local spin correlator as a function of J2/J1 for
the different inequivalent sites of the islands that we are
studying. Figures 3(a)–3(d) show results for the 8 × 2 lad-
der, and Figs. 4(a)–4(c) show results for the 4 × 4 island.
Moreover, to reveal the potential phase transitions more
clearly, we consider adding a staggered antiferromagnetic
field BAF [Figs. 3(e)–3(h) and 4(d)–4(f)] and a striped anti-
ferromagnetic field BSAF [Figs. 3(i)–3(l) and 4(g)–4(i)] to
the Hamiltonian in Eq. (1) and study the changes that they
produce to the local dynamical correlators. We start by ana-
lyzing the cases without an external local Zeeman field
[Figs. 3(a)–3(d) and 4(a)–4(c)]. In all cases, the dynami-
cal correlator shows several peaks at J2/J1 = 0. As J2/J1
increases, the peaks at higher energy move toward zero
energy. Eventually, at around J2/J1 = 0.8, these peaks
merge, and then they disperse for larger J2/J1.

Interestingly, the nanoscale nature of these magnets
allows the engineering of local fields by depositing atoms
atoms realizing a strong Ising spin close to the spin-lattice,
as is the case of Ho at MgO [18] or Dy at MgO [60]. These
Ising spins allow the creation of local Zeeman fields in
nearby spins and can be controlled individually, allowing
one to engineer atomically precise Zeeman profiles [60].
Atomically engineered Zeeman fields provide a strategy
to probe the response of a quantum magnet to different
Zeeman textures and, in particular, to distinguish between
different states depending on their response. Using the pre-
vious idea, in the following, we include a local Zeeman
term that will be induced by proximal Ising spins as

HZ =
∑

ri

Bri · Sri , (3)

where Bri is the local Zeeman field created by proxi-
mal Ising spins. We note that while a Zeeman profile for
the quasi-1D structures in Fig. 1(c) can be engineered in
all the sites, Zeeman profiles in the quasi-2D structures
in Fig. 1(b) would be more challenging. As a reference,
we illustrate the impact of those profiles for quasi-1D
and quasi-2D cases, keeping in mind that the quasi-1D
cases will be experimentally easier to implement. We
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FIG. 3. Local spectral function at different energies ω and J2/J1 on different inequivalent sites for the 8 × 2 ladder, with (a)–(d)
no magnetic field, (e)–(h) BAF = 0.5, and (i)–(l) BSAF = 0.5. The insets in (e)–(l) show the local magnetic fields Bi = 0.5J1 and
Bi = −0.5J1 on an orange site and a blue site, respectively.

address specific Zeeman profiles, staggered antiferromag-
netic and collinear antiferromagnetic, that promote the two
symmetry-broken states shown in Fig. 1(d). The cases with
the staggered antiferromagnetic field BAF [Figs. 3(e)–3(h)
and 4(d)–4(f)] show a drastic change of the spectrum
for 0 < J2/J1 < 0.6: the lowest excitation, at around ω =
0.5J1, vanishes. When J2/J1 > 0.6, the change is less sig-
nificant: the levels are shifted, but there is no vanishing
of strong peaks. This suggests that for J2/J1 < 0.6 the
ground state has a large staggered antiferromagnetic com-
ponent as it is sensitive to a staggered antiferromagnetic
field, while for J2/J1 > 0.6 the ground state does not have

a large staggered antiferromagnetic component. Similarly,
we can analyze the dynamical correlators in the presence of
a striped antiferromagnetic field BSAF [Figs. 3(i)–3(l) and
4(g)–3(i)]: for J2/J1 < 0.4, the spectrum does not change
very much, while for J2/J1 > 0.4 the lowest states vanish.
This indicates a large striped antiferromagnetic compo-
nent in the ground state for J2 > 0.4. This phenomenology
reflects the behavior of the state in the thermodynamic
limit [61]. For J2/J1 < 0.4, the ground state is almost-
staggered antiferromagnetic, while for J2/J1 > 0.6, the
ground state is almost a striped antiferromagnetic, and
for 0.4 < J2/J1 < 0.6, the ground state is in a frustrated
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FIG. 4. Local spectral function at different energies ω and J2
on different sites for the 4 × 4 island, with (a)–(d) no mag-
netic field, (e)–(h) BAF = 0.5, and (i)–(l) BSAF = 0.5. The insets
in (d)–(i) show the local magnetic fields Bi = 0.5J1 and Bi =
−0.5J1 on an orange site and a blue site, respectively.

regime having competing staggered-antiferromagnetic and
striped-antiferromagnetic components.

The above analysis demonstrates three different phases
in the 8 × 2 ladder and the 4 × 4 island as a function
of J2/J1. Furthermore, it shows that the dependence of
the spin excitations on a local field changes dramatically
depending on the value of J2/J1. This severe change of
dynamical excitations with a local field directly reflects the
nature of the different ground states as a function of J2/J1.
Despite our having determined the connection between the
local dynamical spin excitations and the different phases
realized by the spin Hamiltonian, there are some limita-
tions that must be overcome to accurately infer the form
of the Hamiltonian, i.e., the precise J2/J1 ratio from the
local spin dynamical correlator that one would measure in
an experiment. In particular, we have been using a local
magnetic field to analyze the evolution of the dynamical
correlation with different antiferromagnetic external fields.
While such local fields can be engineered in certain struc-
tures, as noted above [60], from an experimental point of
view, uniform magnetic fields are easier to control exter-
nally. As we see below, even with a uniform magnetic field,
the nature of the different ground states can be inferred
from the local excitations by exploitation of the depen-
dence on confinement interference effects. The thickness

of MgO is expected to have an impact on J1/J2 due to
the contribution to the exchange mediated by the underly-
ing silver substrate in experiments. Specifically, thin MgO
substrates will give rise to a substantial increase of J2/J1.
In contrast, for large thicknesses of MgO, J1 is expected
to dominate due to exchange being dominated by superex-
change through MgO. The impact of silver on the magnetic
properties of Ti and other 3d atoms was addressed previ-
ously [50–53], demonstrating the notable role of the MgO
substrate in modifying the effective spin Hamiltonian.
The theoretical analysis above approximately established
the different phase transitions from the evolution of the
dynamical correlators. However, it would be better to pro-
vide a way to directly get the precise J2/J1 ratio from the
correlator that would be directly measured in experiments.
In the following section, we establish a protocol to system-
atically infer the specific form of the Hamiltonian from the
dynamical correlator.

III. HAMILTONIAN LEARNING FROM
CONFINED QUANTUM SPIN EXCITATIONS

In the previous section, we observed that the spatially
resolved dynamical excitations show a distinct dependence
on the Hamiltonian parameters. While extraction of the
parameters from the data is a nontrivial task, machine-
learning methods allow the data to be processed without
the need for explicitly programmed and task-depended
algorithms. The algorithm learns to solve the task and cre-
ates a model purely from data, thus overcoming the issues
that we have described.

In the following we report the use of supervised learn-
ing with neural networks (NNs). NNs are used to perform a
regression task, which assumes a relationship between the
inputs and outputs of the model. Here, the inputs are (local)
dynamical correlators [given by Eq. (2)] and the outputs
are the corresponding exchange parameters of the Hamil-
tonian. A sketch of the workflow of the NN is shown in
Fig. 5(a).

The NN acts as a universal function approximator, find-
ing a function f , mapping from the inputs X to the outputs
y. By optimization of the NN parameter, we obtain y =
f (X ). For the optimization task we use supervised learn-
ing and a gradient-decent algorithm, i.e., teaching the NN
by showing examples of pairs of inputs and outputs to
minimize the loss function and update the NN parameter
(weights). The input of the NN contains the map of dynam-
ical correlators at the difference frequencies. By using the
symmetry of the lattices, we reduce the whole map to
three (four) independent dynamical correlators of the 4 × 4
(8 × 2) system in combination with an external uniform
magnetic field, which is easier to implement in experi-
ments. This results in a total dimension of 601 (801). The
NN architecture consists of three hidden layers of dimen-
sions 200, 200, and 100 and an output dimension of 2. We
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(a)

(b)

(d) (e)

(c)

FIG. 5. (a) Schematic workflow of the NN, taking dynamical
correlators as input and returning the underlying Hamiltonian
parameter (J1, J2, J3). (b)–(e) Results for the 2 × 8 lattice includ-
ing the predictions versus the true values of (b) J2 and (c) J3 with
noise (χ = 1) and without noise. (d),(e) Corresponding mean
error �J2/J1 and �J3/J1 for noise up to χ = 2 for J2 and J3.

demonstrate our algorithm with a more-complex Heisen-
berg Hamiltonian, incorporating first-neighbor, second-
neighbor, and third-neighbor exchange (J2/J1, J3/J1) of
the form

H = J1

∑

〈ri,rj 〉
Sri · Srj + J2

∑

〈〈ri,rj 〉〉
Sri · Srj

+ J3

∑

〈〈〈ri,rj 〉〉〉
Sri · Srj + B ·

∑

ri

Sri , (4)

where B = (Bx, 0, 0), and where we added third-neighbor
interactions (J3) as well as an external magnetic field with
strength Bx. We set J1 = 1 as the energy scale and we
vary J2, J3, and Bx in the interval I = [0, 1] to cover a
wide range of the parameter space of the Hamiltonian. The
magnetic field Bx is measured in the unit of gμB/J1, with
g = 1 the Landé g factor and μB the Bohr magneton. We
use the Hamiltonian parameters J2 and J3 as labels in the
dataset to train the NN. The trained model is then able
to predict the underlying exchange Hamiltonian parame-
ters J2 and J3 by use of the dynamical correlators and the
magnetic field strength as inputs. We train the NN for 100
epochs with a batch size of 10 to obtain the results shown
in this work. We use this procedure to address the 2 × 8
and 4 × 4 lattices presented in the previous section. The

general machine-learning workflow is shown in Fig. 5(a).
The NN takes as input dynamical correlators with corre-
sponding magnetic field Bx to predict the corresponding J2
and J3 interactions.

To demonstrate that NN Hamiltonian inference is a
robust method to be applied to experimental data, we intro-
duce noise in the dynamical correlators used to infer J2 and
J3 interactions. Noise is included as a random frequency-
dependent renormalization of the dynamical correlators
defined as

S(ω, ri)noisy = S(ω, ri) · |1 + ζ(ω)|. (5)

The noise ζ(ω) is defined as a uniform distribution in
the interval ζ(ω) ∈ [−χ , χ ], randomly sampled for each
Hamiltonian, and is different for every discrete frequency
of the dynamical correlators.

Figures 5(b)–5(e) show the results for the 2 × 8 lattice,
starting with the predictions for J2 and J3 [in Figs. 5(b)
and 5(c)] in the presence and in the absence of noise. The
predictions are plotted against the true values, and in the
ideal case, all data points lie exactly on the diagonal line
[of f (x) = x]. Without the presence of noise (red), the
NN predicts both values with very high precision, with
mean error (ME) �J2/J1 = 0.0103 and �J3/J1 = 0.0107.
However, even in the presence of very high noise levels
(χ = 1), the NN is able to make predictions with mean
errors �J2/J1 = 0.040 and �J3/J1 = 0.036. This shows the
high resilience to noise of our approach, which is an impor-
tant factor when one is considering experimental data. The
resilience to noise is highlighted even more in Figs. 5(d)
and 5(e), where the mean square error is shown for differ-
ent noise levels for J2 and J3. As seen in Figs. 5(d) and
5(e), the MSE stays very low up to a noise level χ of 0.5
added to the dynamical correlators, when it slowly starts
increasing. Even for noise levels χ of 1 or greater, the
errors remain relatively small. The NN is still able to make
good predictions for noise levels χ of 1 or greater. For the
following predictions, we use added noise with amplitude
χ = 0.02 since it can be beneficial for the training of the
NN so as to avoid overfitting.

The same analysis is done for the 4 × 4 lattice in Fig. 6.
In this case, we trained the network with dynamical corre-
lators of the 4 × 4 system. The results are almost identical
to those for the 2 × 8 lattice shown in Fig. 5. Figures 6(a)
and 6(b) show the predictions versus the true Hamilto-
nian parameter for J2 and J3, respectively, which are of
very high precision for no noise, and even up to noise
amplitudes χ of 1, the NN predicts the parameters accu-
rately. For both parameters without noise, �J2/J1 = 0.016
and �J3/J1 = 0.016, and with added noise of χ = 1, the
NN is again able to make predictions with low errors,
�J2/J1 = 0.053 and �J3/J1 = 0.042. We also see similar
behavior for the ME for different noise levels in Figs. 6(c)
and 6(d). Also for this system the ME starts increasing
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(c) (d)

(a) (b)

FIG. 6. (a)–(d) Results for the 4 × 4 lattice including the pre-
dictions versus true values of (a) J2 and (b) J3 with noise (χ = 1)
and without noise. (c),(d) Corresponding mean error of (c) J2 and
(d) J3 for added noise up to χ = 2.

from a noise amplitude χ of 1 but does not saturate at
χ = 1.5 as is the case for the 2 × 8 lattice. Nonetheless,
the NN is very resilient to noise and able to make good
predictions.

Figure 7 shows the predictions of the local spin cor-
relation function made by the NN in comparison with
numerical calculations for the 4 × 4 system in two differ-
ent regions of the Hamiltonian. It is shown that the NN
performs well for the antiferromagnetic phase Fig. 7(a)] as
well as for the valence bond state phase [Fig. 7(b)]. The
predictions are almost indistinguishable from the numer-
ical calculations, including all significant features, and

show only very minor deviations. The same results are
obtained for the 2 × 8 ladder presented in Fig. 8 for
the same Hamiltonian parameter, where the NN performs
equally well in predicting the local spectral function for
three different energies. The high precision of the NN pre-
dictions is related to the high accuracy in the predictions
of the Hamiltonian parameter and the small mean error
discussed before.

Finally, we discuss some additional considerations
regarding the experimental parameter extraction in generic
spin lattices beyond Ti in MgO. While for Ti in MgO,
the spin excitations are dominated by the isotropic Heisen-
berg coupling model, in generic experimental realizations,
there can be additional contributions to the Hamiltonian.
In particular, a contribution to the spin coupling stemming
from dipolar interaction can appear [62]. This contribu-
tion can be accurately computed from the geometry of the
island. As a result, such a term can be explicitly included
in the Hamiltonian, and its prefactor does not have to be
inferred. In addition, small anisotropic exchange contri-
butions coming from spin-orbit coupling can appear in
real-spin models. While such a contribution is small for Ti
lattices, lattices made of heavier 4d or 5d atoms can display
stronger anisotropic exchange stemming from spin-orbit
coupling [18]. In those instances, the anisotropic term
should be included in the Hamiltonian, with a parameter
that has to be inferred in the supervised learning. Further-
more, in the case of lattices with S > 1/2, such as Fe in
MgO [58], local spin-anisotropy terms would have to be
included in the Hamiltonian and inferred in the learning.
Finally, if the Hamiltonian inference is made in the pres-
ence of a large external magnetic field, an anisotropic g
factor may appear [63] and could become an additional
parameter to be extracted. In Appendixes A and B, we

(a) (b)

2 3 2 3

FIG. 7. Local spectral function at three different energies ω for the 4 × 4 system. Shown are the predictions of the NN (top) in
comparison with numerical computations (bottom) for the Hamiltonians with (a) J2 = 0.1J1 and J3 = 0.1J1 (Bx = 0) and (b) J2 = 0.8J1
and J3 = 0.1J1 (Bx = 0).
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(a)

(b)

2

3

2

3

FIG. 8. Local spectral function at three different energies ω for the 2 × 8 ladder. Shown are the predictions of the NN (top) in
comparison with numerical computations (bottom) for the Hamiltonians with (a) J2 = 0.1J1 and J3 = 0.1J1 (Bx = 0) and (b) J2 = 0.8J1
and J3 = 0.1J1 (Bx = 0).

show that the NN formalism can be extended to infer
both the anisotropy strength and the g factor. This demon-
strates the potential of machine-learning algorithms to
infer generalized Hamiltonians with multiple parameters.

Finally, it is worth emphasizing the clear advantage of
our algorithm with respect to conventional fitting proce-
dures. Our machine-learning algorithm requires evaluation
of the spin spectral function only to train the algorithm ini-
tially, a task that can be systematically parallelized. This
means that once the algorithm is trained, parameters can be
obtained instantly, extracted just by provision of the mea-
sured spectral function. In contrast, conventional fitting
algorithms require iterative evaluation of the spin spectral
function of the model for different parameters up to several
hundred times, a task that can become time-consuming.
This evaluation cannot be done in parallel, as each param-
eter chosen depends on the quality of the fitting for the
previous one. This implies that our method provides a
nearly instantaneous Hamiltonian extraction in compari-
son with the standard fitting method. This massive speedup
is especially relevant for use of our algorithm with auto-
mated impurity assembly as recently demonstrated [64],
as our method would allow one to estimate on the fly the
Hamiltonian of each realized atomic arrangement.

IV. CONCLUSION

To summarize, we have shown that spatially resolved
and frequency-resolved spin excitations in finite-size spin
models allow inference of the underlying long-range frus-
trated Heisenberg Hamiltonian. Our method exploits the
finite-size effects of a quantum spin island, demonstrating

that confinement in the many-body spin modes provides a
strategy to extract microscopic couplings. From the exper-
imental point of view, our results show that spatial and
frequency resolution of electrically driven spin resonance
with scanning tunneling microscopy allows extraction of
the nature of complex Hamiltonians from confinement
effects in finite spin systems. In particular, by focusing on
the S = 1/2 Heisenberg model as realized by Ti in MgO,
we showed that the spatial distribution of spin excitations
strongly depends on the underlying exchange couplings
of the model. This strong dependence displayed in finite
systems can be rationalized by the different nature of the
ground state in the thermodynamic limit, which impacts
the spin excitations even in small, confined islands. We
demonstrated that such finite-size effects allow the devel-
opment of a supervised-learning method for extraction
of the parameters of the Hamiltonian from the full fre-
quency and spatially resolved spin excitations. We showed
that this method is robust with regard to noise in the
dynamical spin excitations, establishing an experimentally
realistic strategy for Hamiltonian inference using real data
from paramagnetic resonance measurements with scanning
tunneling microscopy. Our method allows confined exci-
tations in frustrated magnets to be used as a powerful
strategy to understand the buildup and nature of frustrated
quantum spin many-body models.
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APPENDIX A: g-FACTOR PREDICTIONS

While in the main text we focused on predicting
exchange constants, additional terms may appear in the
Hamiltonian. Specifically, spin-orbit-coupling effects give
rise to a renormalized g factor affecting the Zeeman term.
We now show that our algorithm would be capable of pre-
dicting this additional term. Figure 9 shows the predictions
for the g factor for the 2 × 8 lattice and the 4 × 4 lattice.
We included the g factor in the Hamiltonian as

H = J1

∑

〈ri,rj 〉
Sri · Srj + J2

∑

〈〈ri,rj 〉〉
Sri · Srj

+ J3

∑

〈〈〈ri,rj 〉〉〉
Sri · Srj + gB ·

∑

ri

Sri , (A1)

where the Zeeman term is renormalized by the g factor g.
The NN is trained to predict the g factor, chosen in the

(a)

(b)

FIG. 9. Histogram of g-factor predictions for (a) the 2 × 8
lattice and (b) the 4 × 4 lattice. The number of counts is plot-
ted against the difference between the prediction and the true
value. For (a) the mean absolute error � = 0.101 and for (b)
� = 0.092.

FIG. 10. Predicted anisotropy strength Jz versus true value for
the 4 × 4 lattice. The mean absolute error � = 0.014.

interval [0.2, 2.0]. These results show that our machine-
learning algorithm is capable of predicting the g factor in
addition to J2 and J3 with good accuracy.

APPENDIX B: ANISOTROPIC EXCHANGE
PREDICTIONS

An additional term that emerges in the spin Hamiltonian
due to spin-orbit coupling is the anisotropic exchange term.
In the following we show that our algorithm can be eas-
ily extended to extract anisotropic exchange interactions.
Figure 10 shows the predictions for the anisotropy first-
neighbor exchange correction Jz for the 4 × 4 lattice. We
included the anisotropy term in the Hamiltonian as

H = J1

∑

〈ri,rj 〉
Sri · Srj + J2

∑

〈〈ri,rj 〉〉
Sri · Srj

+ J3

∑

〈〈〈ri,rj 〉〉〉
Sri · Srj

+ B ·
∑

ri

Sri + Jz

∑

〈ri,rj 〉
SZ

ri
· SZ

rj
. (B1)

The NN is trained to predict the anisotropy strength Jz,
chosen in the interval [−0.2, 0.2], by use of the dynami-
cal correlator D(ω) as input. The mean error � is 0.014.
These results show our machine-learning algorithm can be
extended to account for anisotropic exchange terms in a
spin Hamiltonian.
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